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Abstract: In this study, we evaluate a circular path-following control for a vehicle. For a
vehicle to follow a circular path, rotational and expansionary coordinate transformations using
the time-state control form of the vehicle system is useful. However, an undershoot response
occurs in the initial response for some initial conditions. In this study, we derive some conditions
with the occurrence of undershoot in the initial response and clarify the conditions for avoiding
it. The undershoot analysis of the circular path-following response is performed via numerical
simulations using rotational and expansionary coordinate transformations for a vehicle model.
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1. INTRODUCTION

In this article, we discuss a circular path-following control
for a vehicle. The study on autonomous vehicles is cur-
rently underway (Rosas-Vilchis et al. (2020)), particularly
for applications in the agricultural field (Iida et al. (2013);
Sutisna et al. (2021)). Examples of paths for agricultural
vehicles are a straight line and an arbitrary curve, includ-
ing a circle. Two methods are involved in following a cir-
cular path: one is the application of rotational coordinate
transformation to the vehicle model (Egami et al. (2005)),
and the other is combining the former with expansionary
coordinate transformation (Egami et al. (2004)). However,
it has been shown that an undershoot in the initial re-
sponse occurs under specific conditions; the conditions for
the undershoot response have also been indicated (Nakata
et al. (2020)). Moreover, the latter method suppresses
the undershoot response compared with the former. Re-
garding the undershoot response, a servo control system
design without an undershoot response in continuous-time
systems (Norimatsu et al. (1961); Mita et al. (1981); Hara
et al. (1986)) and the relationship between zeros and the
undershoot response in discrete-time systems (Deodhare et
al. (1992); De La Barra et al. (1996)) have been discussed.
However, the conditions for the undershoot responses differ
depending on the transformation of the time-state control
form. In this article, we modify the results of previous
studies (Nakata et al. (2020, 2021)) and derive conditions
for an undershoot response with fewer constraints. Fur-
ther, we consider the undershoot phenomenon based on
the initial conditions of a vehicle.

2. CIRCULAR PATH-FOLLOWING CONTROL WITH
ROTATIONAL COORDINATE TRANSFORMATION

2.1 Vehicle model

Herein, we consider the kinematic model of a two-wheeled
vehicle shown in Fig. 1. We define Px, Py as the center
of the vehicle position in the x, y coordinate, ϕ is the
angle between the x-axis and the center line of the vehicle,
V is the velocity of the center of the vehicle, Vϕ is the
tangential velocity, b is the distance between the center
of the vehicle and crawler, and Vl, Vr are the velocities of
the left- and right-hand side crawlers, respectively. Then,
V, Vϕ are represented by V (t) = (Vl(t) + Vr(t))/2, Vϕ(t) =
(−Vl(t) + Vr(t))/2b.
We assume that the vehicle does not slip. The kinematic
model whose inputs are V, Vϕ is as follows (Murray et al.
(1993)):

d

dt

[
Px(t)
Py(t)
ϕ(t)

]
=

[
cosϕ(t)
sinϕ(t)

0

]
V (t) +

[
0
0
1

]
Vϕ(t). (1)

We assume that Px(t), Py(t), ϕ(t), V (t), and Vϕ(t) in Eq.
(1) are observable.

2.2 Rotational coordinate transformation

In this section, we discuss the application of rotational
coordinate transformation to a vehicle model to follow a
circular path. Fig. 2 shows the vehicle model in the d-q
plane rotated by θ from the x-y plane. Then, the transfor-
mation is expressed as follows (Egami et al. (2005)):[

Pd(t)
Pq(t)

]
=

[
cos θ(t) sin θ(t)
− sin θ(t) cos θ(t)

] [
Px(t)
Py(t)

]
. (2)
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rently underway (Rosas-Vilchis et al. (2020)), particularly
for applications in the agricultural field (Iida et al. (2013);
Sutisna et al. (2021)). Examples of paths for agricultural
vehicles are a straight line and an arbitrary curve, includ-
ing a circle. Two methods are involved in following a cir-
cular path: one is the application of rotational coordinate
transformation to the vehicle model (Egami et al. (2005)),
and the other is combining the former with expansionary
coordinate transformation (Egami et al. (2004)). However,
it has been shown that an undershoot in the initial re-
sponse occurs under specific conditions; the conditions for
the undershoot response have also been indicated (Nakata
et al. (2020)). Moreover, the latter method suppresses
the undershoot response compared with the former. Re-
garding the undershoot response, a servo control system
design without an undershoot response in continuous-time
systems (Norimatsu et al. (1961); Mita et al. (1981); Hara
et al. (1986)) and the relationship between zeros and the
undershoot response in discrete-time systems (Deodhare et
al. (1992); De La Barra et al. (1996)) have been discussed.
However, the conditions for the undershoot responses differ
depending on the transformation of the time-state control
form. In this article, we modify the results of previous
studies (Nakata et al. (2020, 2021)) and derive conditions
for an undershoot response with fewer constraints. Fur-
ther, we consider the undershoot phenomenon based on
the initial conditions of a vehicle.

2. CIRCULAR PATH-FOLLOWING CONTROL WITH
ROTATIONAL COORDINATE TRANSFORMATION

2.1 Vehicle model

Herein, we consider the kinematic model of a two-wheeled
vehicle shown in Fig. 1. We define Px, Py as the center
of the vehicle position in the x, y coordinate, ϕ is the
angle between the x-axis and the center line of the vehicle,
V is the velocity of the center of the vehicle, Vϕ is the
tangential velocity, b is the distance between the center
of the vehicle and crawler, and Vl, Vr are the velocities of
the left- and right-hand side crawlers, respectively. Then,
V, Vϕ are represented by V (t) = (Vl(t) + Vr(t))/2, Vϕ(t) =
(−Vl(t) + Vr(t))/2b.
We assume that the vehicle does not slip. The kinematic
model whose inputs are V, Vϕ is as follows (Murray et al.
(1993)):

d
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Px(t)
Py(t)
ϕ(t)

]
=

[
cosϕ(t)
sinϕ(t)

0

]
V (t) +
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0
0
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Vϕ(t). (1)

We assume that Px(t), Py(t), ϕ(t), V (t), and Vϕ(t) in Eq.
(1) are observable.

2.2 Rotational coordinate transformation

In this section, we discuss the application of rotational
coordinate transformation to a vehicle model to follow a
circular path. Fig. 2 shows the vehicle model in the d-q
plane rotated by θ from the x-y plane. Then, the transfor-
mation is expressed as follows (Egami et al. (2005)):[

Pd(t)
Pq(t)

]
=

[
cos θ(t) sin θ(t)
− sin θ(t) cos θ(t)

] [
Px(t)
Py(t)

]
. (2)
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Fig. 1. Vehicle model Fig. 2. Vehicle model with
the rotational coordinate
transformation

Where ψ is the attitude angle in the d, q coordinate, and
Vψ is the tangential velocity of the vehicle. Subsequently,
ψ and Vψ are given by

ψ(t) =
π

2
− ϕ(t) + θ(t), (3)

ψ̇(t) = Vψ(t). (4)

For the circular path-following control, the vehicle is
controlled within a circle of radius r =const. by assuming
Pq(t) = Ṗq(t) = 0. From Eq. (4), the kinematic model of
the vehicle is obtained by taking the time derivative of Eq.
(2) as follows (Nakata et al. (2020, 2021)):

d

dt

[
θ(t)
Pd(t)
ψ(t)

]
=

[
cosψ(t)/Pd(t)

sinψ(t)
0

]
V (t) +

[
0
0
1

]
Vψ(t). (5)

Equation (5) is a nonholonomic system without a drift
term, and it is not stabilized by the static state feedback
control (Brockett (1983)). Thus, we discuss the transfor-
mation into the time-state control form in the next section.

2.3 Transformation into the time-state control form

This section discusses the time-state control form (Sampei
(1994); Sampei et al. (1996)) as a control model. Equation
(5) is transformed into Eqs. (8) and (9) of the time-state
control form using the coordinate transformation in Eq.
(6) and input transformation Eq. (7) as follows (Egami et
al. (2005)):[

z1(t)
z2(z1)
z3(z1)

]
=

[
θ(t)

tanψ(t)
log |Pd(t)|

]
, (6)

[
V (t)
Vψ(t)

]
=

[
µv(t)Pd(t)/ cosψ(t)
µv(t)u(z1) cos

2 ψ(t)

]
, (7)

dz1(t)

dt
= µv(t), (8)

d

dz1

[
z3(z1)
z2(z1)

]
=

[
0 1
0 0

] [
z3(z1)
z2(z1)

]
+

[
0
1

]
u(z1). (9)

Equation (8) is the time control part, and Eq. (9) is
the state control part. The transformation is valid in the
range |ψ| < π/2，Pd(t) ̸= 0. µv(t) > 0 is set and z1(t)
monotonically increases with time. Therefore, the purpose
of Eqs. (8) and (9) is to control Pd(= ez3 = elog |Pd|) to
a constant target radius r(= elog |r|) while monotonically
increasing θ(= z1). In addition, we assume Pd(t) and θ(t)
are observable, and ψ(t) is known through Eq. (3). Thus,
z1, z2, and z3 are observable. Further, Eq. (7) is known

Fig. 3. Servo system with the rotational coordinate trans-
formation

because µv(t) and u(z1) are obtained from a control law
that will be presented later. Hence, V (t) and Vψ(t) are
calculated.
Subsequently, the control model is converted into a
discrete-time system. Equation (8) is discretized into Eq.
(10) by applying a zero-order hold to the input µv(t) with
a sampling period ∆t. Equation (9) is discretized into Eq.
(11) by applying a zero-order hold to the input u(z1)
with an equivalent sampling period ∆z1(= z1[k + 1] −
z1[k] = µv[k]∆t =const.) (Nakata et al. (2020, 2021)).

z1[k + 1] = z1[k] + µv[k]∆t, (10)

zp[k + 1] = Apzp[k] + bpu[k], (11)

zp[k] :=

[
z3[k]
z2[k]

]
,Ap :=

[
1 ∆z1
0 1

]
, bp :=

[
∆z21
2

∆z1

]
. (12)

2.4 Design of servo system

In this article, we design an integral type servo system for
a control subject P :

P :

{
zp[k + 1] = Apzp[k] + bpu[k],

yp[k] = cpzp[k], cp = [1 0],
(13)

where yp = z3 = log |Pd| is the output (Fig. 3). To facili-
tate the servo system design, we construct the augmented
system as follows:

z[k + 1] = Az[k] + bu[k] + bryr, (14)

u[k] = −fz[k], (15)

z[k] :=

[
zp[k]
xi[k]

]
,A :=

[
Ap 0
−cp 1

]
, b :=

[
bp
0

]
, br :=

[
0
1

]
,

(16)

f := [fp − f3],fp := [f1 f2], (17)

where xi is the state variable of the integrator that
accumulates the error between the reference yr = log |r|
and output yp. f and fp are constant feedback gains, and
A− bf is a Schur stable matrix. We define Method 1 as
the control method of subsection 2.2, subsection 2.3, and
subsection 2.4.

2.5 Conditions for avoiding undershoot response

To derive the conditions for avoiding the undershoot
response, we determine the conditions for the undershoot
response. Here, Type 1 undershoot is defined as the
displacement of the output yp[k](= z3[k]) that is in the
opposite direction to the reference value yr from k = 0
to k = 1. This situation is represented as follows (De La
Barra et al. (1996); Nakata et al. (2020)):

(yr − yp[0])(yp[1]− yp[0]) < 0. (18)

From Eq. (18), the condition for avoiding the undershoot
response is as follows:

(yr − yp[0])(yp[1]− yp[0]) ≥ 0. (19)
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Equation (19) is rearranged using the control model with
rotational coordinate transformation (Eq. (21)). First,
from Eqs. (14) and (15), yp[1] = z3[1] is given by

yp[1] = z3[0] + ∆z1z2[0]

+
1

2
∆z21(−f1z3[0]− f2z2[0] + f3xi[0]),

= yp[0] + ∆z1z2[0]−
1

2
∆z21(f1yp[0] + f2z2[0]). (20)

However, we use xi[0] = 0. Notably, z2[0] = 0 was
assumed in previous studies (Nakata et al. (2020, 2021)),
but we assume that z2[0] ̸= 0. Therefore, the conditions
for avoiding the undershoot response are obtained by
substituting Eq. (20) into Eq. (19) as follows:

(yr − yp[0])

(
∆z1z2[0]−

1

2
∆z21(f1yp[0] + f2z2[0])

)
≥ 0.

(21)

Here, the following lemma holds.

Lemma 1. For the servo system represented by Eqs. (14)
and (15) under the control subject Eq. (11), the neces-
sary and sufficient condition for the feedback gain f =
[f1, f2,−f3] that A− bf is a Schur stable matrix satisfies
the following inequalities:

f1 > f3(1 +
a0
2a1

) > 0,

2

∆z1
> f2 >

∆z1(2f1 − f3)

4
> 0, f3 > 0, (22)

where a0 and a1 are defined as

a0 := 8− 4∆z1f2,

a1 := ∆z1(−2∆z1f1 + 4f2 +∆z1f3).

Proof. See the reference (Nakata et al. (2021)).

From Lemma 1, we obtain the following theorem:
Theorem 1 . For the servo system represented by Eqs. (14)
and (15), we assume that the feedback gain f is designed
such that A − bf is a Schur stable matrix and xi[0] = 0.
yp[0] for avoiding Type 1 undershoot response is as follows:

yp[0] ∈ H1 ∪H2, (23)

H1 = {yp[0]|yp[0] ≤ yr, yp[0] ≤ η} .
H2 = {yp[0]|yp[0] ≥ yr, yp[0] ≥ η} .

η :=
z2[0]

f1

(
2

∆z1
− f2

)
.

Proof. If yr − yp[0] ≥ 0 and

∆z1z2[0]−
1

2
∆z21(f1yp[0] + f2z2[0]) ≥ 0, (24)

Eq. (21) is satisfied. From f1 > 0 and ∆z1 > 0 in Lemma
1, Eq. (24) is equivalent to

2z2[0]

∆z1
≥ f1yp[0] + f2z2[0],

⇔ yp[0] ≤
z2[0]

f1

(
2

∆z1
− f2

)
= η. (25)

Therefore, the range of yp[0] is yp[0] ∈ H1.
By contrast, from the conditions that yr − yp[0] ≤ 0 and

∆z1z2[0]−
1

2
∆z21(f1yp[0] + f2z2[0]) ≤ 0, (26)

yp[0] ∈ H2 is derived similarly.
From the above, yp[0] for avoiding Type 1 undershoot is
represented by yp[0] ∈ H1 ∪H2.

Thus, the following corollary holds.
Corollary 1 . For the servo system represented by Eqs.
(14) and (15), we assume that the feedback gain f is
designed such that A − bf is a Schur stable matrix and
xi[0] = 0. The conditions for avoiding Type 1 undershoot
are shown using Pd[0] and ψ[0] as follows:

Pd[0] ∈ H∗
1 ∪H∗

2 , (27)

H∗
1 = {Pd[0]||Pd[0]| ≤ |r|, |Pd[0]| ≤ eη} .

H∗
2 = {Pd[0]||Pd[0]| ≥ |r|, |Pd[0]| ≥ eη} .

η :=
tanψ[0]

f1

(
2

∆z1
− f2

)
.

Proof. Pd[0] ∈ H∗
1 ∪ H∗

2 is derived from substituting
yp[0] = log |Pd[0]|, z2[0] = tanψ[0], and yr = log |r|
into Eq. (23) in Theorem 1 and the monotonicity of the
exponential function as base Napier’s number e.

2.6 Control system design and numerical simulation

The control purpose is to make the center of the vehicle
follow a circle of radius r = 0.3 [m]. The sampling period
is ∆t = 0.2 [s], the distance between the center of the
vehicle and crawler is b = 0.15 [m], and the initial position
of the center of the vehicle is (Pd[0], Pq[0]) = (0.5, 0.0) [m].
We designed µv[k] = V/r = 0.05/0.3 so that the vehicle
on the reference path has a constant-velocity circular
motion with a translational velocity of V = 0.05 [m/s].
The feedback gains f1, f2, and f3 are designed by the
optimal regulator theory based on A, b of Eq. (14) and
Eq. (16) with the weight matrices Q and R. To improve
the tracking performance of Pd, we set Q =diag[70, 10, 0.3]
and R = 0.2. The feedback gain is as follows:

f = [f1, f2,−f3] = [29.34, 9.564,−1.022].

Further, A − bf is Schur stable because the absolute
values of the eigenvalues of A − bf are |0.93 ± 0.03j| =
0.93, and 0.81. The initial attitude angle of the vehicle
is verified for two cases: ψ[0] = −45.0 and 45.0[deg]. In
ψ[0] = −45.0[deg], Pd[0] ∈ H∗

2 of Eq. (27) is satisfied
because eη = 0.18. However, Eq. (27) is not satisfied in
ψ[0] = 45.0[deg] because eη = 5.6.
Fig. 4 shows the simulation results. The solid black and
red lines represent the reference and response in ψ[0] =
−45.0[deg], respectively. The dotted blue line represents
the response in ψ[0] = 45.0[deg]. From Fig. 4, the Type
1 undershoot occurred in ψ[0] = 45.0[deg]. By contrast,
Type 1 undershoot response did not occur in ψ[0] =
−45.0[deg]. However, we found another type of undershoot
response that moves in the opposite direction after moving
to the reference value. This undershoot is referred to as
Type 2 undershoot, and is distinguished from the Type 1
undershoot; it is represented by Eq. (18). From the above,
when Eq. (23) is satisfied in Method 1, Type 1 undershoot
does not occur; however, Type 2 undershoot may occur
after the initial response. In the next section, we discuss
Type 2 undershoot in detail.

2.7 Verifying Type2 undershoot in Method1

From the simulation results of subsection 2.6, we confirmed
that the type of undershoot response depended on the
initial conditions of the vehicle. Therefore, we verify the
type of undershoot response that is affected by the initial
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Equation (19) is rearranged using the control model with
rotational coordinate transformation (Eq. (21)). First,
from Eqs. (14) and (15), yp[1] = z3[1] is given by

yp[1] = z3[0] + ∆z1z2[0]

+
1

2
∆z21(−f1z3[0]− f2z2[0] + f3xi[0]),

= yp[0] + ∆z1z2[0]−
1

2
∆z21(f1yp[0] + f2z2[0]). (20)

However, we use xi[0] = 0. Notably, z2[0] = 0 was
assumed in previous studies (Nakata et al. (2020, 2021)),
but we assume that z2[0] ̸= 0. Therefore, the conditions
for avoiding the undershoot response are obtained by
substituting Eq. (20) into Eq. (19) as follows:

(yr − yp[0])

(
∆z1z2[0]−

1

2
∆z21(f1yp[0] + f2z2[0])

)
≥ 0.

(21)

Here, the following lemma holds.

Lemma 1. For the servo system represented by Eqs. (14)
and (15) under the control subject Eq. (11), the neces-
sary and sufficient condition for the feedback gain f =
[f1, f2,−f3] that A− bf is a Schur stable matrix satisfies
the following inequalities:

f1 > f3(1 +
a0
2a1

) > 0,

2

∆z1
> f2 >

∆z1(2f1 − f3)

4
> 0, f3 > 0, (22)

where a0 and a1 are defined as

a0 := 8− 4∆z1f2,

a1 := ∆z1(−2∆z1f1 + 4f2 +∆z1f3).

Proof. See the reference (Nakata et al. (2021)).

From Lemma 1, we obtain the following theorem:
Theorem 1 . For the servo system represented by Eqs. (14)
and (15), we assume that the feedback gain f is designed
such that A − bf is a Schur stable matrix and xi[0] = 0.
yp[0] for avoiding Type 1 undershoot response is as follows:

yp[0] ∈ H1 ∪H2, (23)

H1 = {yp[0]|yp[0] ≤ yr, yp[0] ≤ η} .
H2 = {yp[0]|yp[0] ≥ yr, yp[0] ≥ η} .

η :=
z2[0]

f1

(
2

∆z1
− f2

)
.

Proof. If yr − yp[0] ≥ 0 and

∆z1z2[0]−
1

2
∆z21(f1yp[0] + f2z2[0]) ≥ 0, (24)

Eq. (21) is satisfied. From f1 > 0 and ∆z1 > 0 in Lemma
1, Eq. (24) is equivalent to

2z2[0]

∆z1
≥ f1yp[0] + f2z2[0],

⇔ yp[0] ≤
z2[0]

f1

(
2

∆z1
− f2

)
= η. (25)

Therefore, the range of yp[0] is yp[0] ∈ H1.
By contrast, from the conditions that yr − yp[0] ≤ 0 and

∆z1z2[0]−
1

2
∆z21(f1yp[0] + f2z2[0]) ≤ 0, (26)

yp[0] ∈ H2 is derived similarly.
From the above, yp[0] for avoiding Type 1 undershoot is
represented by yp[0] ∈ H1 ∪H2.

Thus, the following corollary holds.
Corollary 1 . For the servo system represented by Eqs.
(14) and (15), we assume that the feedback gain f is
designed such that A − bf is a Schur stable matrix and
xi[0] = 0. The conditions for avoiding Type 1 undershoot
are shown using Pd[0] and ψ[0] as follows:

Pd[0] ∈ H∗
1 ∪H∗

2 , (27)

H∗
1 = {Pd[0]||Pd[0]| ≤ |r|, |Pd[0]| ≤ eη} .

H∗
2 = {Pd[0]||Pd[0]| ≥ |r|, |Pd[0]| ≥ eη} .

η :=
tanψ[0]

f1

(
2

∆z1
− f2

)
.

Proof. Pd[0] ∈ H∗
1 ∪ H∗

2 is derived from substituting
yp[0] = log |Pd[0]|, z2[0] = tanψ[0], and yr = log |r|
into Eq. (23) in Theorem 1 and the monotonicity of the
exponential function as base Napier’s number e.

2.6 Control system design and numerical simulation

The control purpose is to make the center of the vehicle
follow a circle of radius r = 0.3 [m]. The sampling period
is ∆t = 0.2 [s], the distance between the center of the
vehicle and crawler is b = 0.15 [m], and the initial position
of the center of the vehicle is (Pd[0], Pq[0]) = (0.5, 0.0) [m].
We designed µv[k] = V/r = 0.05/0.3 so that the vehicle
on the reference path has a constant-velocity circular
motion with a translational velocity of V = 0.05 [m/s].
The feedback gains f1, f2, and f3 are designed by the
optimal regulator theory based on A, b of Eq. (14) and
Eq. (16) with the weight matrices Q and R. To improve
the tracking performance of Pd, we set Q =diag[70, 10, 0.3]
and R = 0.2. The feedback gain is as follows:

f = [f1, f2,−f3] = [29.34, 9.564,−1.022].

Further, A − bf is Schur stable because the absolute
values of the eigenvalues of A − bf are |0.93 ± 0.03j| =
0.93, and 0.81. The initial attitude angle of the vehicle
is verified for two cases: ψ[0] = −45.0 and 45.0[deg]. In
ψ[0] = −45.0[deg], Pd[0] ∈ H∗

2 of Eq. (27) is satisfied
because eη = 0.18. However, Eq. (27) is not satisfied in
ψ[0] = 45.0[deg] because eη = 5.6.
Fig. 4 shows the simulation results. The solid black and
red lines represent the reference and response in ψ[0] =
−45.0[deg], respectively. The dotted blue line represents
the response in ψ[0] = 45.0[deg]. From Fig. 4, the Type
1 undershoot occurred in ψ[0] = 45.0[deg]. By contrast,
Type 1 undershoot response did not occur in ψ[0] =
−45.0[deg]. However, we found another type of undershoot
response that moves in the opposite direction after moving
to the reference value. This undershoot is referred to as
Type 2 undershoot, and is distinguished from the Type 1
undershoot; it is represented by Eq. (18). From the above,
when Eq. (23) is satisfied in Method 1, Type 1 undershoot
does not occur; however, Type 2 undershoot may occur
after the initial response. In the next section, we discuss
Type 2 undershoot in detail.

2.7 Verifying Type2 undershoot in Method1

From the simulation results of subsection 2.6, we confirmed
that the type of undershoot response depended on the
initial conditions of the vehicle. Therefore, we verify the
type of undershoot response that is affected by the initial

Fig. 4. Simulation results by Method1

Fig. 5. Initial response analysis by Method1 and Method2

conditions of the vehicle. When Eq. (18) is satisfied, the
undershoot response is evaluated as Type 1, whereas, when
Eq. (18) is not satisfied and the following equation is
satisfied, it is evaluated as Type 2 (Mita et al. (1981)):

(yr − yp[0])(yp[k]− yp[0]) < 0, k ≥ 2. (28)

The initial values of the vehicle that vary are the attitude
angle ψ[0] and initial position Pd[0]. The other parameters
of the vehicle are similar to those in subsection 2.6. ψ[0]
is increased by 5.0[deg] from −85.0[deg] to 85.0[deg], and
Pd[0] is increased by 0.1 [m] from 0.1 [m] to 1.1 [m].
Fig. 5 shows the simulation results. The red triangle, blue
plus sign, and black circle, respectively, mean that Type
1 undershoot, Type 2 undershoot, and nonundershoot
response occurs in the conditions of Pd[0] and ψ[0] in
Method 1. The yellow and gray bar show results by
Method 2 described in Section 3. From Fig. 5, we confirmed
that the existence and types of undershoot phenomena are
based on the initial conditions of a vehicle. The undershoot
response type in Fig. 4 matched the results of Fig. 5.
However, it is a future issue to clarify the relationship
between the avoiding and initial conditions of Type 2
undershoot.

3. CIRCULAR PATH-FOLLOWING CONTROL WITH
ROTATIONAL AND EXPANSIONARY COORDINATE

TRANSFORMATIONS

3.1 Rotational and expansionary coordinate transforma-
tions

In this section, we present a method with the expansionary
and rotational coordinate transformations presented in
Section 2 and define it as Method 2. Let P̂d and P̂q be
the transformed variables. The vehicle model with the
expansionary and rotational coordinate transformations is
represented by replacing Pd by P̂d and Pq by P̂q in Fig. 2.
Using αd and αq, which are the expansion coefficients for
the d- and q-axis, the expansionary coordinate transfor-
mation is expressed as follows (Egami et al. (2004)):[

P̂d(t)

P̂q(t)

]
=

[
αd(t) 0
0 αq(t)

] [
Pd(t)
Pq(t)

]
. (29)

When the reference is a circular path, we assume that

Pq(t) = Ṗq(t) = P̂q(t) =
˙̂
Pq(t) = 0, and the path error

is evaluated on the d-axis similar to Section 2. From the
above assumptions, αq is an arbitrary nonzero constant.
When the expansion coefficient for the d-axis is set to
αd = 1/r, the reference path is transformed into a unit
circle. Taking the time derivative of Eq. (29), the kinematic
model of the vehicle is given by (Nakata et al. (2020,
2021)):

d

dt




θ(t)

P̂d(t)
ψ(t)


 =


 αd cosψ(t)/P̂d(t)

αd sinψ(t)
0


V (t) +

[
0
0
1

]
Vψ(t).

(30)
Because Eq. (30) is a nonholonomic system without a drift
term, as in Eq. (5), we use the time-state control form
presented in the next section.

3.2 Transformation into the time-state control form

The time-state control form with the expansionary and
rotational coordinate transformations is represented using
the coordinate transformation (Eq. (31)) and the input
transformation (Eq. (32)) as follows (Nakata et al. (2020,
2021)):

[
z1(t)
ẑ2(z1)
ẑ3(z1)

]
=




θ(t)
αd tanψ(t)

αd log |P̂d(t)|


 , (31)

[
V (t)
Vψ(t)

]
=

[
µv(t)Pd(t)/ cosψ(t)

µv(t)û(z1) cos
2 ψ(t)/αd

]
, (32)

dz1(t)

dt
= µv(t), (33)

d

dz1

[
ẑ3(z1)
ẑ2(z1)

]
=

[
0 1
0 0

] [
ẑ3(z1)
ẑ2(z1)

]
+

[
0
1

]
û(z1). (34)

Equations (33) and (34) are discretized similarly as in
subsection 2.3.

z1[k + 1] = z1[k] + µv[k]∆t, (35)

ẑp[k + 1] = Apẑp[k] + bpû[k], (36)

ẑp[k] = [ẑ3[k] ẑ2[k]]
T,

where Ap and bp are similar to those in Eq. (12).
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Fig. 6. Servo system with rotational and expansionary
coordinate transformations

3.3 Design of servo system

The servo system is designed as in subsection 2.4. The
system is obtained by replacing zp[k] by ẑp[k], yp[k] by
ŷp[k] = cpẑp[k] = ẑ3[k], u[k] by û[k], xi[k] by x̂i[k] =
αdxi[k], and yr by ŷr = 0(= log |αdr| = log |1|) in Fig. 3,
Eqs. (14), and (15). From Eq. (14), the augmented system
is obtained by substituting the state variable z[k] into

ẑ[k] = [ẑp[k]
T

x̂i[k]]
T as follows:

ẑ[k + 1] = Aẑ[k] + bû[k] + brŷr = Aẑ[k] + bû[k], (37)

û[k] = −fẑ[k], (38)

where f is the feedback gain defined by Eq.(17) and
designed such that A − bf is a Schur stable matrix.
Equations (37) and (38) are represented by the follow-
ing equation in the coordinate system z[k] of Method 1
(Nakata et al. (2020, 2021)):

z[k + 1] = Az[k] + bu[k] + bryr + bf1yr. (39)

The system of Eq. (39) is shown in Fig. 6. The system
of Method 2 is equivalent to Fig. 6 and the structure of
Method 1 added the feedforward input f1yr.

3.4 Conditions for avoiding the undershoot response

In this section, we derive the conditions for avoiding the
undershoot response of Method 2; the following theorem
holds.
Theorem 2 . For the system represented by Eq. (39), we
assume that the feedback gain f is designed such that
A − bf is a Schur stable matrix and xi[0] = 0. The
conditions of yp[0] for avoiding Type 1 undershoot are as
follows:

yp[0] ∈ H3 ∪H4, (40)

H3 = {yp[0]|yp[0] ≤ yr, yp[0] ≤ η + yr} .
H4 = {yp[0]|yp[0] ≥ yr, yp[0] ≥ η + yr} .

Proof. We assume that xi[0] = 0. From Eq. (39), yp[1] is
expressed as follows:

yp[1] = z3[0] + ∆z1z2[0]−
1

2
∆z21(f1z3[0] + f2z2[0]− f1yr).

(41)

The condition of yp[0] for avoiding Type 1 undershoot is
obtained by substituting Eq. (41) into Eq. (19) as follows:

(yr − yp[0])

(
∆z1z2[0]−

1

2
∆z21(f1yp[0] + f2z2[0]− f1yr)

)

≥ 0. (42)

The condition of Eq. (42) is divided into two cases whether
yr − yp[0] ≥ 0 or yr − yp[0] ≤ 0 by the similar manner
described in the proof of Theorem 1. If yr − yp[0] ≥ 0 and

∆z1z2[0]−
1

2
∆z21(f1yp[0] + f2z2[0]− f1yr) ≥ 0, (43)

Eq. (42) is satisfied. From f1 > 0 and ∆z1 > 0 of Lemma
1, Eq. (43) becomes equivalent to

2z2[0]

∆z1
≥ f1yp[0] + f2z2[0]− f1yr

⇔ yp[0] ≤ η + yr (44)

Therefore, the range of yp[0] is as follows yp[0] ∈ H3.
By contrast, from the conditions that yr − yp[0] ≤ 0 and

∆z1z2[0]−
1

2
∆z21(f1yp[0] + f2z2[0]− f1yr) ≤ 0, (45)

yp[0] ∈ H4 is derived.
Consequently, yp[0] for avoiding Type 1 undershoot is
represented by yp[0] ∈ H3 ∪H4.

From Theorem 2, the following corollary holds.
Corollary 2 . For the system represented by Eq. (39), we
assume that the feedback gain f is designed such that
A − bf is a Schur stable matrix and xi[0] = 0. Then,
using Pd[0] and ψ[0], the conditions for avoiding Type 1
undershoot are as follows:

Pd[0] ∈ H∗
3 ∪H∗

4 , (46)

H∗
3 = {Pd[0]||Pd[0]| ≤ |r|, |Pd[0]| ≤ eη|r|} .

H∗
4 = {Pd[0]||Pd[0]| ≥ |r|, |Pd[0]| ≥ eη|r|} .

η :=
tanψ[0]

f1

(
2

∆z1
− f2

)
.

We consider the conditions of Eq. (46). In |Pd[0]| ≤ |r|,
when |Pd[0]| ≤ eη|r| is satisfied, Type 1 undershoot does
not occur. The sign of η matched the sign of ψ[0] because
f1 > 0 and 2/∆z1 > f2 in Lemma 1. Therefore, when
ψ[0] ≥ 0 holds, Pd[0] ∈ H∗

3 is satisfied because eη ≥ 1,
which implies that the vehicle tilts toward the reference
path in the initial conditions. H∗

4 is derived in similarly to
the above idea. Therefore, in Method 2, Type 1 undershoot
is avoided if the initial attitude angle of the vehicle is
set in the same direction to the reference path exist.
Further, Type 1 undershoot is prevented if H∗

3 and H∗
4

make larger set. Therefore, it is effective by increasing f1
and f2 because η is smaller in (46).

3.5 Numerical simulation

We execute a numerical simulation under the same condi-
tions as in subsection 2.6. In the initial condition ψ[0] =
−45.0[deg], Pd[0] ∈ H∗

4 is satisfied because eη = 0.18.
However, in ψ[0] = 45.0[deg], the initial conditions of the
vehicle do not satisfy Eq. (46) because eη = 1.7.
Fig. 7 shows the simulation results. The solid black and
red lines represent the reference and response in ψ[0] =
−45.0[deg], respectively. The dotted blue line represents
the response in ψ[0] = 45.0[deg]. From Fig. 7, undershoot
responses were avoided in ψ[0] = −45.0[deg], and the Type
1 undershoot occurred in ψ[0] = 45.0[deg].

3.6 Comparison of the initial conditions for the occurrence
of the undershoot response in Method1 and Method2

Similar to subsection 2.7, we evaluate the undershoot
response by numerical simulation. Fig. 5 shows the sim-
ulation results. The yellow and gray bars mean that Type
1 undershoot and nonundershoot occur in the conditions
of Pd[0] and ψ[0] in Method 2. We compare the methods
in terms of the initial conditions for the occurrence of
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Fig. 6. Servo system with rotational and expansionary
coordinate transformations

3.3 Design of servo system

The servo system is designed as in subsection 2.4. The
system is obtained by replacing zp[k] by ẑp[k], yp[k] by
ŷp[k] = cpẑp[k] = ẑ3[k], u[k] by û[k], xi[k] by x̂i[k] =
αdxi[k], and yr by ŷr = 0(= log |αdr| = log |1|) in Fig. 3,
Eqs. (14), and (15). From Eq. (14), the augmented system
is obtained by substituting the state variable z[k] into

ẑ[k] = [ẑp[k]
T

x̂i[k]]
T as follows:

ẑ[k + 1] = Aẑ[k] + bû[k] + brŷr = Aẑ[k] + bû[k], (37)

û[k] = −fẑ[k], (38)

where f is the feedback gain defined by Eq.(17) and
designed such that A − bf is a Schur stable matrix.
Equations (37) and (38) are represented by the follow-
ing equation in the coordinate system z[k] of Method 1
(Nakata et al. (2020, 2021)):

z[k + 1] = Az[k] + bu[k] + bryr + bf1yr. (39)

The system of Eq. (39) is shown in Fig. 6. The system
of Method 2 is equivalent to Fig. 6 and the structure of
Method 1 added the feedforward input f1yr.

3.4 Conditions for avoiding the undershoot response

In this section, we derive the conditions for avoiding the
undershoot response of Method 2; the following theorem
holds.
Theorem 2 . For the system represented by Eq. (39), we
assume that the feedback gain f is designed such that
A − bf is a Schur stable matrix and xi[0] = 0. The
conditions of yp[0] for avoiding Type 1 undershoot are as
follows:

yp[0] ∈ H3 ∪H4, (40)

H3 = {yp[0]|yp[0] ≤ yr, yp[0] ≤ η + yr} .
H4 = {yp[0]|yp[0] ≥ yr, yp[0] ≥ η + yr} .

Proof. We assume that xi[0] = 0. From Eq. (39), yp[1] is
expressed as follows:

yp[1] = z3[0] + ∆z1z2[0]−
1

2
∆z21(f1z3[0] + f2z2[0]− f1yr).

(41)

The condition of yp[0] for avoiding Type 1 undershoot is
obtained by substituting Eq. (41) into Eq. (19) as follows:

(yr − yp[0])

(
∆z1z2[0]−

1

2
∆z21(f1yp[0] + f2z2[0]− f1yr)

)

≥ 0. (42)

The condition of Eq. (42) is divided into two cases whether
yr − yp[0] ≥ 0 or yr − yp[0] ≤ 0 by the similar manner
described in the proof of Theorem 1. If yr − yp[0] ≥ 0 and

∆z1z2[0]−
1

2
∆z21(f1yp[0] + f2z2[0]− f1yr) ≥ 0, (43)

Eq. (42) is satisfied. From f1 > 0 and ∆z1 > 0 of Lemma
1, Eq. (43) becomes equivalent to

2z2[0]

∆z1
≥ f1yp[0] + f2z2[0]− f1yr

⇔ yp[0] ≤ η + yr (44)

Therefore, the range of yp[0] is as follows yp[0] ∈ H3.
By contrast, from the conditions that yr − yp[0] ≤ 0 and

∆z1z2[0]−
1

2
∆z21(f1yp[0] + f2z2[0]− f1yr) ≤ 0, (45)

yp[0] ∈ H4 is derived.
Consequently, yp[0] for avoiding Type 1 undershoot is
represented by yp[0] ∈ H3 ∪H4.

From Theorem 2, the following corollary holds.
Corollary 2 . For the system represented by Eq. (39), we
assume that the feedback gain f is designed such that
A − bf is a Schur stable matrix and xi[0] = 0. Then,
using Pd[0] and ψ[0], the conditions for avoiding Type 1
undershoot are as follows:

Pd[0] ∈ H∗
3 ∪H∗

4 , (46)

H∗
3 = {Pd[0]||Pd[0]| ≤ |r|, |Pd[0]| ≤ eη|r|} .

H∗
4 = {Pd[0]||Pd[0]| ≥ |r|, |Pd[0]| ≥ eη|r|} .

η :=
tanψ[0]

f1

(
2

∆z1
− f2

)
.

We consider the conditions of Eq. (46). In |Pd[0]| ≤ |r|,
when |Pd[0]| ≤ eη|r| is satisfied, Type 1 undershoot does
not occur. The sign of η matched the sign of ψ[0] because
f1 > 0 and 2/∆z1 > f2 in Lemma 1. Therefore, when
ψ[0] ≥ 0 holds, Pd[0] ∈ H∗

3 is satisfied because eη ≥ 1,
which implies that the vehicle tilts toward the reference
path in the initial conditions. H∗

4 is derived in similarly to
the above idea. Therefore, in Method 2, Type 1 undershoot
is avoided if the initial attitude angle of the vehicle is
set in the same direction to the reference path exist.
Further, Type 1 undershoot is prevented if H∗

3 and H∗
4

make larger set. Therefore, it is effective by increasing f1
and f2 because η is smaller in (46).

3.5 Numerical simulation

We execute a numerical simulation under the same condi-
tions as in subsection 2.6. In the initial condition ψ[0] =
−45.0[deg], Pd[0] ∈ H∗

4 is satisfied because eη = 0.18.
However, in ψ[0] = 45.0[deg], the initial conditions of the
vehicle do not satisfy Eq. (46) because eη = 1.7.
Fig. 7 shows the simulation results. The solid black and
red lines represent the reference and response in ψ[0] =
−45.0[deg], respectively. The dotted blue line represents
the response in ψ[0] = 45.0[deg]. From Fig. 7, undershoot
responses were avoided in ψ[0] = −45.0[deg], and the Type
1 undershoot occurred in ψ[0] = 45.0[deg].

3.6 Comparison of the initial conditions for the occurrence
of the undershoot response in Method1 and Method2

Similar to subsection 2.7, we evaluate the undershoot
response by numerical simulation. Fig. 5 shows the sim-
ulation results. The yellow and gray bars mean that Type
1 undershoot and nonundershoot occur in the conditions
of Pd[0] and ψ[0] in Method 2. We compare the methods
in terms of the initial conditions for the occurrence of

Fig. 7. Simulation results by Method2

the undershoot response. The number of conditions under
which Type 1 undershoot occurred using Methods 1 and
2 is 173 and 124, respectively. Hence, we confirm that
Method 2 avoided Type 1 undershoot more than Method
1 within the range of the initial conditions of the vehicle
set in this simulation. Moreover, from Fig. 5, Type 2
undershoot does not occur under these conditions using
Method 2. As a result, the feedforward input is effective
to suppress Type 2 undershoot. It is a future study to
derive a condition for avoiding Type 2 undershoot.

4. CONCLUSION

In this article, we clarified the initial conditions for
avoiding Type 1 undershoot in the initial response and
confirmed the response using two methods for circular
path-following control of a two-wheeled vehicle. The first
method is to apply the rotational coordinate transforma-
tion to the vehicle transformed into the time-state con-
trol form, and the other is to apply the expansionary
coordinate transformation in addition to the rotational
one. We clarified that the second method avoided Type
1 undershoot more easily than the first by deriving the
conditions for avoiding the undershoot response. Further,
we found that Type 2 undershoot occurred after the initial
response, although Type 1 undershoot was avoided in some
initial conditions. Therefore, we examined the conditions
for Type 2 undershoot within the limited range of the
initial conditions of the vehicle. We verified that Type 2
undershoot occurred in the first method, but not in the
second. The conditions for Type 2 undershoot need to be
minutely considered in future studies.
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