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Summary

Cacao extract (CE) consumption has beneficial effects on human
health, such as lowering the risk of obesity. However, the
underlying molecular mechanism for the anti-obesity effect of CE
remains incompletely understood. Here, we used a 50% aqueous
alcohol extract of cacao mass, which is rich in methylxanthine
derivatives (about 11%) and poor in flavan-3-ols (less than 1%), and
assessed the suppression effects of this extract on adipocyte
differentiation to investigate the anti-obesity mechanism. CE dose-
dependently decreased fat accumulation in 3T3-L1 cells without
affecting cell viability. CE also dose-dependently decreased the
protein and gene expression levels of two adipogenesis-related
transcription factors, peroxisome proliferator-activated receptor
gamma (PPARy) and CCAAT/enhancer-binding proteins (C/EBPs).
Moreover, CE decreased protein expression levels of sterol
regulatory element-binding protein 1 (SREBP1) and its downstream
fatty acid synthase (FAS), which was accompanied by the retained
localization of SREBPL1 in the cytoplasm of 3T3-L1 cells. After ICR
mice were fed a diet containing 1% CE for 1 week, their white
adipose tissue weight was lower, whereas their brown adipose tissue
weight was higher compared with those of control animals.
Additionally, the protein expression levels of PPARy, C/EBPs,
SREBP-1, and FAS in the white adipose tissue of these mice were

also lower than those in control animals. In contrast, diet
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supplementation with CE induced higher levels of phosphorylated
AMP-activated protein kinase (AMPK) and its downstream acetyl-
CoA carboxylase. In conclusion, methylxanthine derivative-rich CE
decreases fat accumulation in adipocytes by downregulating the
expression of the adipocyte differentiation master regulators

through the activation of AMPK.

Key Words: cacao; methylxanthine derivatives; PPARy; C/EBPs;

adipocyte differentiation
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Introduction

Obesity is linked to the increased onset of certain chronic
diseases, such as diabetes and cardiovascular diseases (1-4). Under
the condition of obesity, adipocytes accumulate abnormal or
excessive fat. Since adipocyte differentiation is acutely involved in
fat accumulation (5), controlling adipocyte differentiation is a
promising strategy for the prevention of obesity.

During differentiation from fibroblast-like preadipocytes to
mature adipocytes, peroxisome proliferator-activated receptor
gamma (PPARy) and CCAAT/enhancer-binding proteins (C/EBPs) are
the master regulators or crucial determinants of adipocyte fate (6).
AMP-activated protein kinase (AMPK) is a key modulator for
maintaining both the cellular and whole-body energy balance (7).
The activation of AMPK inhibits the differentiation of 3T3-L1 cells
by downregulating the expression of PPARy and C/EBPs (8).
Moreover, activated AMPK interacts with sterol regulatory element
binding protein 1 (SREBP1) and inhibits the expression of its target
molecule, fatty acid synthase (FAS), leading to a reduction of
lipogenesis and lipid accumulation (9-11), in addition to promoting
phosphorylation of acetyl CoA carboxylase (ACC) and inhibiting its
activity (12).

Certain food materials and phytochemicals have been

reported to reduce the risk of obesity (13-16). Intake of cacao liquor
4
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or dark chocolate ameliorates and/or prevents obesity in humans
(17-18). Cacao-derived flavan-3-ol-rich extract has also been shown
to prevent obesity in animal studies (19). Cacao liquor and its
flavan-3-ols decrease the plasma cholesterol level (20). In addition
to flavan-3-ols, cacao also contains methylxanthine-derivatives such
as theobromine and caffeine, and these compounds likewise perform
functions that are beneficial to human health (21). A recent study
reported that caffeine and catechins improve lipid metabolism
synergistically through an AMPK-dependent action in mice fed a
high-fat diet (22). These results indicate that cacao extract (CE) and
its components possess anti-obesity effects. However, the
underlying molecular mechanism for the anti-obesity effect of CE,
particularly the effect of a methylxanthine derivative-rich CE, is not
yet fully understood.

In this study, we investigated that expression of PPARy and
C/EBPs and of their downstream adiposity-related factors, SREBP1
and FAS, in 3T3-L1 adipocytes after treatment with a
methylxanthine-rich CE. To confirm the observed anti-obesity effect
of this extract, we fed mice a diet supplemented with CE for 7 d,
and their expression levels of PPARy, C/EBPs, SREBP1, and FAS
were assessed. Moreover, we also examined the phosphorylation of
AMPK as an upstream factor involved in the expression of PPARYy

and C/EBPs.



127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Materials and Methods

Materials Methylxanthine derivative-rich CE was Kindly gifted
from Glico Co, Ltd, Osaka, Japan. Briefly, cacao mass produced in
the Republic of Ghana (3.6 kg) was defatted with hexane, and the
residue (1.6 kg) was extracted with 50% (v/v) aqueous ethanol at 80
°C for 4 h. The obtained extract was concentrated in vacuo and
freeze-dried. The CE yield was 286 g (7.9% cacao mass), and the CE
contained 10.0% theobromine, 0.71% caffeine, 0.41% (—)-
epicatechin, 0.24% (+)-catechin, 0.19% procyanidin B2, 0.13%
procyanidin C1, and trace amounts of cinnamtannin A2 and other
unidentified compounds.

Dulbecco’s modified Eagle’s medium (DMEM) was purchased
from Nissui Pharmaceutical (Tokyo, Japan). Calf serum and fetal
bovine serum (FBS) were obtained from Gibco BRL (Gaithersburg,
MD) and Biological Industries (Kibbutz Beit Haemek, Israel),
respectively. Antibodies against p-actin, PPARy, C/EBPa, C/EBPJ,
C/EBPS, and SREBRP1, horseradish peroxidase-conjugated anti-
rabbit 1gG, and anti-goat 1gG were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA), and antibodies against p-AMPK,
AMPK, p-ACC, and ACC were purchased from Cell Signaling
Technology (Beverly, MA). Anti-rabbit Alexa 488-conjugated

antibody was purchased from Molecular Probes (Eugene, OR).



151

152

153

154

155

156

157

1568

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Cell culture 3T3-L1 preadipocytes were maintained in DMEM
supplemented with 10% calf serum, 100 pg/mL streptomycin, and
100 units/ml of penicillin. Adipocyte differentiation was induced as
described previously (23). Briefly, 1 d after reaching confluence,
the cells were treated with a DMI (10 pg/mL insulin, 1 pmol/L
dexamethasone, and 0.5 mmol/L 3-isobutyl-1-methylxanthine)
cocktail in DMEM-high glucose (4.5 g/L glucose) supplemented with
10% FBS and the above antibiotics for 2 d. During differentiation,

the cells were treated with 10 pg/mL insulin every 2 d.

Sudan 11 staining Intracellular lipid accumulation was stained
with Sudan Il. Adipocyte differentiation was induced in 3T3-L1

cells via treatment with a DMI cocktail for 6 d. Determination of
lipid accumulation in 3T3-L1 cells was performed by Sudan 11

staining as described previously (24).

Cell viability assay Cell viability was determined by crystal
violet staining assays, as described previously (24). Briefly, 3T3-L1
cells were incubated with the indicated concentrations of CE in the
presence of DMI for 72 h. The cells were fixed with 4%
paraformaldehyde in phosphate-buffered saline (PBS) for 20 min at
room temperature and stained with 0.2% (w/v) crystal violet in 2%
v/v ethanol for 10 min at room temperature. The cells were washed,

and the dye was extracted with 0.5% (w/v) SDS in 50% (v/v)
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ethanol. The absorbance was measured at 570 nm with a reference

wavelength at 630 nm.

Immunofluorescence microscopy 3T3-L1 cells were differentiated
via treatment with DMI in the presence or absence of CE at 100
pg/mL for 6 d. The cells were fixed with 4% paraformaldehyde in
PBS for 20 min and permeabilized with 0.1% (w/v) Triton X-100 in
PBS for 5 min at room temperature. The cells were incubated with
rabbit polyclonal anti-SREBP1 antibody at 4 °C overnight, followed
by incubation with Alexa 488-conjugated anti-rabbit antibody. The
nuclei were counterstained with 4’,6-diamidino-2-phenylindole
dihydrochloride (DAPI) at 1 ug/mL. Fluorescent images were
acquired with an Olympus FSX100 fluorescence microscope

(Olympus, Tokyo, Japan).

Quantitative PCR (qPCR) Total RNA was extracted from 3T3-L1
cells using TRIzol (Invitrogen), and cDNA was synthesized using
reverse transcriptase. The resulting cDNA was subjected to gPCR
using the following primers: Gapdh (forward primer 5'-
ACAACTTTGGCATTGTGGAA-3’ and reverse primer 5'-
GATGCAGGGATGATGTTCTG-3"); Pparg (forward primer 5'-
ACGTGCAGCTACTGCATGTGA-3" and reverse primer 5'-
AGAAGGAACACGTTGTCAGCG-3'); and Cebpa (forward primer 5'-

GGAACTTGAAGCACAATCGATC-3" and reverse primer 5'-
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TGGTTTAGCATAGACGTGCACA-3'). qPCR was performed via a
two-step PCR method on a Thermal Cycler Dice real-time system
(Takara Bio. Inc., Shiga, Japan). Ct values were transformed into
relative quantification data by the 2 24¢t method, and data were

normalized to Gapdh as an endogenous control.

Western blot analysis Cell lysate preparation and Western
blotting were performed as described in our previous reports (16,
24). Specific immune complexes were detected with the ATTO
Light-Capture 11 Western Blotting Detection System. The density of
specific bands was calculated using ImageJ image analysis software

(National Institutes of Health, Bethesda, MD).

Animal treatment  All animal experiments were approved by the
Institutional Animal Care and Use Committee (Permission #27-05-
09) and were performed according to the Guidelines for Animal
Experiments set by Kobe University. Male ICR mice (4 weeks old, n
= 10) were obtained from Japan SLC (Shizuoka, Japan) and keptin a
temperature-controlled room (23 + 2 °C) with a 12:12-h light/dark
cycle (lights were turned on at 9:00 am). The mice had free access
to tap water and an AIN-93 M laboratory-purified diet (Oriental
Yeast, Tokyo, Japan) and were acclimatized for 7 d before use in
experiments. The provided food was changed every other day. The

mice were then randomly divided into two groups of five and fed a
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diet containing 0% or 1% CE and the tap water for another 7 d.

At the end of the experiment, the mice were sacrificed at 9:00

after a 15-h fast. Exsanguination via cardiac puncture was
performed under anesthesia using sevoflurane as an inhalational
anesthetic and sodium pentobarbital as an analgesic. Blood was
collected in a heparinized tube. Plasma was then prepared by
centrifugation at 800 x g for 10 min at 4 °C and subjected to
measurements of glucose, total cholesterol, and triacylglycerol
levels using corresponding commercial kits (Lab assay™ Glucose
Wako kit, Cholesterol-E test, and Triglyceride-E test, respectively,
all from Wako Pure Chemical Industries, Ltd.). The plasma
adiponectin level was measured using a commercial enzyme-linked

immunosorbent assay (ELISA) kit (Mouse/Rat High Molecular

Weight Adiponectin ELISA Kit from Shibayagi, Gunma, Japan). The

liver, white adipose tissue (mesenteric, epididymal, perirenal, and
subcutaneous adipose tissues), and brown adipose tissue were
collected, washed with 1.15% (w/v) KCI, weighed, immediately
frozen using liquid nitrogen, and kept at —80 °C until use.
Mesenteric white adipose tissue was used for the measurement of
protein expression of adipogenesis- and lipid metabolism-related

factors by Western blot analysis.

Statistical analysis All data are presented as the means £ SE (n

3 for in vitro cell culture experiments and n = 5 for in vivo animal

10
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experiments). Statistical significance was analyzed by one-way
ANOVAs with a Turkey’s post-hoc test for in vitro cell culture
experiments or by Student’s t-tests for in vivo animal experiments.
Statistical analyses were performed with JMP statistical software
version 11.2.0 (SAS Institute. Cary, NC). Differences with a p <

0.05 were considered statistically significant.

Results

To examine the effect of CE on adipogenesis in 3T3-L1 cells,
the cells were differentiated via treatment with DMI1 in the presence
of CE for 6 days. Intracellular lipid accumulation was visualized by
staining with Sudan Il (Fig. 1A, top panels). DMI treatment induced
a significantly higher lipid content in 3T3-L1 cells compared with
undifferentiated controls [DMI(-)], and the DMI-induced lipid
accumulation was suppressed by CE in a concentration-dependent
manner (Fig. 1A, bottom panel). To evaluate whether the lower lipid
accumulation was due to a reduction in cell viability, a crystal
violet staining assay was performed. The results show that CE had
no influence on the cell viability of 3T3-L1 cells at the indicated
concentrations (Fig. 1B). These results suggest that CE suppresses
lipid accumulation during adipocyte differentiation without
affecting cell viability.

To clarify the underlying mechanism responsible for the CE-
11

Fig. 1
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induced suppression of lipid accumulation in adipocytes, we
investigated whether CE suppressed the expression of PPARy and
C/EBPa, which are the master regulators of adipogenesis (5, 6). As
expected, DMI treatment induced higher expression levels of PPARYy
and C/EBPa (Fig. 2A). Concentrations of CE above 50 pg/ml
suppressed the DMI-induced increase in the expression levels of
these proteins. CE also suppressed the DMI-induced increase in the
MRNA expression levels of these proteins in a concentration-
dependent manner (Fig. 2B). We further investigated the effect of
CE on the expression levels of C/EBPB and C/EBPS proteins, which
are upstream transcriptional factors of PPARy and C/EBPa (5, 6).
When 3T3-L1 cells were differentiated with DMI for 24 h,
significantly higher protein expression levels of C/EBPJ and
C/EBPS were observed compared with those of control cells (Fig. 3).
CE decreased the DMI-induced expression of these proteins in a
concentration-dependent manner, and a statistically significant
decrease was observed at 50 and 100 pg/mL of CE for C/EBPJ and
C/EBPS, respectively. These results indicate that the reduced
expression of PPARy and C/EBPs is involved in the CE-induced

suppression of lipid accumulation in adipocytes.

We next examined expression of the downstream factors of

Fig. 4

PPARy and C/EBPs. SREBP1 is a transcription factor that regulates
the expression of lipogenic genes, such as FAS and low-density

lipoprotein receptor (11). As shown in Fig. 4A, DMI treatment
12
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induced markedly higher protein expression levels of SREBP1 and
FAS compared with those of controls. CE-treatment significantly
prevented the DMI-induced expression of these proteins at
concentrations above 50 ug/mL (Fig. 4A). SREBP1 is activated
through the protease-processing pathway, and activated SREBP1
enters the nucleus and induces the expression of its target genes,
including FAS (11). We further analyzed the localization of SREBP1
in 3T3-L1 cells by immunofluorescence microscopy. In the absence
of CE, SREBP1 is localized in both the cytoplasm and nucleus (Fig.
4B, top panels). However, in the presence of 100 ug/mL CE,
SREBP1 was mainly localized in the cytoplasm (Fig. 4B, bottom
panels). From these results, we confirm that the CE-induced
reduction in PPARy and C/EBPs expression levels results in the
suppression of SREBP1 and FAS expression.

Lastly, we performed in vivo experiments to confirm the
results obtained from the in vitro cell-culture experiments. Diet
supplementation with 1% CE for 7 d resulted in less body weight
gain and lower total white adipose tissue weights in male ICR mice
compared with control mice (Table 1), without altering the amount
of food intake (control: 3.68 = 0.34 g/day/head vs. CE: 3.33 =
0.37 g/day/head). In contrast, brown adipose tissue weight was
slightly, but significantly, higher in the mice that had consumed CE.
Although the plasma glucose and total cholesterol levels remained

similar between the two groups, the plasma triacylglycerol level
13
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following CE supplementation was only about 50% of that in the

control animals (Table 2). Interestingly, after CE supplementation,

the mice also had a higher level (1.45-fold) of plasma adiponectin

Table 2

compared with control animals.

Although the mesenteric white adipose tissue weight was not

Fig. 7

significantly lower in animals following CE supplementation, this
tissue produces the highest levels of monocyte chemoattractant
protein-1 in obese mice (25), which indicates that, among all types
of white adipose tissue, mesenteric white adipose tissue plays the
most important role in obesity. Thus, mesenteric white adipose
tissue was used in the ensuing experiments. The protein expression
of PPARy and C/EBPs was measured in mesenteric white adipose
tissue. As shown in Fig. 5, supplementation with 1% CE for 7 d
resulted in significantly lower levels of PPARy, C/EBPa, and
C/EBPpB protein expression compared with controls. However, the
level of C/EBP& expression following CE supplementation remained
similar to that in control mice. Supplementation with CE also
produced lower levels of protein expression of SREBP1 and FAS,
which are the downstream factors for PPARy and C/EBPs (Fig. 6).
AMPK is known to inhibit adipocyte differentiation as an upstream
factor of PPARy and C/EBPs (8). CE supplementation induced
significantly higher levels of AMPK phosphorylation and of the
downstream ACC in mesenteric white adipose tissue compared with

controls (Fig. 7). From these in vivo results, we conclude that CE
14

Fig. 5

Fig. 6




343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

intake suppresses the expression of adipocyte differentiation

markers via AMPK activation.

Discussion

Since obesity is involved in the increased onset of many
diseases, much attention has been focused on targeting food
components that may help prevent obesity. For obesity prevention by
food components, the following strategies appear promising:
inhibition of adipocyte differentiation (5), modulation of lipid
metabolism (inhibition of lipogenesis and promotion of lipolysis)
(26), and promotion of energy expenditure, including the formation
of beige adipocytes (27). Various food materials and food-derived
phytochemicals have been reported to inhibit adipocyte
differentiation (23, 24, 28, 29). In this study, we found that CE
containing abundant methylxanthine derivatives decreased both lipid
accumulation in 3T3-L1 cells (Fig. 1) and adipose tissue weight in
mice (Table 1). Reduced expression levels of PPARy and C/EBPs
were found to be involved in the anti-adipogenic mechanism of CE
(Figs. 2, 3, and 5). Additionally, because phosphorylation of AMPK
has been reported to inhibit expression of PPARy and C/EBPs (8),
we examined AMPK phosphorylation in vivo (Fig.7), and we found
that this is also involved in the anti-adipogenic mechanism of CE.

Thus, CE possesses anti-adipogenic effect via reducing the
15
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expressions of PPARy and C/EBPs. The results of our in vivo
experiments are consistent with those from our in vitro experiments,
indicating that the CE mechanism observed in vitro likely
contributes to the prevention of obesity in vivo.

PPARy and C/EBPs play pivotal roles in adipocyte
differentiation and adipogenesis (7, 30, 31). PPARy forms a
heterodimer with retinoic acid X-receptor (RXR) (32) and regulates
the transcription of adipocyte-specific genes (33). C/EBPa functions
as another principal player in adipogenesis and is most abundant in
mature adipocytes (34). C/EBPB and C/EBPo are known to induce
the expression of PPARy and C/EBPa (35, 36). In this study, CE did
not suppress protein expression of C/EBPS in the mesenteric white
adipose tissue of mice (Fig. 5), even though it significantly
suppressed C/EBPS in 3T3-L1 adipocytes (Fig. 3). Our previous
report demonstrated that Ashitaba calcones, 4-hydroxyderricin and
xanthoangelol, downregulate the expression of C/EBPa and PPARYy
accompanied by a decrease in the expression of C/EBPp but not in
that of C/EBPd (23). These results suggest that C/EBPJ is not
critical for the induction of PPARy and C/EBPa expression.

As an upstream factor for C/EBP, the activation of AMPK is
likely also involved in the mechanism for CE induced effects. It was
previously reported that AMPK activation inhibited the
differentiation of 3T3-L1 cells by downregulating the expression of

C/EBPs and PPARy (8). Our earlier report also demonstrated that an
16
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AMPK inhibitor compound C prevented the Ashitaba calcones-
induced downregulation of C/EBPB, C/EBPa, and PPARYy (23).
Moreover, activated AMPK interacts with SREBP1 and inhibits the
expression of its target molecule FAS, leading to a reduction of
lipogenesis and to lipid accumulation (9-11). The activation of
AMPK may contribute to the increased level of adiponectin in
plasma, given that an AMPK activator is able to promote
adiponectin multimerization in 3T3-L1 adipocytes (37). However,
the target molecule of CE is still unclear, and further study is
needed to clarify this issue.

The anti-obesity effects of CE are well-documented. For
example, the intake of cacao liquor such as dark chocolate decreases
BMI in humans (17, 18), and cacao liquor procyanidins ameliorate
lipid metabolism in mice (19). Many researchers have focused on
cacao polyphenols, particularly flavan-3-ols, as the active
compounds. However, the polyphenol content in the CE used here
was less than 1%, whereas this extract contained abundant
methylxanthines, such as 10.0% theobromine and 0.71% caffeine.
Based on the above composition, 28 umol/L theobromine and 1.8
umol/L caffeine exist in the minimum concentration of CE (50
pg/mL) that is effective for the inhibition of lipid accumulation.

Recently, Jang et al. (38) reported that theobromine reduced
adipogenesis in 3T3-L1 cells through the suppression of AMPK and

ERK signaling at a concentration of 150 ug/mL (=877 umol/L). A
17
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human study demonstrated that plasma concentrations of
theobromine increase to 28.75 umol/L after consumption of 850 mg
of theobromine for 4 weeks (39). Another report showed that the
maximum plasma concentration of theobromine in humans is
approximately 50 umol/L (40). Our recent data show that
theobromine above concentrations of 25 umol/L exhibits an anti-
adipogenic effect accompanied by lower expression of PPARy and
C/EBPs in 3T3-L1 adipocytes (41). Thus, theobromine is a strong
candidate for the effective compound in CE.

Caffeine suppresses the intracellular lipid accumulation of
3T3-L1 adipocytes after full differentiation (42). Furthermore,
coffee containing caffeine inhibits adipocyte differentiation through
the inactivation of PPARy (43). Recently, Kim et al. (44)
demonstrated that caffeine at 1 mmol/L inhibits the expression of
C/EBPpB, C/EBPa, and PPARy during 3T3-L1 preadipocyte
differentiation through the AKT/glycogen synthase kinase 3
pathway. In contrast, our results demonstrate that caffeine indirectly
suppresses lipid accumulation in 3T3-L1 adipocytes by decreasing
secretion of inflammatory cytokines from Caco-2 cells, even though
direct treatment of 3T3-L1 cells with 50 mmol/L caffeine did not
affect lipid accumulation (41). These results indicate that caffeine
at a physiological concentration does not affect adipocyte
differentiation, but it is possible for this compound to inhibit

adipocyte differentiation at higher, non-physiological
18
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concentrations. In the present study, CE inhibited adipocyte

differentiation not only in 3T3-L1 adipocytes but also in the adipose

tissue of mice. Furthermore, the caffeine concentration in CE is too

low to possess an anti-adipogenic effect in 3T3-L1 cells. Thus,

caffeine must not be the effective compound in CE.

In conclusion, methylxanthine-rich CE inhibits adipocyte

differentiation through an AMPK-induced reduction in the

expression of PPARy and C/EBPs. Thus, methylxanthine-rich CE is

an attractive novel food material with which to suppress obesity. To

clarify the detailed mechanism of this effect, experiments are in

progress using a methylxanthine compound.
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Table 1. Body and adipose tissue weight of mice with or without

CE supplementation

Control 1% CE
Body weight (g) 28.0+0.3 24.5+0.2**
Tissue weight (g/100g BW)
Liver 5.89+0.21 5.56 £0.33
Total white adipose tissue 3.18+£0.17 2.22£0.11**
Mesenteric 0.38+0.08 0.23+0.02
Epididymal 1.01+£0.06 0.74 £0.03**
Perirenal 0.26 +0.01 0.15+0.01**
Subcutaneous 1.38+0.12 0.98+0.12*
Brown adipose tissue 0.45+0.01 0.57 +£0.03**

Male ICR mice were administered a diet containing 0% (Control) or
1% CE in their tap water for 7 d. Data are presented as the mean £ SE

(n=5), *: p<0.05 **:p<0.01
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Table 2. Plasma glucose, lipid, and

or without CE supplementation

adiponectin

levels of mice with

Control 1% CE
Blood glucose (mg/dL) 121 +4 111 +5
Plasma cholesterol (mg/dL) 101 +10 887
Plasma triacylglycerol (mg/dL) 124 +7 68 £ 5**
Plasma adiponectin (ng/mL) 73+6 106 £ 8**

Male ICR mice were administered a diet containing 0% (Control) or

1% CE in their tap water for 7 d. Data are presented as the mean £ SE

(n=5), **: p<0.01
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Figure Legends

Figure 1. Effect of CE on lipid accumulation in 3T3-L1 adipocytes.
(A) Sudan Il staining of lipid droplets in 3T3-L1 cells. The cells
were incubated with CE at various concentrations in the presence or
absence of DMI for 6 d, and lipid droplets were stained with Sudan
Il (upper panels). The stained lipid droplets in the cells were
quantified (bottom panel). Data are presented as the mean + SE (n =
3), and the lipid content is shown based on a sample from cells
cultured in the absence of DMI and CE. (B) Cell viability of 3T3-L1
cells following treatment with CE. After 3T3-L1 cells were
incubated with the indicated concentrations of CE in the presence of
DMI for 72 h, the cell viability was determined by crystal violet
staining assays. Data are presented as the mean + SE (n = 3).
Different letters indicate statistically significant differences (p <

0.05).

Figure 2. Effect of CE on the protein and mRNA expression of
PPARy and C/EBPa in 3T3-L1 adipocytes.

3T3-L1 cells were incubated with the indicated concentrations of CE
in the presence of DMI for 6 d. (A-B) Protein (A) or mRNA (B)
expression of PPARy (Pparg) and C/EBPa (Cebpa) was measured by
Western blotting and qPCR, respectively. For protein expression, B-

actin was used as a loading control. The intensity of each band was
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quantified by ImageJ 1.44, and the ratio of each target band level
was normalized to the B-actin level. For mRNA expression, the
value of Gapdh was used as an internal control. Data are presented
as the mean + SE (n = 3), and relative values are shown based on a
sample from cells cultured in the absence of DMI and CE. Different

letters indicate statistically significant differences (p < 0.05).

Figure 3. Effect of CE on the protein expression levels of C/EBP
and C/EBPS in 3T3-L1 adipocytes.

3T3-L1 cells were incubated with the indicated concentrations of CE
in the presence of DMI for 24 h. Protein expressions of C/EBPf and
C/EBP& were measured by Western blotting. B-actin was used as a
loading control. The intensity of each band was quantified by
ImageJ 1.44, and the ratio of each target band level was normalized
to the pB-actin level. Data are presented as the mean + SE (n = 3),
and the relative values are shown based on a sample from cells
cultured in the absence of DMI and CE. Different letters indicate

statistically significant differences (p < 0.05).

Figure 4. Effect of CE on the protein expression of SREBP-1 and

FAS and the cellular localization of SREBP-1 in 3T3-L1 adipocytes.
3T3-L1 cells were incubated with the indicated concentrations of CE
in the presence of DMI for 6 d. (A) Protein expressions of SREBP-1

and FAS were measured by Western blotting. p-actin was used as a
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loading control. The intensity of each band was quantified by
ImageJ 1.44, and the ratio of each target band level was normalized
to the pB-actin level. Data are presented as the mean + SE (n = 3),
and relative values are shown based on a sample from cells cultured
in the absence of DMI and CE. Different letters indicate statistically
significant differences (p < 0.05). (B) Localization of SREBP-1 was
determined by fluorescence microscopy. SREBP-1 was stained with

Alexa 488, and the nuclei were counterstained with DAPI.

Figure 5. Effect of CE on the protein expression of PPARy and
C/EBPs in mesenteric white adipose tissue of mice.

Male ICR mice were provided a diet containing 0% or 1% CE in tap
water for 7 d. The protein expressions of PPARy, C/EBPa, C/EBPJ
and C/EBP& were measured by Western blotting. Each panel shows a
typical result from five animals. B-actin was used as a loading
control. The intensity of each band was quantified by ImageJ 1.44,
and the ratio of each target band level was normalized to the B-actin
level. Data are presented as the mean = SE (n = 5), and relative
values are shown based on the control group. Different letters

indicate statistically significant differences (p < 0.05).

Figure 6. Effect of CE on the protein expression of SREBP-1 and
Fas in the mesenteric white adipose tissue of mice.

Male ICR mice were provided with a diet containing 0% or 1% CE
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in tap water for 7 d. Protein expressions of SREBP-1 and Fas were
measured by Western blotting. Each panel shows a typical result
from five animals. p-actin was used as a loading control. The
intensity of each band was quantified by ImageJ 1.44, and the ratio
of each target band level was normalized to the B-actin level. Data
are presented as the mean + SE (n = 5), and relative values are
shown based on the control group. Different letters indicate

statistically significant differences (p < 0.05).

Figure 7. Effect of CE on the levels of AMPK phosphorylation and
ACC expression in the mesenteric white adipose tissue of mice.
Male ICR mice were provided with a diet containing 0% or 1% CE
in tap water for 7 d. AMPK phosphorylation and ACC expression
were measured by Western blotting. Each panel shows a typical
result from five animals. The expression level of each protein was
also measured. The intensity of each band was quantified by Imagel
1.44, and the ratio of the phosphorylation level was normalized to
the expression level. Data are presented as the mean £ SE (n = 5),
and relative values are shown based on the control group. Different

letters indicate statistically significant differences (p < 0.05).
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