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Abstract

Quantum walk theory is a quantum-mechanical counterpart of the classical random walk theory. Despite its

apparent simplicity, this ubiquitous concept has found many useful applications. In general, a concrete quantum

walk model is characterised by an associated unitary time-evolution operator. This differs from the usual

setting of Schrödinger operators in which we are required to construct the time-evolution operator from a given

unbounded hamiltonian via the spectral theorem. The major themes of this dissertation belong to the broad

subject of index theory for (discrete-time) chirally symmetric quantum walks. To a chirally symmetric quantum

walk model, we wish to assign a certain well-defined index satisfying the following two properties: (i) The

index needs to be robust in the sense that it is stable against a wide range of perturbations; (ii) The index gives

a lower bound for the number of so-called edge-states. Given (i), if the index turns out to be non-zero, then

the associated time-evolution operator has at least one edge-state. This implication, known as the topological

protection of edge-states, is an important feature of the bulk-edge correspondence. The present thesis consists

of the following two main theorems:

Theorem A states that we can assign two indices satisfying (i), (ii) to a certain variant of Kitagawa’s split-

step quantum walk on the one-dimensional integer lattice. We impose the so-called asymptotically periodic

assumption, the scope of which is beyond that of the existing literature on the bulk-edge correspondence for

2-phase quantum walks. As such, we take a completely new approach by making use of Toeplitz operators.

Theorem B states that we can assign a yet another index to a non-unitary version of the split-step model

we consider in Theorem A. This index satisfies (i), but it is not known whether or not (ii) also holds true.

The main difficulty of this construction lies in the non-unitary feature of the given model. It is expected that

Theorem B forms a basis for future mathematical research into the bulk-edge correspondence for non-unitary

quantum walks.
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Chapter I

Preface

I.1 Motivation

The major mathematical theme of this dissertation can be broadly described as index theory for chirally

symmetric bounded operators. More specifically, we focus on an abstract bounded operator 𝑈 on a Hilbert

spaceH , which satisfies the following algebraic condition;

𝑈∗ = 𝛤𝑈𝛤, (I.1)

where 𝛤 is a unitary self-adjoint operator on H . We repeatedly refer to (I.1) as a chiral symmetry condition

throughout the present thesis. Clearly, the operator 𝑈 satisfying (I.1) is unitarily equivalent to its adjoint 𝑈∗,

and so the spectrum of 𝑈, denoted by 𝜎(𝑈), is symmetric about the real axis. A naive description of what the

present thesis tries to achieve is the following;

Aim. Let 𝑈 be a bounded operator satisfying (I.1), and let _ be a fixed real number. We wish to assign a

certain well-defined index to the pair (𝛤,𝑈), say ind _ (𝛤,𝑈), in such a way that the following two conditions

are fulfilled:

(i) The index ind _ (𝛤,𝑈) is robust in the sense that it is stable against a wide range of perturbations.

(ii) The index ind _ (𝛤,𝑈) gives a lower bound for the number of non-trivial eigenstates associated with _ in

the sense of |ind _ (𝛤,𝑈) | ≤ dim ker(𝑈 − _). Given (i), if the index ind _ (𝛤,𝑈) turns out to be non-zero,

1



2 Chapter I. Preface

then the eigenspace ker(𝑈 − _) contains at least one non-trivial eigenstate whose existence is ensured by

the robustness of ind _ (𝛤,𝑈).

We focus on index theory of this kind in the context of (discrete-time) quantum walks. Quantum walk

theory is a quantum-mechanical counterpart of the classical random walk theory [Gud88, ADZ93, Mey96,

ABNVW01]. Despite its apparent simplicity, this ubiquitous concept has found many useful applications.

On one hand, the physical utility of quantum walks is especially confirmed for quantum algorithms [Gro96,

ABNVW01], photosynthesis [MRLA08, Per+10], topological phases [KRBD10, OK11, Kit12, AO13], and

non-unitary Floquet systems [MKO16, MKKO20]. On the other hand, mathematically rigorous studies have

also taken various points of view: localisation and weak-limit theorems [Kon02, IKK04, Kon10, Seg11,

CGML12, Suz16, FFS17, FFS18, FFS19], non-linear analysis [MSSSS18b, MSSSS18a, MS19, MSSSS19],

scattering-theoretic analysis [ABJ15, Suz16, RST17, RST18, Mor19, Wad19, Wad20, Tie20], quantum walks

on graphs [AAKV01, Amb03, Por16], classification by unitary equivalence [Ohn16, Ohn17], and time operators

[ST19a, FMSST20].

A concrete quantum walk model is characterised by an associated unitary time-evolution operator 𝑈. This

differs from the usual setting of Schrödinger operators in which we are required to construct the time-evolution

operator from a given unbounded hamiltonian via the spectral theorem. For concreteness, let us consider the

Hilbert space ℓ2(Z,C𝑛) of square-summable C𝑛-valued sequences indexed by the set Z of integers. In the

physical context, we may regardH := ℓ2(Z,C𝑛) as the state Hilbert space of an 𝑛-state quantum walker on the

one-dimensional integer lattice Z. If 𝑈 : H → H is a unitary time-evolution operator and if Ψ0 = (Ψ0(𝑥))𝑥∈Z

is a normalised state vector inH , then the time-evolution of Ψ0 is given by

Ψ𝑡 := 𝑈𝑡Ψ0, 𝑡 ∈ N.

Given a fixed pair (𝑡0, 𝑥0) ∈ N × Z, the non-negative number ‖Ψ𝑡0 (𝑥0)‖2C𝑛 gives the probability of finding the

quantum walker at (𝑡, 𝑥) = (𝑡0, 𝑥0).
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I.2 An overview of three main chapters

Apart from the current chapter, this thesis consists of three chapters in total. The main results of the present

thesis can be found in three published papers [ST19b, Tan21, AFST21] or two preprints [MST21, MTW21].

Note that some passages have been quoted verbatim from the above sources.

I.2.1 Chapter II. Unitary Models

We consider index theory for chirally symmetric unitary operators in this chapter.

I.2.1.1 Introduction of Chapter II

With the canonical decomposition ℓ2(Z,C2) = ℓ2(Z,C) ⊕ ℓ2(Z,C) in mind, we shall consider the following

2 × 2 block-operator matrix on ℓ2(Z,C2) throughout this chapter;

𝑈suz :=
©«
1 0

0 𝐿∗

ª®®¬
©«

𝑝
√︁

1 − 𝑝2√︁
1 − 𝑝2 −𝑝

ª®®¬
©«
1 0

0 𝐿

ª®®¬
©«

𝑎
√

1 − 𝑎2

√
1 − 𝑎2 −𝑎

ª®®¬ , (I.2)

where 𝐿 is the bilateral left-shift operator on ℓ2(Z) := ℓ2(Z,C) (see §I.3 for definition), and where 𝑝 =

(𝑝(𝑥))𝑥∈Z, 𝑎 = (𝑎(𝑥))𝑥∈Z are two arbitrary real-valued sequences taking values in the closed interval [−1, 1] .

From this point onward, any bounded sequence indexed by Z shall be identified with the corresponding

multiplication operator on ℓ2(Z) throughout the present thesis. The unitary operator 𝑈suz defined by (I.2)

is called the time-evolution operator of Suzuki’s (one-dimensional) split-step quantum walk [FFS17, FFS18,

FFS19, NOW21]. Note first that this unitary operator can be naturally decomposed as the product𝑈suz = 𝛤suz𝛤
′
suz,

where the two unitary self-adjoint operators 𝛤suz, 𝛤
′
suz are defined respectively by

𝛤suz :=
©«
1 0

0 𝐿∗

ª®®¬
©«

𝑝
√︁

1 − 𝑝2√︁
1 − 𝑝2 −𝑝

ª®®¬
©«
1 0

0 𝐿

ª®®¬ , 𝛤′suz :=
©«

𝑎
√

1 − 𝑎2

√
1 − 𝑎2 −𝑎

ª®®¬ . (I.3)

If we let (𝛤,𝑈) = (𝛤suz,𝑈suz) or (𝛤,𝑈) = (𝛤′suz,𝑈suz), then one can easily verify that the chiral symmetry

condition (I.1) holds true. This motivates us to consider (I.1) in full generality.
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Let 𝑈 be an arbitrary unitary operator on an abstract Hilbert space H , and let 𝑅 be the real part of 𝑈. If

𝑈 satisfies the the chiral symmetry condition (I.1), then we obtain the commutation relation 𝛤𝑅 − 𝑅𝛤 = 0. It

follows that the self-adjoint operator 𝑅 admits the following diagonal representation;

𝑅 =
©«
𝑅1 0

0 𝑅2

ª®®¬ker(𝛤−1)⊕ker(𝛤+1)

, (I.4)

where the Z2-grading of the underlying Hilbert space H = ker(𝛤 − 1) ⊕ ker(𝛤 + 1) is given by the unitary

self-adjoint operator 𝛤. The decomposition (I.4) allows us to introduce the following formal indices:

ind +(𝛤,𝑈) := dim ker(𝑅1 − 1) − dim ker(𝑅2 − 1), (I.5)

ind −(𝛤,𝑈) := dim ker(𝑅1 + 1) − dim ker(𝑅2 + 1). (I.6)

It follows from a direct computation that ker(𝑈 ∓ 1) = ker(𝑅1 ∓ 1) ⊕ ker(𝑅2 ∓ 1) (see Lemma II.2 for details),

and so the following estimate holds true;

|ind ±(𝛤,𝑈) | ≤ dim ker(𝑈 ∓ 1). (I.7)

We make the following two observations about (I.7):

(i) The index ind ±(𝛤,𝑈) is well-defined, if ker(𝑈 ∓ 1) is finite-dimensional. In particular, if the essential

spectrum of𝑈, denoted by 𝜎ess(𝑈), does not contain ±1, then ind ±(𝛤,𝑈) is well-defined.

(ii) If ind ±(𝛤,𝑈) is non-zero, then the eigenspace ker(𝑈 ∓ 1) contains some non-trivial eigenstates. This

implication can be regarded as an abstract form of chiral symmetry protection of eigenstates.

We are now in a position to introduce the following index formula for𝑈suz;

Lemma I.1. Let (𝛤,𝑈) = (𝛤suz,𝑈suz) be defined by (I.2), (I.3), and let us assume the existence of the following

limit for each ★ = −∞, +∞ and each Z = 𝑝, 𝑎;

Z (★) := lim
𝑥→★

Z (★). (I.8)
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Then ±1 ∉ 𝜎ess(𝑈) if and only if 𝑝(★) ≠ ±𝑎(★) for each ★ = −∞, +∞. In this case, we have

ind ±(𝛤,𝑈) =



+1, 𝑝(−∞) ∓ 𝑎(−∞) < 0 < 𝑝(+∞) ∓ 𝑎(+∞),

−1, 𝑝(+∞) ∓ 𝑎(+∞) < 0 < 𝑝(−∞) ∓ 𝑎(−∞),

0, otherwise.

(I.9)

Note that (I.9) is robust in the sense that it depends only on the asymptotic values (I.8). An index formula of

this kind is an active theme of mathematical studies on 2-phase quantum walks [CGSVWW16, CGGSVWW18,

CGSVWW18, Suz19, ST19b, Mat20, AFST21, Tan21, CGWW21], in which the assumption (I.8) consistently

plays an indispensable role (see, for example, [CGGSVWW18, Corollary 4.3]). Following [RST17, RST18]

we may refer to (I.8) as an anisotropic assumption. This begs the following natural question. Are there some

meaningful ways to generalise Lemma I.1 without imposing the anisotropic assumption (I.8)? One of the main

purposes of this chapter is to show that such a non-trivial generalisation actually exists. It is worth mentioning

that the scope of this generalisation is beyond that of the existing literature on 2-phase quantum walks mentioned

above. As such, we take a completely new approach by making use of Toeplitz operators in this chapter.

We introduce the following terminology to generalise Lemma I.1. A complex-valued sequence Z = (Z (𝑥))𝑥∈Z

is said to be asymptotically periodic, if there exist 𝑛−∞, 𝑛+∞ ∈ N with the property that the following limits

exist for each ★ = −∞, +∞;

Z (★, 𝑚) := lim
𝑥→★

Z (𝑛★ · 𝑥 + 𝑚), 𝑚 ∈ {0, . . . , 𝑛★ − 1}. (I.10)

In particular, the sequence Z = (Z (𝑥))𝑥∈Z is said to be anisotropic, if 𝑛−∞ = 𝑛+∞ = 1. We are now in a position

to state the following generalisation of Lemma I.1;

Theorem A. Let (𝛤,𝑈) = (𝛤suz,𝑈suz) be defined by (I.2), (I.3). Suppose that limits of the form (I.10) exist for

each Z = 𝑝, 𝑎 and each ★ = −∞, +∞, and that for each Z = 𝑝, 𝑎 we have

sup
𝑥∈Z
|Z (𝑥) | < 1. (I.11)

Let 𝑝(±∞), 𝑎(±∞) ∈ (−1, 1) be uniquely defined through∏𝑛★−1
𝑚=0 (1 + Z (★, 𝑚))∏𝑛★−1
𝑚=0 (1 − Z (★, 𝑚))

=

(
1 + Z (★)
1 − Z (★)

)𝑛★
, Z = 𝑝, 𝑎, ★ = −∞, +∞. (I.12)
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Then ±1 ∉ 𝜎ess(𝑈) if and only if 𝑝(★) ≠ ±𝑎(★) for each ★ = −∞, +∞. In this case, we have:

(i) Index formula. The index ind ±(𝛤,𝑈) is given explicitly by the formula (I.9). That is, |ind ±(𝛤,𝑈) | = 1 if

and only if the following inequality holds true for 𝑗 = 1 or 𝑗 = 2 :

(−1) 𝑗 (𝑝(−∞) ∓ 𝑎(−∞)) < 0 < (−1) 𝑗 (𝑝(+∞) ∓ 𝑎(+∞)). (I.13)

(ii) Exponential decay. We have dim ker(𝑈 ∓ 1) = |ind ±(𝛤,𝑈) |. In particular, if (I.13) holds true for 𝑗 = 1

or 𝑗 = 2, then any non-zero vector Ψ in the one-dimensional eigenspace ker(𝑈 ∓ 1) admits the following

representation;

Ψ =
©«
∓(−1) 𝑗

√︃
1∓(−1) 𝑗𝑎
1±(−1) 𝑗𝑎𝜓

𝜓

ª®®¬ , 𝜓 ∈ ker ©«𝐿 ∓
√︄

1 + (−1) 𝑗 𝑝
1 − (−1) 𝑗 𝑝

1 ∓ (−1) 𝑗𝑎
1 ± (−1) 𝑗𝑎

ª®¬ . (I.14)

Moreover, the eigenstate Ψ characterised by (I.14) exhibits exponential decay in the sense that there exist

positive constants 𝑐↓
𝑗 ,±, 𝑐

↑
𝑗 ,±, ^

↓
𝑗 ,±, ^

↑
𝑗 ,±, 𝑥±, such that

^
↓
𝑗 ,±𝑒
−𝑐↓

𝑗 ,± |𝑥 | ≤ ‖Ψ(𝑥)‖2
C2 ≤ ^↑𝑗 ,±𝑒

−𝑐↑
𝑗 ,± |𝑥 |, |𝑥 | ≥ 𝑥±. (I.15)

Firstly, the denominator 1 − Z (★, 𝑚) on the left hand side of (I.12) is non-zero. Indeed, the assumption

(I.11) ensures 1 > sup𝑥∈Z |Z (𝑥) | ≥ lim sup𝑥→∞ |Z (±𝑥) |, and so |Z (★, 𝑚) | ≠ 1 for each 𝑚 ∈ {0, . . . , 𝑛★ − 1}.

Secondly, Z (★) ∈ (−1, 1) can be uniquely defined through (I.12), since (−1, 1) 3 𝑠 ↦−→ (1+ 𝑠)/(1− 𝑠) ∈ (0,∞)

is a bijection as in Figure I.1.

In the physical context, Theorem A can also be viewed as the bulk-edge correspondence of the one-

dimensional split-step quantum walk with asymptotically periodic parameters (see §IV.2 for details).

I.2.1.2 Organisation of Chapter II

The ultimate purpose of §II is to prove Theorem A with the aid of the following two preliminary sections:

• In §II.1, we develop index theory for abstract unitary operators𝑈 satisfying the chiral symmetry condition

(I.1) in full generality. More precisely, we make the formal indices defined by (I.5) to (I.6) precise with

the decomposition (I.4) in mind. It is worth mentioning that the two subspaces ker(𝑅2 − 1), ker(𝑅1 + 1)

turn out to be the so-called birth eigenspaces in the language of the spectral mapping theorem for chirally
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symmetric unitary operators [HKSS14, SS16, SS19](see §II.5.3 for details). In fact, the main results of

§II.1 can be obtained via this well-known theorem. Note, however, that the purpose of §II.1 is to show that

there is an alternative elementary approach without relying on the spectral mapping theorem.

• In §II.2, we focus on analysis of operators of the form (I.2). For full generality, we consider the following

finite sum of 𝑛 × 𝑛 block-matrix operators on ℓ2(Z,C𝑛) =
⊕𝑛

𝑗=1 ℓ
2(Z);

𝐴 =

𝑘∑︁
𝑦=−𝑘

©«
𝑎11(𝑦, ·)𝐿𝑦 . . . 𝑎1𝑛 (𝑦, ·)𝐿𝑦

...
. . .

...

𝑎𝑛1(𝑦, ·)𝐿𝑦 . . . 𝑎𝑛𝑛 (𝑦, ·)𝐿𝑦

ª®®®®®®¬
=

©«

∑𝑘
𝑦=−𝑘 𝑎11(𝑦, ·)𝐿𝑦 . . .

∑𝑘
𝑦=−𝑘 𝑎1𝑛 (𝑦, ·)𝐿𝑦

...
. . .

...∑𝑘
𝑦=−𝑘 𝑎𝑛1(𝑦, ·)𝐿𝑦 . . .

∑𝑘
𝑦=−𝑘 𝑎𝑛𝑛 (𝑦, ·)𝐿𝑦

ª®®®®®®¬
, (I.16)

where each 𝑎𝑖 𝑗 (𝑦, ·) = (𝑎𝑖 𝑗 (𝑦, 𝑥))𝑥∈Z is an arbitrary bounded C-valued sequence viewed as a multiplication

operator on ℓ2(Z) as before. We call any operator of the form (I.16) strictly local following [CGSVWW18,

§1.2]. Under the assumption that each sequence Z = 𝑎𝑖 𝑗 (𝑦, ·) fulfils the asymptotically periodic assumption

(I.10), we show in Theorem II.8 that computations of the Fredholm index and Fredholm essential spectrum

of 𝐴 (see §I.3 for definition) can be reduced to finite-dimensional spectral analysis via the language of

Toeplitz operators. This approach is entirely motivated by [Mat20]. The novelty of Theorem II.8 lies in the

fact that it is applicable to non-normal strictly local operators, and this fact plays an important role when

we consider non-unitary quantum walks in §III.

We can then proceed to §II.3 to prove Theorem A (i) via Theorem II.8 mentioned above and a decomposition

method outlined in [CGWW21, §3]. Note that we consider Theorem A (ii) as a totally separate problem in

§II.4, since Theorem II.8 alone is not sufficient to prove the exponential decay property (I.15). Instead, we shall

make use of an elementary difference equation method as outlined in [FFS18] to prove Theorem A (ii). Finally,

the present chapter concludes with some discussions and remarks in §II.5.

I.2.2 Chapter III. Non-unitary Models

We consider index theory for chirally symmetric non-unitary operators in this chapter.
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I.2.2.1 Introduction of Chapter III

Non-unitary quantum walks naturally arise in the physical context. In fact, such models can account for the

gain-loss effects of photons in optical network experiments (see §IV.3 for details). From a purely mathematical

point of view, whether or not an estimate analogous to (I.7) holds true for non-unitary chirally symmetric

(bounded) operators 𝑈 is a highly non-trivial question. It is worth mentioning that this general problem is in

fact far beyond the scope of the present thesis. The main hindrance of the non-unitary setting lies in the fact

that the two indices ind +(𝛤,𝑈), ind −(𝛤,𝑈) we have discussed in §I.2.1.1 become ill-defined.

This motivates us to introduce a yet another index, say ind (𝛤,𝑈), for non-unitary chirally symmetric

operators 𝑈 with the hope that it gives a basis for further investigation of topologically protected eigenstates.

More precisely, if𝑈 is a (not necessarily unitary) operator satisfying (I.1), then we may focus on the imaginary

part 𝑄 of 𝑈, instead of the real part 𝑅. Indeed, the chiral symmetry condition (I.1) immediately implies the

anti-commutation relation 𝛤𝑄 + 𝑄𝛤 = 0, and so the self-adjoint operator 𝑄 admits the following off-diagonal

representation (cf (I.4));

𝑄 =
©«

0 𝑄∗1

𝑄1 0

ª®®¬ker(𝛤−1)⊕ker(𝛤+1)

. (I.17)

Under the assumption that 𝑄1 is Fredholm, we define the new index ind (𝛤,𝑈) by

ind (𝛤,𝑈) := ind𝑄1, (I.18)

where the right hand side denotes the Fredholm index of 𝑄1. It is worth mentioning that if 𝑈 is unitary and if

𝑄1 is Fredholm, then we obtain the following results (see Lemma II.2 (ii) for details):

ind (𝛤,𝑈) = ind +(𝛤,𝑈) + ind −(𝛤,𝑈), (I.19)

|ind (𝛤,𝑈) | ≤ dim ker(𝑈 − 1) + dim ker(𝑈 + 1), (I.20)

where (I.20) is a weaker version of (I.7).

As is well-known, the assignment of the Fredholm index on the right hand side of (I.18) to a (possibly

unbounded) self-adjoint operator of the form (I.17) is commonly used in supersymmetric quantum mechanics
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(see, for example, [Tha92, §5] or [Ara18, §7.13]). The hamiltonian 𝑄2 = 𝑄∗1𝑄1 ⊕ 𝑄1𝑄
∗
1 is often referred to as

a superhamiltonian, and the following obvious equality holds true;

ind𝑄1 = dim ker𝑄∗1𝑄1 − dim ker𝑄1𝑄
∗
1,

where 𝑄1 is assumed to be Fredholm. On the other hand, the index ind (𝛤,𝑈) = ind𝑄1, often referred to as the

Witten index, is the main subject of the existing literature for chirally symmetric unitary quantum walks [Suz19,

ST19b, Mat20, Tan21]. More precisely, some existing index formulas for Suzuki’s one-dimensional split-step

quantum walk can be found in [ST19b, Mat20, Tan21](see §II.5.4 for details), and the purpose of the current

chapter is to consider their non-unitary variants.

I.2.2.2 Organisation of Chapter III

This chapter is primarily concerned with the following modified version of𝑈suz (cf (I.2));

𝑈1 :=
©«
1 0

0 𝐿∗

ª®®¬
©«

𝑝
√︁

1 − 𝑝2√︁
1 − 𝑝2 −𝑝

ª®®¬
©«
1 0

0 𝐿

ª®®¬
©«

𝑒−2𝛾(·+1)𝑎 𝑒𝛾−𝛾(·+1)
√

1 − 𝑎2

𝑒𝛾−𝛾(·+1)
√

1 − 𝑎2 −𝑒2𝛾𝑎

ª®®¬ , (I.21)

where 𝛾 = (𝛾(𝑥))𝑥∈Z is a bounded R-valued sequence, and where 𝛾(· + 1) denotes the sequence (𝛾(𝑥 + 1))𝑥∈Z.

Note that the operator 𝑈1 is non-unitary in general, but it coincides with the unitary operator 𝑈suz if we let

𝛾(𝑥) = 0 for each 𝑥 ∈ Z. For simplicity, we assume the existence of a limit of the form (I.8) for each★ = −∞, +∞

and each Z = 𝛾, 𝑝, 𝑎 throughout the current chapter, instead of the asymptotically periodic assumption (I.10).

The main theorem of the current chapter, Theorem B, is a two-fold proposition about the pair (𝛤,𝑈) :=

(𝛤suz,𝑈1) which clearly satisfies the chiral symmetry condition (I.1) as before. In fact, we consider a slightly

more general version of (I.21) by replacing 𝐿 with 𝐿𝑚 for any non-zero integer 𝑚 in Theorem B, but this

generalisation turns out to be mathematically immaterial (note, however, that the case 𝑚 = 2 plays a somewhat

important physical role as in the proceeding chapter). The purpose of §III.1 is to give the precise statement of
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Theorem B. Firstly, the following complete classification of the index (I.18) can be found in Theorem B (i);

ind (𝛤,𝑈) =



0, |𝑝𝛾 (−∞)| < |𝑎(−∞)|, |𝑝𝛾 (+∞)| < |𝑎(+∞)|,

sign 𝑝(+∞), |𝑝𝛾 (−∞)| < |𝑎(−∞)|, |𝑝𝛾 (+∞)| > |𝑎(+∞)|,

−sign 𝑝(−∞), |𝑝𝛾 (−∞)| > |𝑎(−∞)|, |𝑝𝛾 (+∞)| < |𝑎(+∞)|,

sign 𝑝(+∞) − sign 𝑝(−∞), |𝑝𝛾 (−∞)| > |𝑎(−∞)|, |𝑝𝛾 (+∞)| > |𝑎(+∞)|,

(I.22)

where sign : R→ {−1, 1} is the sign function (see (I.28) for definition), and where 𝑝𝛾 (−∞), 𝑝𝛾 (+∞) ∈ R are

defined by

𝑝𝛾 (★) := 𝑝(★)
(
𝑝(★)2 + (1 − 𝑝(★)2) cosh2(2𝛾(★))

)−1/2
, ★ = −∞, +∞.

Secondly, it is shown in Theorem B (ii) that the essential spectrum 𝜎ess(𝑈1) is a subset of the union of the

unit-circle T and real axis R, and that it is given explicitly by 𝜎ess(𝑈1) = 𝜎(−∞) ∪ 𝜎(+∞), where for each

★ = −∞, +∞ the subset 𝜎(★) of T ∪ R depends only on the asymptotic values 𝛾(★), 𝑝(★), 𝑎(★). We defer the

proof of Theorem B, and directly proceed to discussions in §III.2. In particular, we explain how Theorem B

forms a basis for future mathematical research in the context of the bulk-edge correspondence for non-unitary

chirally symmetric quantum walks (see §III.2.1 for details). Finally, the proof of Theorem B is given in §III.3.

I.2.3 Chapter IV. Unitary Transforms of Some One-dimensional Quantum Walks

The purpose of this short supplementary chapter is to show that the models we consider in §II and §III are

unitarily equivalent to some well-known one-dimensional quantum walk models in the physics literature. We

make emphasis on the physical utility of such physical models.

I.3 Notation and terminology

By operators we shall always mean everywhere-defined bounded linear operators between Banach spaces

throughout this thesis. The identity operator on any Banach space is denoted by 1.
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• Let ℓ2(Z,C𝑛) be the Hilbert space of square-summable C𝑛-valued sequences indexed by the set Z of

integers, and let ℓ2(Z) := ℓ2(Z,C1). The left-shift operator 𝐿 on ℓ2(Z) is the unitary operator defined by

𝐿Ψ := Ψ(· + 1), Ψ ∈ ℓ2(Z). (I.23)

• An operator 𝐴 on a Hilbert spaceH is said to be Fredholm, if ker 𝐴, ker 𝐴∗ are finite-dimensional and if 𝐴

has a closed range. Given such 𝐴,we define the Fredholm index of 𝐴 by ind (𝐴) := dim ker 𝐴−dim ker 𝐴∗.

It is well-known that the Fredholm index is invariant under compact perturbations. That is, given an operator

𝐴 on H and a compact operator 𝐾 on H , we have that 𝐴 is Fredholm if and only if so is 𝐴 + 𝐾, and in

this case ind (𝐴) = ind (𝐴 + 𝐾). The (Fredholm) essential spectrum of an operator 𝐴 on H is defined as

the set 𝜎ess(𝐴) of all _ ∈ C, such that 𝐴 − _ fails to be Fredholm. Note that 𝜎ess(𝐴) is also stable under

compact perturbations.

• We shall make use of the following arithmetic convention for each 𝑟 ∈ (0,∞];

𝑟 + ∞ = ∞ + 𝑟 = ∞, 𝑟 · ∞ = ∞ · 𝑟 = ∞, 0−1 = ∞, ∞−1 = 0. (I.24)

Note that 0 · ∞ = ∞ · 0 is left undefined. This convention allows us to consider a homeomorphism of the

form [0,∞] 3 𝑠 ↦−→ 𝑠−1 ∈ [0,∞], where the extended half-line [0,∞] is viewed as a metric space in the

obvious way.

• With the convention (I.24) in mind, we define another homeomorphism Λ : [−1, 1] → [0,∞] by

Λ(𝑠) :=
1 + 𝑠
1 − 𝑠 , 𝑠 ∈ [−1, 1] . (I.25)

The function 𝑠 ↦−→ Λ(𝑠) increases from Λ(−1) = 0 to Λ(+1) = ∞ as in the following figure;

−1 −0.5 0.5 1

1

0
𝑠

𝑡

𝑡 = Λ(𝑠)

Figure I.1: This figure shows the graph of 𝑡 = Λ(𝑠).
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Let 𝑠, 𝑠′ ∈ [−1, 1] . We have Λ(−𝑠) = Λ(𝑠)−1. Furthermore, if 𝑠𝑠′ ≠ −1, then the product Λ(𝑠)Λ(𝑠′) is a

well-defined extended non-negative real number, and the following two assertions hold true:

Λ(𝑠)Λ(𝑠′) = Λ

(
𝑠 + 𝑠′
1 + 𝑠𝑠′

)
, (I.26)

Λ(𝑠)Λ(𝑠′) ≶ 1 if and only if 𝑠 + 𝑠′ ≶ 0, (I.27)

where the notation ≶ in (I.27) simultaneously denotes the three binary relations >, =, < .

• The sign function sign : R→ {−1, 1} is defined by

sign 𝑥 :=


𝑥

|𝑥 | , 𝑥 ≠ 0,

1, 𝑥 = 0.
(I.28)

• Let 𝑛−∞, 𝑛+∞ ∈ N be fixed. A complex-valued sequence Z = (Z (𝑥))𝑥∈Z is said to be asymptotically

periodic, if limits of the form (I.10) exist for each ★ = −∞, +∞. In particular, the sequence Z = (Z (𝑥))𝑥∈Z

is said to be anisotropic, if 𝑛−∞ = 𝑛+∞ = 1 (we often let Z (★) := Z (★, 0) in this case). Let us consider the

following explicit example;

Example I.2. If Z = (Z (𝑥))𝑥∈Z is an asymptotically (3, 2)-periodic sequence, then we have the following 3 + 2 = 5 limits:

Z (−∞, 0) = lim
𝑥→−∞

Z (3𝑥 + 0), Z (+∞, 0) = lim
𝑥→+∞

Z (2𝑥 + 0),

Z (−∞, 1) = lim
𝑥→−∞

Z (3𝑥 + 1), Z (+∞, 1) = lim
𝑥→+∞

Z (2𝑥 + 1).

Z (−∞, 2) = lim
𝑥→−∞

Z (3𝑥 + 2),

On the other hand, one can rearrange Z (𝑥) according to the following table;

Z (−∞, 0) ← Z (−9) Z (−6) Z (−3) . . .

Z (−∞, 1) ← Z (−8) Z (−5) Z (−2) . . .

Z (−∞, 2) ← Z (−7) Z (−4) Z (−1) . . .

. . . Z (0) Z (2) Z (4) → Z (+∞, 0)

. . . Z (1) Z (3) Z (5) → Z (+∞, 1)

The first three rows show that Z (3𝑥 + 0), Z (3𝑥 + 1), Z (3𝑥 + 2) have well-defined limits as 𝑥 → −∞, whereas the last two rows

show that Z (2𝑥 + 0), Z (2𝑥 + 1) have well-defined limits as 𝑥 → +∞.

We may also speak of the asymptotical periodicity of a matrix-valued sequence in the obvious way.
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Unitary Models

II.1 Indices for chirally symmetric bounded operators (Preliminary 1)

II.1.1 Chiral pairs

A chiral pair on an abstract Hilbert space H is any pair (𝛤,𝑈) of a unitary self-adjoint operator 𝛤 : H → H

and a (not necessarily normal) operator 𝑈 : H → H , satisfying the chiral symmetry condition (I.1). Note

that the underlying Hilbert space H admits a Z2-grading of the form H = ker(𝛤 − 1) ⊕ ker(𝛤 + 1), and that

𝛤 = 1 ⊕ (−1) with respect to this orthogonal decomposition. If 𝑅,𝑄 denote the real and imaginary parts of

𝑈 respectively, then the operator 𝑈 can then be written as 𝑈 = 𝑅 + 𝑖𝑄, where 𝑈 is normal if and only if 𝑅,𝑄

commute. Furthermore, 𝑅,𝑄 admit the following block-operator matrix representation:

𝑅 =
©«
𝑅1 0

0 𝑅2

ª®®¬ker(𝛤−1)⊕ker(𝛤+1)

, 𝑄 =
©«

0 𝑄2

𝑄1 0

ª®®¬ker(𝛤−1)⊕ker(𝛤+1)

, (II.1)

where the first equality follows from the commutation relation [𝛤, 𝑅] := 𝛤𝑅 − 𝑅𝛤 = 0, and where the second

equality follows from the anti-commutation relation {𝛤,𝑄} := 𝛤𝑄 + 𝑄𝛤 = 0 (see [Suz19, Lemma 2.2] for

details). Since 𝑅,𝑄 are self-adjoint, we have 𝑅∗
𝑗
= 𝑅 𝑗 for each 𝑗 = 1, 2, and 𝑄2 = 𝑄∗1. The following formula

13
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shall be referred to as the standard representation of𝑈 with respect to 𝛤 throughout this chapter;

𝑈 =
©«
𝑅1 𝑖𝑄2

𝑖𝑄1 𝑅2

ª®®¬ker(𝛤−1)⊕ker(𝛤+1)

. (II.2)

Lemma II.1. LetH be an abstract Hilbert space, and let (𝛤,𝑈) be a chiral pair onH . Let 𝑈 be unitary, and

let 𝑅,𝑄 be the real and imaginary parts of𝑈 respectively. Then

𝜎ess(𝑅) =
{
𝑧 + 𝑧∗

2
| 𝑧 ∈ 𝜎ess(𝑈)

}
, (II.3)

𝜎ess(𝑄) =
{
𝑧 − 𝑧∗

2𝑖
| 𝑧 ∈ 𝜎ess(𝑈)

}
, (II.4)

𝜎ess(𝑈) =
{
𝑧 ∈ T | 𝑧 + 𝑧

∗

2
∈ 𝜎ess(𝑅)

}
. (II.5)

Furthermore, the operator 𝑄 is Fredholm if and only if −1, +1 ∉ 𝜎ess(𝑈).

It follows from (II.5) that the essential spectrum of𝑈 is also symmetry about the real axis.

Proof. Let [·] be the natural surjection from the 𝐶∗-algebra B(H) of bounded operators onH onto the Calkin

algebra B(H)/K(H). As is well-known, we have 𝜎ess(𝑋) = 𝜎( [𝑋]) for each 𝑋 ∈ B(H). If 𝜌 : T → C is a

trigonometric polynomial of the form 𝜌(𝑧) = ∑𝑘
𝑦=−𝑘 𝑎(𝑦)𝑧𝑦 for each 𝑧 ∈ T, then

𝜎ess(𝜌(𝑈)) = 𝜎
©«


𝑘∑︁
𝑦=−𝑘

𝑎(𝑦)𝑈𝑦

ª®¬ = 𝜎
©«

𝑘∑︁
𝑦=−𝑘

𝑎(𝑦) [𝑈]𝑦ª®¬ = 𝜎 (𝜌( [𝑈])) = 𝜌(𝜎 ( [𝑈])) = 𝜌(𝜎ess(𝑈)), (II.6)

where the second last equality follows from the spectral mapping theorem. In particular, if we let 𝜌(𝑧) :=

(𝑧 + 𝑧∗)/2 (resp. 𝜌(𝑧) := (𝑧 − 𝑧∗)/2𝑖) for each 𝑧 ∈ T, then 𝜌(𝑈) = 𝑅 (resp. 𝜌(𝑈) = 𝑄). We obtain (II.3)

to (II.4).

We use (II.3) to prove (II.5). It suffices to prove {𝑧 ∈ T | Re 𝑧 ∈ 𝜎ess(𝑅)} ⊆ 𝜎ess(𝑈), since the reverse

inclusion is obvious. If 𝑧 ∈ T satisfies Re 𝑧 ∈ 𝜎ess(𝑅), then there exists 𝑧0 ∈ 𝜎ess(𝑈), such that Re 𝑧 = Re 𝑧0.

That is, either 𝑧 = 𝑧0 or 𝑧 = 𝑧∗0, where 𝑧∗0 ∈ 𝜎ess(𝑈) by the chiral symmetry condition (I.1). We get 𝑧 ∈ 𝜎ess(𝑈)

in either case. Therefore, (II.5) holds true.

Finally, it immediately follows from (II.4) that 𝑄 is Fredholm if and only if −1, +1 ∉ 𝜎ess(𝑈). �
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II.1.2 Indices for chiral pairs

From this point onward we shall adhere to the convention that whenever we speak of a chiral pair (𝛤,𝑈), we

assume that𝑈 is unitary throughout the remaining part of the current chapter. With the standard representation

(II.2) in mind, this convention allows us to introduce the following formal indices:

ind ±(𝛤,𝑈) := dim ker(𝑅1 ∓ 1) − dim ker(𝑅2 ∓ 1), (II.7)

ind (𝛤,𝑈) := dim ker𝑄1 − dim ker𝑄2. (II.8)

Note that if 𝑄1 is a Fredholm operator, then the formula (II.8) coincides with the definition of the Fredholm

index of 𝑄1, since 𝑄2 = 𝑄∗1.

Lemma II.2. Given a chiral pair (𝛤,𝑈) with (II.2) being the standard representation of𝑈, we have

ker(𝑈 ∓ 1) = ker(𝑅1 ∓ 1) ⊕ ker(𝑅2 ∓ 1), (II.9)

ker𝑄 𝑗 = ker(𝑅 𝑗 − 1) ⊕ ker(𝑅 𝑗 + 1), 𝑗 = 1, 2. (II.10)

Moreover, the following assertions hold true:

(i) The index ind ±(𝛤,𝑈) is a well-defined integer, if dim ker(𝑈 ∓ 1) < ∞. In this case, (I.7) holds true.

(ii) The index ind (𝛤,𝑈) is a well-defined integer, if dim ker(𝑈 − 1) + dim ker(𝑈 + 1) < ∞. In this case, (I.19)

to (I.20) hold true.

Clearly, dim ker(𝑈 ∓ 1) < ∞ is a weaker assumption than ±1 ∉ 𝜎ess(𝑈).

Proof. Since 𝑈 = 𝑅 + 𝑖𝑄 is unitary and since [𝑅,𝑄] = 0, we have 𝑅2 + 𝑄2 = 1. Firstly, this matrix equality

implies 𝑅2
𝑗
+ 𝑄∗

𝑗
𝑄 𝑗 = 1 for each 𝑗 = 1, 2, and so (II.10) follows. Secondly, the same equality implies

(𝑈 ∓ 1)∗(𝑈 ∓ 1) = 2(1 ∓ 𝑅). We obtain (II.9) from

ker(𝑈 ∓ 1) = ker(𝑈 ∓ 1)∗(𝑈 ∓ 1) = ker(1 ∓ 𝑅) = ker(𝑅 ∓ 1), (II.11)

where ker(𝑅 ∓ 1) = ker(𝑅1 ∓ 1) ⊕ ker(𝑅2 ∓ 1), since 𝑅 = 𝑅1 ⊕ 𝑅2.
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(i) It follows from (II.9) that if dim ker(𝑈 ∓ 1) < ∞, then dim ker(𝑅 𝑗 ∓ 1) < ∞ for each 𝑗 = 1, 2, and so

ind ±(𝛤,𝑈) is well-defined. We have

|ind ±(𝛤,𝑈) | ≤ dim ker(𝑅1 ∓ 1) + dim ker(𝑅2 ∓ 1) = dim ker(𝑈 ∓ 1).

(ii) It follows from (II.10) that

dim ker𝑄 𝑗 = dim ker(𝑅 𝑗 − 1) + dim ker(𝑅 𝑗 + 1), 𝑗 = 1, 2. (II.12)

If dim ker(𝑈 − 1) ⊕ ker(𝑈 + 1) < ∞, then dim ker(𝑅 𝑗 − 1) ⊕ ker(𝑅 𝑗 + 1) < ∞ for each 𝑗 = 1, 2 by (II.11). It

follows from (II.12) that

ind (𝛤,𝑈) = dim ker𝑄1 − dim ker𝑄2

= dim ker(𝑅1 − 1) + dim ker(𝑅1 + 1) − (dim ker(𝑅2 − 1) + dim ker(𝑅2 + 1))

= dim ker(𝑅1 − 1) − dim ker(𝑅2 − 1) + dim ker(𝑅1 + 1) − dim ker(𝑅2 + 1)

= ind +(𝛤,𝑈) + ind −(𝛤,𝑈).

�

Lemma II.3. Let (𝛤0,𝑈0), (𝛤,𝑈) be two chiral pairs on Hilbert spacesH0,H respectively. If (𝛤0,𝑈0), (𝛤,𝑈)

are unitarily equivalent in the sense that (𝛤0,𝑈0) = (𝜖∗𝛤𝜖, 𝜖∗𝑈𝜖) for some unitary operator 𝜖 : H0 →H , then

the following assertions hold true:

(i) If dim ker(𝑈0 ∓ 1) = dim ker(𝑈 ∓ 1) is finite, then ind ±(𝛤0,𝑈0) = ind ±(𝛤,𝑈).

(ii) If dim ker(𝑈0 − 1) ⊕ ker(𝑈0 + 1) = dim ker(𝑈 − 1) ⊕ ker(𝑈 + 1) is finite, then ind (𝛤0,𝑈0) = ind (𝛤,𝑈).

Proof. Note that the operator 𝜖 : H0 →H admits a block-operator matrix representation of the following form;

𝜖 =
©«
𝜖+ 𝜖−+

𝜖+− 𝜖−

ª®®¬ ,
𝜖+ : ker(𝛤0 − 1) → ker(𝛤 − 1), 𝜖−+ : ker(𝛤0 + 1) → ker(𝛤 − 1),

𝜖+− : ker(𝛤0 − 1) → ker(𝛤 + 1), 𝜖− : ker(𝛤0 + 1) → ker(𝛤 + 1).

We show first that the two off-diagonal entries 𝜖+−, 𝜖−+ vanish. Indeed, since 𝛤0 = 1 ⊕ (−1) and 𝛤 = 1 ⊕ (−1),

the given equality 0 = 𝜖𝛤0 − 𝛤𝜖 becomes the following matrix equality;

0 =
©«
𝜖+ 𝜖−+

𝜖+− 𝜖−

ª®®¬
©«
1 0

0 −1

ª®®¬ −
©«
1 0

0 −1

ª®®¬
©«
𝜖+ 𝜖−+

𝜖+− 𝜖−

ª®®¬ =
©«

0 −2𝜖−+

2𝜖+− 0

ª®®¬ .
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This implies 𝜖 = 𝜖+ ⊕ 𝜖− : ker(𝛤0 − 1) ⊕ ker(𝛤0 + 1) → ker(𝛤 − 1) ⊕ ker(𝛤 + 1). Therefore, if 𝑈 admits

the standard representation of the form (II.2), then the standard representation of 𝑈0 is given by the following

formula;

𝑈0 =
©«
𝜖∗+𝑅1𝜖+ 𝑖𝜖∗+𝑄2𝜖−

𝑖𝜖∗−𝑄1𝜖+ 𝜖∗−𝑅2𝜖−

ª®®¬ker(𝛤0−1)⊕ker(𝛤0+1)

.

The claim follows from

dim ker(𝑅1 ∓ 1) = dim ker(𝜖∗+(𝑅1 ∓ 1)𝜖+) = dim ker(𝜖∗+𝑅1𝜖+ ∓ 1),

dim ker(𝑅2 ∓ 1) = dim ker(𝜖∗−(𝑅2 ∓ 1)𝜖−) = dim ker(𝜖∗−𝑅2𝜖− ∓ 1),

dim ker𝑄1 = dim ker𝑄∗1𝑄1 = dim ker(𝜖∗+𝑄∗1𝑄1𝜖+) = dim ker(𝜖∗−𝑄1𝜖+)∗(𝜖∗−𝑄1𝜖+) = dim ker(𝜖∗−𝑄1𝜖+),

dim ker𝑄2 = dim ker𝑄∗2𝑄2 = dim ker(𝜖∗−𝑄∗2𝑄2𝜖−) = dim ker(𝜖∗+𝑄2𝜖−)∗(𝜖∗+𝑄2𝜖−) = dim ker(𝜖∗+𝑄2𝜖−).

�

The fact that the evolution operator of Suzuki’s split-step quantum walk (I.2) can be decomposed as the

product of two unitary self-adjoint operators defined by (I.3) motivates us to introduce the following general

proposition;

Proposition II.4. Let H be a Hilbert space, and let 𝛤, 𝛤′ be two unitary self-adjoint operators on H . If

𝑈 := 𝛤𝛤′, then (𝛤,𝑈), (𝛤′,𝑈) are two chiral pairs onH . Moreover, the following assertions hold true:

(i) If𝑈 admits the standard representation (II.2), then the following equalities hold true for each 𝑗 = 1, 2 :

ker(𝑅 𝑗 ∓ 1) = ker(𝑈 ∓ 1) ∩ ker(𝛤 + (−1) 𝑗 ) = ker(𝛤 + (−1) 𝑗 ) ∩ ker(𝛤′ ∓ (−1) 𝑗+1). (II.13)

(ii) If ker(𝑈 ∓ 1) is finite-dimensional, then

ind ±(𝛤,𝑈) = ±ind ±(𝛤′,𝑈). (II.14)

(iii) If ker(𝑈 − 1) ⊕ ker(𝑈 + 1) is finite-dimensional, then

ind (𝛤′,𝑈) = ind +(𝛤,𝑈) − ind −(𝛤,𝑈). (II.15)
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Alternatively, if𝑈 is a unitary operator onH satisfying the satisfying the chiral symmetry condition (I.1) for

some unitary self-adjoint operator 𝛤 onH , then it can be obviously decomposed as𝑈 = 𝛤𝛤′, where 𝛤′ := 𝛤𝑈

is unitary self-adjoint.

Proof. Given two unitary self-adjoint operators 𝛤, 𝛤′ onH , we let𝑈 := 𝛤𝛤′. It is obvious that (𝛤,𝑈), (𝛤′,𝑈)

are two chiral pairs onH .

(i) We have

𝑈 ∓ 1 =
©«
𝑅1 ∓ 1 𝑖𝑄2

𝑖𝑄1 𝑅2 ∓ 1

ª®®¬ .
It follows from this equality that

ker(𝑈 ∓ 1) ∩ ker(𝛤 + (−1) 𝑗 ) = ker(𝑅 𝑗 ∓ 1) ∩ ker𝑄 𝑗 = ker(𝑅 𝑗 ∓ 1),

where the last equality follows from (II.10). Similarly, we have

𝛤′ ∓ 1 = 𝛤𝑈 ∓ 1 =
©«
1 0

0 −1

ª®®¬
©«
𝑅1 𝑖𝑄2

𝑖𝑄1 𝑅2

ª®®¬ ∓ 1 =
©«
𝑅1 ∓ 1 𝑖𝑄2

−𝑖𝑄1 −(𝑅2 ± 1)

ª®®¬ .
We obtain

ker(𝛤 − 1) ∩ ker(𝛤′ ∓ 1) = ker(𝑅1 ∓ 1) ∩ ker𝑄1 = ker(𝑅1 ∓ 1),

ker(𝛤 + 1) ∩ ker(𝛤′ ∓ 1) = ker(𝑅2 ± 1) ∩ ker𝑄2 = ker(𝑅2 ± 1).

The above identities can be written as the single formula (II.13).

(ii) Note that (𝛤′,𝑈) is a chiral pair, since 𝛤′𝑈𝛤′ = 𝛤′(𝛤𝛤′)𝛤′ = 𝛤′𝛤 = 𝑈∗. Let ker(𝑈 ∓ 1) be finite-

dimensional, and let

𝑚 𝑗 ,± := dim
(
ker(𝛤 + (−1) 𝑗 ) ∩ ker(𝛤′ ∓ (−1) 𝑗+1)

)
, (II.16)

𝑚′𝑗 ,± := dim
(
ker(𝛤′ + (−1) 𝑗 ) ∩ ker(𝛤 ∓ (−1) 𝑗+1)

)
. (II.17)

It follows from (i) that ind ±(𝛤,𝑈) = 𝑚1,± − 𝑚2,± and ind ±(𝛤′,𝑈) = 𝑚′1,± − 𝑚
′
2,±. The formula (II.14) is an
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immediate consequence of the following equalities:

𝑚′1,+ = 𝑚1,+, 𝑚′2,+ = 𝑚2,+,

𝑚′1,− = 𝑚2,−, 𝑚′2,− = 𝑚1,−.

(iii) This follows from (i) and (ii). �

The proof of Proposition II.4 (ii) above turns out to be an essential tool in verifying the exponential decay

property Theorem A (ii). As such, we record it in the following remark for future reference;

Remark II.5. With the notation introduced in Proposition II.4, let 𝑚 𝑗 ,± be the dimension of the subspace given

by (II.13) for each 𝑗 = 1, 2. If 𝑚 𝑗 ,± < ∞ for each 𝑗 = 1, 2, then ind ±(𝛤,𝑈) is well-defined, and we have

ind ±(𝛤,𝑈) = 𝑚1,± − 𝑚2,±, (II.18)

dim ker(𝑈 ∓ 1) = 𝑚1,± + 𝑚2,±. (II.19)

On a side note, we can give an alternative derivation of the formula (II.19) via the so-called spectral mapping

theorem for chirally symmetric unitary operators [SS16, SS19]. A brief discussion on this supplementary topic

can be found in §II.5.3.

Corollary II.6. Let (𝛤,𝑈) be a chiral pair, and let ker(𝑈 − 1) ⊕ ker(𝑈 + 1) be finite-dimensional. Then we

have the following formulas:

ind ±(𝛤,−𝑈) = ind ∓(𝛤,𝑈), ind (𝛤,−𝑈) = ind (𝛤,𝑈), (II.20)

ind ±(−𝛤,𝑈) = −ind ±(𝛤,𝑈), ind (−𝛤,𝑈) = −ind (𝛤,𝑈). (II.21)

Proof. If 𝑈 admits the standard representation of the form (II.2) with respect to 𝛤, then the standard represen-

tation of −𝑈 is

−𝑈 =
©«
−𝑅1 −𝑖𝑄2

−𝑖𝑄1 −𝑅2

ª®®¬ker(𝛤−1)⊕ker(𝛤+1)

.
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It follows that ind ±(𝛤,−𝑈) = ind ∓(𝛤,𝑈), and so ind (𝛤,−𝑈) = ind (𝛤,𝑈) by (I.19). Similarly, the standard

representation of𝑈 with respect to −𝛤 is

𝑈 =
©«
𝑅2 𝑖𝑄1

𝑖𝑄2 𝑅1

ª®®¬ker(𝛤+1)⊕ker(𝛤−1)

.

We have ind ±(−𝛤,𝑈) = dim ker(𝑅2 ∓ 1) − dim ker(𝑅1 ∓ 1) = −ind ∓(𝛤,𝑈), and so ind (−𝛤,𝑈) = −ind (𝛤,𝑈).

�

II.2 Strictly local operators (Preliminary 2)

We start with the following main result of [Tan21];

Theorem II.7 ([Tan21, Theorem A]). Let 𝑘0 ∈ N, and let 𝐴−𝑘0 , . . . , 𝐴𝑘0 be 𝑛 × 𝑛 matrices-valued sequences

on Z admitting the following limits for −𝑘0 ≤ 𝑘 ≤ 𝑘0;

𝐴𝑘 (L) := lim
𝑥→−∞

𝐴𝑘 (𝑥), 𝐴𝑘 (R) := lim
𝑥→+∞

𝐴𝑘 (𝑥). (II.22)

Let

𝐴 :=
𝑘0∑︁

𝑘=−𝑘0

𝐴𝑘

©«
𝐿𝑘 . . . 0
...

. . .
...

0 . . . 𝐿𝑘

ª®®®®®®¬
, (II.23)

�̂�(♯, 𝑧) :=
𝑘0∑︁

𝑘=−𝑘0

𝐴𝑘 (♯)

©«
𝑧𝑘 . . . 0
...

. . .
...

0 . . . 𝑧𝑘

ª®®®®®®¬
, 𝑧 ∈ T ♯ = L,R. (II.24)

where 𝐿 is the bilateral left-shift operator on ℓ2(Z), and where each 𝐴𝑘 in (II.23) is viewed as the bounded

multiplication operator on ℓ2(Z,C𝑛). Then the following assertions hold true:

(i) We have that 𝐴 is Fredholm if and only if T 3 𝑧 ↦−→ det �̂�(♯, 𝑧) ∈ C is nowhere vanishing on T for each

♯ = L,R. In this case, the Fredholm index of 𝐴 is given by

ind (𝐴) = wn
(
det �̂�(R, ·)

)
− wn

(
det �̂�(L, ·)

)
, (II.25)
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where wn
(
det �̂�(♯, ·)

)
denotes the winding number of the continuous function T 3 𝑧 ↦−→ det �̂�(♯, 𝑧) ∈ C

with respect to the origin for each ♯ = L,R.

(ii) The essential spectrum of 𝐴 is given by

𝜎ess(𝐴) =
⋃
𝑧∈T

𝜎

(
�̂�(R, 𝑧)

)
∪

⋃
𝑧∈T

𝜎

(
�̂�(L, 𝑧)

)
. (II.26)

Any operator 𝐴 of the form (II.23) is referred to as an 𝑛-dimensional strictly local operator on the integer

lattice Z throughout this thesis. The purpose of the current section is to generalise the existing formulas (II.25)

to (II.26), by replacing the assumption (II.22) with the so-called asymptotically periodic assumption. More

precisely, we assume that there exist natural numbers 𝑛L, 𝑛R with the property that the following limits exist for

−𝑘0 ≤ 𝑘 ≤ 𝑘0;

𝐴𝑘 (L, 𝑚) := lim
𝑥→−∞

𝐴𝑘 (𝑛L · 𝑥 + 𝑚), 𝑚 ∈ {0, . . . , 𝑛L − 1}, (II.27)

𝐴𝑘 (R, 𝑚) := lim
𝑥→+∞

𝐴𝑘 (𝑛R · 𝑥 + 𝑚), 𝑚 ∈ {0, . . . , 𝑛R − 1}. (II.28)

In other words, the doubly-infinite sequences 𝐴−𝑘 , . . . , 𝐴𝑘 are asymptotically (𝑛L, 𝑛R)-periodic in the sense of

§I.3. We are now in a position to state the following generalisation of Theorem II.7;

Theorem II.8. Let 𝑘0 ∈ N, and let 𝐴−𝑘0 , . . . , 𝐴𝑘0 be finitely many 𝑛 × 𝑛 matrices-valued sequences on Z

admitting the following representations:

𝐴𝑘 (𝑥) =

©«
𝑎𝑘11(𝑥) . . . 𝑎𝑘1𝑛 (𝑥)
...

. . .
...

𝑎𝑘
𝑛1(𝑥) . . . 𝑎𝑘𝑛𝑛 (𝑥)

ª®®®®®®¬
, 𝑥 ∈ Z, −𝑘0 ≤ 𝑘 ≤ 𝑘0. (II.29)

We assume that there exist 𝑛L, 𝑛R ∈ N with the property that the following limits exist for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and for

−𝑘0 ≤ 𝑘 ≤ 𝑘0;

𝑎𝑘𝑖 𝑗 (L, 𝑚) := lim
𝑥→−∞

𝑎𝑘𝑖 𝑗 (𝑛L · 𝑥 + 𝑚), 𝑚 ∈ {0, . . . , 𝑛L − 1}, (II.30)

𝑎𝑘𝑖 𝑗 (R, 𝑚) := lim
𝑥→+∞

𝑎𝑘𝑖 𝑗 (𝑛R · 𝑥 + 𝑚), 𝑚 ∈ {0, . . . , 𝑛R − 1}. (II.31)
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For each ♯ = L,R and each 𝑧 ∈ T, let �̂�(♯, 𝑧) = ( �̂�𝑖 𝑗 (♯, 𝑧))𝑖 𝑗 be the square matrix of dimension 𝑛 × 𝑛♯ defined

by the following block-matrix representation;

�̂�(♯, 𝑧) :=

©«
�̂�11(♯, 𝑧) . . . �̂�1𝑛 (♯, 𝑧)

...
. . .

...

�̂�1𝑛 (♯, 𝑧) . . . �̂�𝑛𝑛 (♯, 𝑧)

ª®®®®®®¬
, (II.32)

�̂�𝑖 𝑗 (♯, 𝑧) :=
𝑘0∑︁

𝑘=−𝑘0

©«

𝑎𝑘
𝑖 𝑗
(♯, 0) 0 . . . 0

0 𝑎𝑘
𝑖 𝑗
(♯, 1) . . . 0

...
...

. . .
...

0 . . . . . . 𝑎𝑘
𝑖 𝑗
(♯, 𝑛♯ − 1)

ª®®®®®®®®®®¬

©«

0

... 1
0

𝑧 0 . . . 0

ª®®®®®®®®®®¬

𝑘

, (II.33)

where 1 denotes the identity matrix of dimension 𝑛♯ − 1. If 𝐴 is a strictly local operator of the form (II.23), then

the following the following assertions hold true:

(i) We have that 𝐴 is Fredholm if and only if T 3 𝑧 ↦−→ det �̂�(♯, 𝑧) ∈ C is nowhere vanishing on T for each

♯ = L,R. In this case, the Fredholm index of 𝐴 is given by (II.25).

(ii) The essential spectrum of 𝐴 is given by (II.26).

In general, the Fredholm index and essential spectrum are meaningful only in infinite dimensions. Note,

however, that Theorem II.8 allows us to fully classify these two topological invariants for a strictly local operator

in the language of linear algebra. In terms of practical applications, Theorem II.8 can be applied to the time-

evolution operator of a discrete-time quantum walk defined on the integer lattice Z, provided that it is an operator

of the form (II.23) satisfying the asymptotically periodic assumptions (II.30) to (II.31).

Remark II.9. Theorem II.7 is a special case of Theorem II.8. Indeed, with the notation introduced in

Theorem II.8, if 𝑛♯ = 1 for each ♯ = L,R, then (II.30) to (II.31) become:

𝑎𝑘𝑖 𝑗 (L, 0) := lim
𝑥→−∞

𝑎𝑘𝑖 𝑗 (𝑥), 𝑎𝑘𝑖 𝑗 (R, 0) := lim
𝑥→+∞

𝑎𝑘𝑖 𝑗 (𝑥).

In this case, we show that (II.32) is given by (II.24). We define the two matrices 𝐴𝑘 (L), 𝐴𝑘 (R) by (II.22) for
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each 𝑘;

𝐴𝑘 (♯) :=

©«
𝑎𝑘11(♯, 0) . . . 𝑎𝑘1𝑛 (♯, 0)

...
. . .

...

𝑎𝑘
𝑛1(♯, 0) . . . 𝑎𝑘𝑛𝑛 (♯, 0)

ª®®®®®®¬
, ♯ = L,R.

We have �̂�𝑖 𝑗 (♯, 𝑧) =
∑𝑘0
𝑘=−𝑘0

𝑎𝑘
𝑖 𝑗
(♯, 0)𝑧𝑘 , and so

�̂�(♯, 𝑧) =

©«

∑𝑘0
𝑘=−𝑘0

𝑎𝑘11(♯, 0)𝑧
𝑘 . . .

∑𝑘0
𝑘=−𝑘0

𝑎𝑘1𝑛 (♯, 0)𝑧
𝑘

...
. . .

...∑𝑘0
𝑘=−𝑘0

𝑎𝑘
𝑛1(♯, 0)𝑧

𝑘 . . .
∑𝑘0
𝑘=−𝑘0

𝑎𝑘𝑛𝑛 (♯, 0)𝑧𝑘

ª®®®®®®¬
,

which is consistent with (II.24).

II.2.1 Notation

The Hilbert space of all square-summable C-valued sequences Ψ = (Ψ(𝑥))𝑥∈Z is denoted by the shorthand

ℓ2(Z) := ℓ2(Z,C). We have a natural orthogonal decomposition ℓ2(Z) = ℓ2
L(Z) ⊕ ℓ

2
R(Z), where

ℓ2
L(Z) := {Ψ ∈ ℓ2(Z) | Ψ(𝑥) = 0 ∀𝑥 ≥ 0}, ℓ2

R(Z) := {Ψ ∈ ℓ2(Z) | Ψ(𝑥) = 0 ∀𝑥 < 0}.

The orthogonal projections of ℓ2(Z) onto the above subspaces shall be denoted by 𝑃L and 𝑃R = 1 − 𝑃L

respectively. For each ♯ = L,R, the orthogonal projection 𝑃♯ can be written as 𝑃♯ = ]♯]∗♯ , where ]♯ : ℓ2
♯
(Z) ↩→

ℓ2(Z) is the inclusion mapping.

For each 𝑚 ∈ N any operator 𝐴 on ℓ2(Z,C𝑚) =
⊕𝑚

𝑗=1 ℓ
2(Z) admits the following unique block-operator

matrix representation;

𝐴 =

©«
𝐴11 . . . 𝐴1𝑚

...
. . .

...

𝐴𝑚1 . . . 𝐴𝑚𝑚

ª®®®®®®¬⊕𝑚
𝑗=1 ℓ

2 (Z)

, (II.34)

where each 𝐴𝑖 𝑗 is an operator on ℓ2(Z). We shall agree to use the shorthand 𝐴 = (𝐴𝑖 𝑗 ) to mean that (II.34)

holds true. With this representation of 𝐴 in mind, for each ♯ = L,R, we define the following compression on
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ℓ2
♯
(Z,C𝑚) :=

⊕𝑚

𝑗=1 ℓ
2
♯
(Z);

𝐴♯ :=

©«
]∗
♯
𝐴11]♯ . . . ]∗

♯
𝐴1𝑚 ]♯

...
. . .

...

]∗
♯
𝐴𝑚1]♯ . . . ]∗

♯
𝐴𝑚𝑚 ]♯

ª®®®®®®¬⊕𝑚
𝑗=1 ℓ

2
♯
(Z)

. (II.35)

II.2.2 A characterisation of strictly local operators

Lemma II.10. Let (𝛿𝑥)𝑥∈Z be the standard complete orthonormal basis for ℓ2(Z), and let 𝐴 be an operator on

ℓ2(Z,C𝑛) with the block-operator matrix representation (II.34). Then the following are equivalent:

(i) For each 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, the operator 𝐴𝑖 𝑗 is a finite sum of the form 𝐴𝑖 𝑗 =
∑𝑘
𝑦=−𝑘 𝑎𝑖 𝑗 (𝑦, ·)𝐿𝑦 for some

C-valued sequences 𝑎𝑖 𝑗 (𝑦, ·) = (𝑎𝑖 𝑗 (𝑦, 𝑥))𝑥∈Z, where −𝑘 ≤ 𝑦 ≤ 𝑘, viewed as multiplication operators on

ℓ2(Z) =
⊕

𝑥∈Z C.

(ii) There exists a large enough positive integer 𝑘, such that for each 𝑥 ∈ Z and for each 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, the

vector 𝐴𝑖 𝑗𝛿𝑥 ∈ ℓ2(Z) belongs to the linear span of the finite set {𝛿𝑥−𝑦 | −𝑘 ≤ 𝑦 ≤ 𝑘}.

It follows from Lemma II.10 (i) that a strictly local operator 𝐴 admits a block-operator matrix representation

of the following form (I.16).

Proof. It is obvious that (i) implies (ii), since 𝐿𝑦𝛿𝑥 = 𝛿𝑥−𝑦 for each 𝑥, 𝑦 ∈ Z. This equality shall be repeatedly

used throughout the current section. To prove the converse, let (ii) hold true, and let 𝑖, 𝑗 be both fixed. For each

𝑥 ∈ Z, there exist finitely many scalars 𝑎′
𝑖 𝑗
(𝑦, 𝑥) ∈ C, where −𝑘 ≤ 𝑦 ≤ 𝑘, such that

𝐴𝑖 𝑗𝛿𝑥 =

𝑘∑︁
𝑦=−𝑘

𝑎′𝑖 𝑗 (𝑦, 𝑥)𝛿𝑥−𝑦 . (II.36)

Note that 𝑎′
𝑖 𝑗
(𝑦, ·) = (𝑎′

𝑖 𝑗
(𝑦, 𝑥))𝑥∈Z is a bounded sequence for −𝑘 ≤ 𝑦 ≤ 𝑘;

|𝑎′𝑖 𝑗 (𝑦, 𝑥) | = |
〈
𝛿𝑥−𝑦, 𝐴𝑖 𝑗𝛿𝑥

〉
ℓ2 (Z) | ≤ ‖𝐴𝑖 𝑗 ‖‖𝛿𝑥−𝑦‖ℓ2 (Z) ‖𝛿𝑥 ‖ℓ2 (Z) ≤ ‖𝐴𝑖 𝑗 ‖, 𝑥 ∈ Z.

Let 𝑎𝑖 𝑗 (𝑦, 𝑥) := 𝑎′
𝑖 𝑗
(𝑦, 𝑥 + 𝑦) for each 𝑥, 𝑦. Then we obtain the following equalities for each 𝑥 ∈ Z;

𝑘∑︁
𝑦=−𝑘

𝑎𝑖 𝑗 (𝑦, ·)𝐿𝑦𝛿𝑥 =
𝑘∑︁

𝑦=−𝑘
𝑎𝑖 𝑗 (𝑦, ·)𝛿𝑥−𝑦 =

𝑘∑︁
𝑦=−𝑘

𝑎𝑖 𝑗 (𝑦, 𝑥 − 𝑦)𝛿𝑥−𝑦 =
𝑘∑︁

𝑦=−𝑘
𝑎′𝑖 𝑗 (𝑦, 𝑥)𝛿𝑥−𝑦 = 𝐴𝑖 𝑗𝛿𝑥 ,

where the last equality follows from (II.36). That is, (i) holds true. �
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Corollary II.11. If 𝐴 is a strictly local operator on ℓ2(Z,C𝑛), then the difference 𝐴 − 𝐴L ⊕ 𝐴R is finite-rank.

Moreover, the following assertions hold true:

(i) The operator 𝐴 is Fredholm if and only if 𝐴L, 𝐴R are both Fredholm. In this case, we have

ind (𝐴) = ind (𝐴L) + ind (𝐴R). (II.37)

(ii) The essential spectrum of 𝐴 is given by

𝜎ess(𝐴) = 𝜎ess(𝐴L) ∪ 𝜎ess(𝐴R). (II.38)

Proof. Note that 𝑃 :=
⊕𝑛

𝑗=1 𝑃R is the orthogonal projection onto ℓ2
R(Z,C

𝑛) =
⊕𝑛

𝑗=1 ℓ
2
R(Z). We have

𝐴 − 𝐴L ⊕ 𝐴R = 𝑃𝐴(1 − 𝑃) + (1 − 𝑃)𝐴𝑃 = 𝑃𝐴 − 𝑃𝐴𝑃 + 𝐴𝑃 − 𝑃𝐴𝑃 = 𝑃[𝑃, 𝐴] + [𝐴, 𝑃]𝑃,

where [𝑋,𝑌 ] := 𝑋𝑌 − 𝑌𝑋 denotes the commutator of two operators 𝑋,𝑌 . It remains to show that [𝐴, 𝑃] is

finite-rank, where we may assume without loss of generality that 𝐴 is of the form (I.16). Since 𝑃 =
⊕𝑛

𝑗=1 𝑃R

is a diagonal block-operator matrix, we obtain

[𝐴, 𝑃] =

©«

[∑𝑘
𝑦=−𝑘 𝑎11(𝑦, ·)𝐿𝑦, 𝑃R

]
. . .

[∑𝑘
𝑦=−𝑘 𝑎1𝑛 (𝑦, ·)𝐿𝑦, 𝑃R

]
...

. . .
...[∑𝑘

𝑦=−𝑘 𝑎𝑛1(𝑦, ·)𝐿𝑦, 𝑃R

]
. . .

[∑𝑘
𝑦=−𝑘 𝑎𝑛𝑛 (𝑦, ·)𝐿𝑦, 𝑃R

]
ª®®®®®®¬
.

Since [−, 𝑃R] is linear with respect to the first variable, each (𝑖, 𝑗)-entry of the above block-operator matrix is

given by
∑𝑘
𝑦=−𝑘 𝑎𝑖 𝑗 (𝑦, ·) [𝐿𝑦, 𝑃R] , where the commutator [𝐿𝑦, 𝑃R] is finite-rank for −𝑘 ≤ 𝑦 ≤ 𝑘. It follows that

𝐴 − 𝐴L ⊕ 𝐴R is finite-rank, and so the remaining assertions immediately follow. �

Note that a strictly local operator of the form (I.16) has the simplest representation, if each sequence 𝑎𝑖 𝑗 (𝑦, ·)

is constant. Such an operator admits the following characterisation;

Lemma II.12. Let 𝐴 be an operator on ℓ2(Z) with the block-operator matrix representation (II.34). Then the

following are equivalent:

(i) For each 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, the operator 𝐴𝑖 𝑗 is a finite sum of the form 𝐴𝑖 𝑗 =
∑𝑘
𝑦=−𝑘 𝑎𝑖 𝑗 (𝑦)𝐿𝑦 for some

complex numbers 𝑎𝑖 𝑗 (𝑦), where −𝑘 ≤ 𝑦 ≤ 𝑘.
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(ii) The operator 𝐴 is strictly local and [𝐴𝑖 𝑗 , 𝐿𝑥] = 0 for each 𝑥 ∈ Z and each 𝑖, 𝑗 ∈ {1, . . . , 𝑛}.

The operator 𝐴 is said to be uniform, if it satisfies the above equivalent conditions. It follows from

Lemma II.12 (i) that such 𝐴 admits a block-operator matrix representation of the following form;

𝐴 =

𝑘∑︁
𝑦=−𝑘

©«
𝑎11(𝑦)𝐿𝑦 . . . 𝑎1𝑛 (𝑦)𝐿𝑦

...
. . .

...

𝑎𝑛1(𝑦)𝐿𝑦 . . . 𝑎𝑛𝑛 (𝑦)𝐿𝑦

ª®®®®®®¬
=

©«

∑𝑘
𝑦=−𝑘 𝑎11(𝑦)𝐿𝑦 . . .

∑𝑘
𝑦=−𝑘 𝑎1𝑛 (𝑦)𝐿𝑦

...
. . .

...∑𝑘
𝑦=−𝑘 𝑎𝑛1(𝑦)𝐿𝑦 . . .

∑𝑘
𝑦=−𝑘 𝑎𝑛𝑛 (𝑦)𝐿𝑦

ª®®®®®®¬
. (II.39)

Proof. It is obvious that (i) implies (ii). To prove the converse, let 𝐴 = (𝐴𝑖 𝑗 ) be strictly local, and let [𝐴𝑖 𝑗 , 𝐿𝑥] = 0

for each 𝑥 ∈ Z and each 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. It follows from Lemma II.10 (i) that for each 𝑖, 𝑗 ∈ {1, . . . , 𝑛} we

have 𝐴𝑖 𝑗 =
∑𝑘
𝑦=−𝑘 𝑎𝑖 𝑗 (𝑦, ·)𝐿𝑦 . It remains to show that the sequence 𝑎𝑖 𝑗 (𝑦, ·) = (𝑎𝑖 𝑗 (𝑦, 𝑥))𝑥∈Z is constant for a

fixed pair 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. Since 𝐴𝑖 𝑗𝛿𝑥 =
∑𝑘
𝑦=−𝑘 𝑎𝑖 𝑗 (𝑦, 𝑥 − 𝑦)𝛿𝑥−𝑦 for each 𝑥 ∈ Z, we get

𝐴𝑖 𝑗𝛿𝑥 = 𝐴𝑖 𝑗𝐿
−𝑥𝛿0 = 𝐿−𝑥𝐴𝑖 𝑗𝛿0 = 𝐿−𝑥

©«
𝑘∑︁

𝑦=−𝑘
𝑎𝑖 𝑗 (𝑦,−𝑦)𝛿−𝑦

ª®¬ =

𝑘∑︁
𝑦=−𝑘

𝑎𝑖 𝑗 (𝑦,−𝑦)𝛿𝑥−𝑦 .

It follows that 𝑎𝑖 𝑗 (𝑦, 𝑥 − 𝑦) = 𝑎𝑖 𝑗 (𝑦,−𝑦) for each 𝑥 ∈ Z and for each 𝑦 ∈ {−𝑘, . . . , 𝑘}. The claim follows. �

II.2.3 A characterisation of uniform strictly local operators

The following result is one of the main theorems of the current section;

Theorem II.13. Let 𝐴 be a uniform operator on ℓ2(Z,C𝑛) of the form (II.39), and let

�̂�(𝑧) :=

©«

∑𝑘
𝑦=−𝑘 𝑎11(𝑦)𝑧𝑦 . . .

∑𝑘
𝑦=−𝑘 𝑎1𝑛 (𝑦)𝑧𝑦

...
. . .

...∑𝑘
𝑦=−𝑘 𝑎𝑛1(𝑦)𝑧𝑦 . . .

∑𝑘
𝑦=−𝑘 𝑎𝑛𝑛 (𝑦)𝑧𝑦

ª®®®®®®¬
, 𝑧 ∈ T. (II.40)

Then the following assertions hold true:

(i) The operator 𝐴 is Fredholm if and only if 𝐴L, 𝐴R are both Fredholm if and only if T 3 𝑧 ↦−→ det �̂�(𝑧) ∈ C

is nowhere vanishing on T. In this case, we have ind 𝐴 = ind 𝐴R + ind 𝐴L = 0, and

ind 𝐴R = wn
(
det �̂�

)
.
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(ii) The essential spectrum of 𝐴 is given by

𝜎ess(𝐴) = 𝜎ess(𝐴R) = 𝜎ess(𝐴L) =
⋃
𝑧∈T

𝜎( �̂�(𝑧)). (II.41)

The proof of Theorem II.13 shall be given at the end of the current subsection. Let us first recall the notion

of Toeplitz operators. Let 𝐿2(T) be the Hilbert space of square-summable functions on the unit-circle T, where

T is endowed with the normalised arc-length measure. It is well-known that 𝐿2(T) admits the standard complete

orthonormal basis (𝑒𝑥)𝑥∈Z, where each 𝑒𝑥 is defined by T 3 𝑧 ↦−→ 𝑧𝑥 ∈ C. The Hardy-Hilbert space H2 is

the closure of the linear span of the set {𝑒𝑥 | 𝑥 ≥ 0}. Let ] : H2 ↩→ 𝐿2(T) be the inclusion mapping, and let

𝑓 ∈ C(T). Then the Toeplitz operator 𝑇 𝑓 with symbol 𝑓 is defined by

𝑇 𝑓 := ]∗𝑀 𝑓 ], (II.42)

where 𝑀 𝑓 : 𝐿2(T) → 𝐿2(T) is the multiplication operator by 𝑓 . More generally, let us consider the Banach

space 𝐶 (T,C𝑛×𝑛) of continuous matrix-valued functions on T. Given a function 𝐹 ∈ 𝐶 (T,C𝑛×𝑛) of the form

𝐹 (𝑧) = ( 𝑓𝑖 𝑗 (𝑧)) for each 𝑧 ∈ T, the Toeplitz operator with symbol 𝐹 is defined by

𝑇𝐹 :=

©«
𝑇 𝑓11 . . . 𝑇 𝑓1𝑛

...
. . .

...

𝑇 𝑓𝑛1 . . . 𝑇 𝑓𝑛𝑛

ª®®®®®®¬⊕𝑛
𝑗=1 H2

. (II.43)

The following result is standard;

Theorem II.14. Let 𝐹 ∈ 𝐶 (T,C𝑛×𝑛) be a matrix-valued function of the form 𝐹 (·) = ( 𝑓𝑖 𝑗 (·)), and let 𝑇𝐹 be the

corresponding Toeplitz operator given by (II.43). Then the following assertions hold true:

(i) The Toeplitz operator 𝑇𝐹 is Fredholm if and only if T 3 𝑧 ↦−→ det 𝐹 (𝑧) ∈ C is nowhere vanishing on T. In

this case,

ind𝑇𝐹 = −wn(det 𝐹). (II.44)

(ii) The essential spectrum of 𝑇𝐹 is given by

𝜎ess(𝑇𝐹) =
⋃
𝑧∈T

𝜎(𝐹 (𝑧)). (II.45)
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Proof. Note that (i) is the celebrated theorem of Gohberg-Krein (see, for example, [Mur06, Theorem 3.3]).

It remains to prove (ii). Let B𝑛 (H2) := B
(⊕𝑛

𝑗=1 H2
)

be the 𝐶∗-algebra of operators on
⊕𝑛

𝑗=1 H2, and

let K𝑛 (H2) := K
(⊕𝑛

𝑗=1 H2
)

be the ideal of compact operators on
⊕𝑛

𝑗=1 H2. Let A𝑛 (H2) be the closed ∗-

subalgebra of B𝑛 (H2) generated by {𝑇𝐹 | 𝐹 ∈ 𝐶 (T,C𝑛×𝑛)}. It is a well-known result that the following mapping

is ∗-isomorphic (see, for example, [Dou73, §1]);

𝐶 (T,C𝑛×𝑛) 3 𝐹 ↦−→ [𝑇𝐹] ∈ A𝑛 (H2)/K𝑛 (H2).

That is, for each 𝐹 ∈ 𝐶 (T,C𝑛×𝑛) we have that 𝐹 is invertible in 𝐶 (T,C𝑛×𝑛) if and only if [𝑇𝐹] is invertible in

the Calkin algebra B𝑛 (H2)/K𝑛 (H2). The equality (II.45) follows. �

Let us consider two unitary operators FL : H2 → ℓ2
L(Z) and FR : H2 → ℓ2

R(Z) defined respectively by

FL𝑒𝑥 := 𝛿−𝑥−1, FR𝑒𝑥 := 𝛿𝑥 , 𝑥 ≥ 0,

where (𝛿𝑥)𝑥∈Z, (𝑒𝑥)𝑥≥0 are the standard bases of ℓ2(Z),H2 respectively.

Lemma II.15. Let 𝐴 be a uniform operator on ℓ2(Z,C𝑛) of the form (II.39), and let �̂� be given by (II.40). Then

©«
𝑛⊕
𝑗=1
F ∗
♯

ª®¬ 𝐴♯ ©«
𝑛⊕
𝑗=1
F♯

ª®¬ =


𝑇�̂�, ♯ = L,

𝑇�̂�(−∗) , ♯ = R,
(II.46)

where �̂�(−∗) denote the matrix-valued function T 3 𝑧 ↦−→ �̂�(𝑧∗) ∈ C𝑛×𝑛.

Proof. Note first that the inverses of FL, FR are given respectively by F −1
L 𝛿𝑥 = F ∗L 𝛿𝑥 = 𝑒−𝑥−1 for each 𝑥 < 0

and F −1
R 𝛿𝑥 = F ∗R 𝛿𝑥 = 𝑒𝑥 for each 𝑥 ≥ 0. Let us first prove the following non-trivial equalities:

𝑇𝑒𝑦 = F ∗L ]
∗
L𝐿

𝑦 ]LFL = F ∗R ]
∗
R𝐿
−𝑦 ]RFR, 𝑦 ∈ Z. (II.47)

Note that for each 𝑦 ≥ 0 and each 𝑥 ≥ 0 we have

𝑇𝑒𝑦𝑒𝑥 = ]
∗𝑀𝑒𝑦 ]𝑒𝑥 = ]

∗𝑀𝑒𝑦𝑒𝑥 = ]
∗𝑒𝑥+𝑦 = 𝑒𝑥+𝑦,

F ∗L ]
∗
L𝐿

𝑦 ]LFL𝑒𝑥 = F ∗L ]
∗
L𝐿

𝑦 ]L𝛿−𝑥−1 = F ∗L ]
∗
L𝛿−𝑥−𝑦−1 = 𝑒𝑥+𝑦,

F ∗R ]
∗
R𝐿
−𝑦 ]RFR𝑒𝑥 = F ∗R ]

∗
R𝐿
−𝑦 ]R𝛿𝑥 = F ∗R ]

∗
R𝛿𝑥+𝑦 = 𝑒𝑥+𝑦 .
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That is, we have shown that (II.47) holds true for any 𝑦 ≥ 0. On the other hand, if 𝑦 < 0, then −𝑦 > 0, and so

𝑇𝑒𝑦 = (𝑇𝑒−𝑦 )∗ = (F ∗L ]
∗
L𝐿
−𝑦 ]LFL)∗ = (F ∗R ]

∗
R𝐿

𝑦 ]RFR)∗, 𝑦 < 0.

That is, (II.47) holds true for any 𝑦 ∈ Z. Let

𝑓𝑖 𝑗 (𝑧) :=
𝑘∑︁

𝑦=−𝑘
𝑎𝑖 𝑗 (𝑦)𝑧𝑦 =

𝑘∑︁
𝑦=−𝑘

𝑎𝑖 𝑗 (𝑦)𝑒𝑦 (𝑧), 𝑧 ∈ T.

Then the block-operator matrix representation of 𝐴 is given by

𝐴 =

©«

∑𝑘
𝑦=−𝑘 𝑎11(𝑦)𝐿𝑦 . . .

∑𝑘
𝑦=−𝑘 𝑎1𝑛 (𝑦)𝐿𝑦

...
. . .

...∑𝑘
𝑦=−𝑘 𝑎𝑛1(𝑦)𝐿𝑦 . . .

∑𝑘
𝑦=−𝑘 𝑎𝑛𝑛 (𝑦)𝐿𝑦

ª®®®®®®¬
=

©«
𝑓11(𝐿) . . . 𝑓1𝑛 (𝐿)
...

. . .
...

𝑓𝑛1(𝐿) . . . 𝑓𝑛𝑛 (𝐿)

ª®®®®®®¬
.

With the representation (II.35) in mind, we obtain

©«
𝑛⊕
𝑗=1
F ∗
♯

ª®¬ 𝐴♯ ©«
𝑛⊕
𝑗=1
F♯

ª®¬ =

©«
F ∗
♯
]∗
♯
𝑓11(𝐿)]♯F♯ . . . F ∗

♯
]∗
♯
𝑓1𝑛 (𝐿)]♯F♯

...
. . .

...

F ∗
♯
]∗
♯
𝑓𝑛1(𝐿)]♯F♯ . . . F ∗

♯
]∗
♯
𝑓𝑛𝑛 (𝐿)]♯F♯

ª®®®®®®¬⊕𝑛
𝑗=1 H2

, ♯ = L,R,

where (II.47) gives the following equalities for each 𝑖, 𝑗 ∈ {1, . . . , 𝑛} :

F ∗
♯
]∗
♯
𝑓𝑖 𝑗 (𝐿)]♯F♯ =

𝑘∑︁
𝑦=−𝑘

𝑎𝑖 𝑗 (𝑦) (F ∗♯ ]
∗
♯
𝐿𝑦 ]♯F♯) =


∑𝑘
𝑦=−𝑘 𝑎𝑖 𝑗 (𝑦)𝑇𝑒𝑦 = 𝑇 𝑓𝑖 𝑗 , ♯ = L,∑𝑘
𝑦=−𝑘 𝑎𝑖 𝑗 (𝑦)𝑇∗𝑒𝑦 = 𝑇 𝑓𝑖 𝑗 (−∗) , ♯ = R.

It follows that (II.46) holds true, since the Toeplitz operator 𝑇�̂� is given by (II.43) with 𝐹 := �̂�. �

Proof of Theorem II.13. Let 𝐴 be a uniform operator on ℓ2(Z,C𝑛) of the form (II.39), and let �̂� be given by

(II.40). It follows from (II.46) that 𝐴L � 𝑇�̂� and 𝐴R � 𝑇�̂�(−∗) , where � denotes unitary equivalence. The

Fredholmness and essential spectra are invariant under unitary transforms.

(i) It follows from Corollary II.11 (i) that the operator 𝐴 is Fredholm if and only if 𝐴L � 𝑇�̂�, 𝐴R � 𝑇�̂�(−∗)

are both Fredholm, and in this case we have ind 𝐴 = ind𝑇�̂� + ind𝑇�̂�(−∗) . On the other hand, it follows from

Theorem II.14 (i) that 𝐴L � 𝑇�̂� is Fredholm if and only if 𝐴R � 𝑇�̂�(−∗) is Fredholm if and only if det �̂� is

nowhere vanishing. In this case, we have ind 𝐴L = −wn
(
det �̂�

)
and ind 𝐴R = −wn

(
det �̂�(−∗)

)
. Therefore,

ind 𝐴 = ind 𝐴L + ind 𝐴R = −wn
(
det �̂�

)
− wn

(
det �̂�(−∗)

)
= −wn

(
det �̂�

)
+ wn

(
det �̂�

)
= 0.
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(ii) It follows from Corollary II.11 (ii) that 𝜎ess(𝐴) = 𝜎ess(𝐴L) ∪ 𝜎ess(𝐴R), where 𝐴L � 𝑇�̂�, 𝐴R � 𝑇�̂�(−∗) . It

follows from Theorem II.14 (ii) that

𝜎ess(𝐴L) = 𝜎ess(𝑇�̂�) =
⋃
𝑧∈T

𝜎

(
�̂�(𝑧)

)
=

⋃
𝑧∈T

𝜎

(
�̂�(𝑧∗)

)
= 𝜎ess

(
𝑇�̂�(−∗)

)
= 𝜎ess(𝐴R),

where the third equality follows from the fact that the ranges of �̂�, �̂�(−∗) are identical. �

II.2.4 Proof of the main theorem (Theorem II.8)

For each 𝑚 ∈ N the operator 𝜏𝑚 :
⊕𝑚

𝑗=1 ℓ
2(Z) → ℓ2(Z) is defined as the inverse of the following unitary

operator

ℓ2(Z) 3 𝜓 ↦−→

©«
𝜓(𝑚·)
...

𝜓(𝑚 · +𝑚 − 1)

ª®®®®®®¬
∈

𝑚⊕
𝑗=1

ℓ2(Z). (II.48)

In particular, 𝜏1 is the identity operator on ℓ2(Z). Similarly, for each ♯ = L,R and each 𝑚 ∈ N we define the

operator 𝜏♯,𝑚 :
⊕𝑚

𝑗=1 ℓ
2
♯
(Z) → ℓ2

♯
(Z) by

𝜏♯,𝑚 := ]∗
♯
𝜏𝑚

©«
𝑚⊕
𝑗=1

]♯
ª®¬ .

It is easy to see that 𝜏♯,𝑚 is a unitary operator, since its inverse 𝜏∗
♯
=

(⊕𝑚

𝑗=1 ]
∗
♯

)
𝜏∗𝑚 ]♯ is given explicitly by the

following formula;

ℓ2
♯
(Z) 3 𝜓 ↦−→

©«
𝜓(𝑚·)
...

𝜓(𝑚 · +𝑚 − 1)

ª®®®®®®¬
∈

𝑚⊕
𝑗=1

ℓ2
♯
(Z), (II.49)

where 𝜓(𝑚·), . . . , 𝜓(𝑚 · +𝑚 − 1) ∈ ℓ2
♯
(Z).

Lemma II.16. If 𝑎 = (𝑎(𝑥))𝑥∈Z is a bounded C-valued sequence, identified with the associated multiplication
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operator on ℓ2(Z), then for each 𝑛 ∈ N we have

𝜏∗𝑛𝑎𝜏𝑛 =

©«
𝑎(𝑛·) . . . 0
...

. . .
...

0 . . . 𝑎(𝑛 · +𝑛 − 1)

ª®®®®®®¬
, (II.50)

𝜏∗𝑛𝐿𝜏𝑛 =

©«

0

... 1
0

𝐿 0 . . . 0

ª®®®®®®®®®®¬
, (II.51)

where 1 is the identity operator on
⊕𝑛−1

𝑗=1 ℓ
2(Z).

Proof. For each 𝜓 ∈ ℓ2(Z) we have

𝜏∗𝑛𝑎𝜓 =

©«
𝑎(𝑛·)𝜓(𝑛·)

...

𝑎(𝑛 · +𝑛 − 1)𝜓(𝑛 · +𝑛 − 1)

ª®®®®®®¬
=

©«
𝑎(𝑛·) . . . 0
...

. . .
...

0 . . . 𝑎(𝑛 · +𝑛 − 1)

ª®®®®®®¬
𝜏∗𝑛𝜓,

𝜏∗𝑛𝐿𝜓 =

©«
𝜓(𝑛 · +1)

...

𝜓(𝑛 · +𝑛)

ª®®®®®®¬
=

©«

0 1 0 . . . 0

0 0 1 . . . 0
...

...
...
. . .

...

0 0 0 . . . 1

𝐿 0 0 . . . 0

ª®®®®®®®®®®®®®¬
𝜏∗𝑛𝜓.

The claim follows. �

Corollary II.17. For each ♯ = L,R and each 𝑛 ∈ N, we have 𝜏∗𝑛𝑃♯𝜏𝑛 =
⊕𝑛

𝑗=1 𝑃♯.

Proof. For each ♯ = L,R, we can identify 𝑃♯ with the multiplication operator 𝛿♯. It follows from (II.50) that

𝜏∗𝑛𝛿♯𝜏𝑛 =

©«
𝛿♯ (𝑛·) . . . 0
...

. . .
...

0 . . . 𝛿♯ (𝑛 · +𝑛 − 1)

ª®®®®®®¬
,

where 𝛿♯ (𝑛·) = · · · = 𝛿♯ (𝑛 · +𝑛 − 1) = 𝛿♯. Therefore, 𝜏∗𝑛𝑃♯𝜏𝑛 =
⊕𝑛

𝑗=1 𝑃♯. �
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In fact, the special case of Theorem II.8 where 𝑛L = 𝑛R can be easily proved by making use of Lemma II.16.

As for the general case 𝑛L ≠ 𝑛R, we require the following non-trivial fact;

Lemma II.18. For each ♯ = L,R and each 𝑚 ∈ N, we have

©«
𝑛⊕
𝑗=1

𝜏∗
♯,𝑚

ª®¬ 𝐴♯ ©«
𝑛⊕
𝑗=1

𝜏♯,𝑚
ª®¬ =

©«©«
𝑛⊕
𝑗=1

𝜏∗𝑚
ª®¬ 𝐴 ©«

𝑛⊕
𝑗=1

𝜏𝑚
ª®¬ª®¬♯ . (II.52)

More explicitly, the 𝑚 × 𝑛-dimensional strictly local operator
(⊕𝑛

𝑗=1 𝜏
∗
𝑚

)
𝐴

(⊕𝑛

𝑗=1 𝜏𝑚

)
coincides with the

block-operator matrix 𝐵(𝑚) defined by the following formulas:

𝐵(𝑚) :=

©«
𝐵11(𝑚) . . . 𝐵1𝑛 (𝑚)

...
. . .

...

𝐵𝑛1(𝑚) . . . 𝐵𝑛𝑛 (𝑚)

ª®®®®®®¬
, (II.53)

𝐵𝑖 𝑗 (𝑚) :=
𝑘0∑︁

𝑘=−𝑘0

©«

𝑎𝑘
𝑖 𝑗
(𝑚·) 0 . . . 0

0 𝑎𝑘
𝑖 𝑗
(𝑚 · +1) . . . 0

...
...

. . .
...

0 . . . . . . 𝑎𝑘
𝑖 𝑗
(𝑚 · +𝑚 − 1)

ª®®®®®®®®®®¬

©«

0

... 1
0

𝐿 0 . . . 0

ª®®®®®®®®®®¬

𝑘

, (II.54)

where 1 denotes the identity operator of dimension 𝑚 − 1.

The formula (II.52) shows that ♯-compression and 𝜏𝑚-unitary transforms can be interchanged.

Proof. Note that 𝐴 can be expresses as a block-operator matrix form 𝐴 = (𝐴𝑖 𝑗 ) according to (II.35), where

𝐴𝑖 𝑗 :=
𝑘0∑︁

𝑘=−𝑘0

𝑎𝑘𝑖 𝑗𝐿
𝑘 .

Note that the left-hand side of (II.52) becomes;

©«
𝑛⊕
𝑗=1

𝜏∗
♯,𝑚

ª®¬ 𝐴♯ ©«
𝑛⊕
𝑗=1

𝜏♯,𝑚
ª®¬ =

©«
𝜏∗
♯,𝑚
(]∗
♯
𝐴11]♯)𝜏♯,𝑚 . . . 𝜏∗

♯,𝑚
(]♯𝐴1𝑛]♯)𝜏♯,𝑚

...
. . .

...

𝜏∗
♯,𝑚
(]∗
♯
𝐴𝑛1]♯)𝜏♯,𝑚 . . . 𝜏∗

♯,𝑚
(]∗
♯
𝐴𝑛𝑛]♯)𝜏♯,𝑚

ª®®®®®®¬⊕𝑛
𝑗=1 ℓ

2
♯
(Z,C𝑚)

.
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Note that for each 𝑖, 𝑗 we obtain

𝜏∗
♯,𝑚
(]∗
♯
𝐴𝑖 𝑗 ]♯)𝜏♯,𝑚 =

©«
𝑚⊕
𝑗=1

]∗
♯

ª®¬ 𝜏∗𝑚 ]♯ (]∗♯𝐴𝑖 𝑗 ]♯)]∗♯𝜏𝑚 ©«
𝑚⊕
𝑗=1

]♯
ª®¬

=
©«

𝑚⊕
𝑗=1

]∗
♯

ª®¬ 𝜏∗𝑚𝑃♯𝐴𝑖 𝑗𝑃♯𝜏𝑚 ©«
𝑚⊕
𝑗=1

]♯
ª®¬

=
©«

𝑚⊕
𝑗=1

]∗
♯

ª®¬ ©«
𝑚⊕
𝑗=1

𝑃♯
ª®¬ 𝜏∗𝑚𝐴𝑖 𝑗𝜏𝑚 ©«

𝑚⊕
𝑗=1

𝑃♯
ª®¬ ©«

𝑚⊕
𝑗=1

]♯
ª®¬

=
©«

𝑚⊕
𝑗=1

]∗
♯

ª®¬ 𝜏∗𝑚𝐴𝑖 𝑗𝜏𝑚 ©«
𝑚⊕
𝑗=1

]♯
ª®¬ ,

where the second last equality follows from Corollary II.17 and the last equality follows from ]∗
♯
]♯ = 1. Therefore,

(II.52) holds true. Now,

𝜏∗𝑚𝐴𝑖 𝑗𝜏𝑚 =

𝑘0∑︁
𝑘=−𝑘0

𝜏∗𝑚𝑎
𝑘
𝑖 𝑗𝐿

𝑘𝜏𝑚 =

𝑘0∑︁
𝑘=−𝑘0

𝜏∗𝑚𝑎
𝑘
𝑖 𝑗𝜏𝑚 (𝜏∗𝑚𝐿𝜏𝑚)𝑘 .

The claim follows from Lemma II.16. �

Lemma II.19. For each ♯ = L,R let

𝐴(♯) :=

©«
𝐴11(♯) . . . 𝐴1𝑛 (♯)
...

. . .
...

𝐴1𝑛 (♯) . . . 𝐴𝑛𝑛 (♯)

ª®®®®®®¬
,

𝐴𝑖 𝑗 (♯) :=
𝑘0∑︁

𝑘=−𝑘0

©«

𝑎𝑘
𝑖 𝑗
(♯, 0) 0 . . . 0

0 𝑎𝑘
𝑖 𝑗
(♯, 1) . . . 0

...
...

. . .
...

0 . . . . . . 𝑎𝑘
𝑖 𝑗
(♯, 𝑛♯ − 1)

ª®®®®®®®®®®¬

©«

0

... 1
0

𝐿 0 . . . 0

ª®®®®®®®®®®¬

𝑘

,

where 1 denotes the identity operator of dimension 𝑛♯ − 1. Then the following operators are compact;

©«
𝑛⊕
𝑗=1

𝜏∗
♯,𝑛♯

ª®¬ 𝐴♯ ©«
𝑛⊕
𝑗=1

𝜏♯,𝑛♯
ª®¬ − 𝐴(♯)♯, ♯ = L,R.

Note that �̂�(♯, 𝑧) defined by (II.33) is nothing but the Fourier transform of 𝐴(♯).
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Proof. It follows from Lemma II.18 that

©«
𝑛⊕
𝑗=1

𝜏∗
♯,𝑛♯

ª®¬ 𝐴♯ ©«
𝑛⊕
𝑗=1

𝜏♯,𝑛♯
ª®¬ − 𝐴(♯)♯ =

(
𝐵(𝑛♯) − 𝐴(♯)

)
♯
,

where 𝐵(𝑛♯) − 𝐴(♯) = (𝐵𝑖 𝑗 (𝑛♯) − 𝐴𝑖 𝑗 (♯))𝑖, 𝑗 . Since
⊕𝑛♯

𝑗=1 ]
∗
♯
=

⊕𝑛♯

𝑗=1 ]
∗
♯

⊕𝑛♯

𝑗=1 𝑃♯, it remains to show that

𝐶𝑖 𝑗 (♯) :=
(⊕𝑛♯

𝑗 ′=1 𝑃♯

) (
𝐵𝑖 𝑗 (𝑛♯) − 𝐴𝑖 𝑗 (♯)

)
is compact. We obtain

𝐶𝑖 𝑗 (♯) =
𝑘0∑︁

𝑘=−𝑘0

©«
𝛿♯ (𝑎𝑘𝑖 𝑗 (♯, 0) − 𝑎𝑘𝑖 𝑗 (𝑛♯·)) . . . 0

...
. . .

...

0 . . . 𝛿♯ (𝑎𝑘𝑖 𝑗 (𝑛♯ · +𝑛♯ − 1) − 𝑎𝑘
𝑖 𝑗
(♯, 𝑛♯ − 1))

ª®®®®®®¬

©«

0

... 1
0

𝐿 0 . . . 0

ª®®®®®®®®®®¬

𝑘

,

where the last equality follows from Lemma II.16. Note that each 𝛿♯𝑎𝑘𝑖 𝑗 (𝑛♯ ·+ 𝑗) has the following 2-sided limits:

lim
𝑥→−∞

𝛿♯ (𝑥)𝑎𝑘𝑖 𝑗 (𝑛♯𝑥 + 𝑗) =


𝑎𝑘
𝑖 𝑗
(−∞, 𝑗), ♯ = L,

0, ♯ = R,

lim
𝑥→+∞

𝛿♯ (𝑥)𝑎𝑘𝑖 𝑗 (𝑛♯𝑥 + 𝑗) =


0, ♯ = L,

𝑎𝑘
𝑖 𝑗
(+∞, 𝑗), ♯ = R.

It follows that 𝛿♯ (𝑥) (𝑎𝑘𝑖 𝑗 (♯, 𝑗) − 𝑎𝑘𝑖 𝑗 (𝑛♯𝑥 + 𝑗)) → 0 as 𝑥 → ±∞. The claim follows. �

Proof of Theorem II.8. Note that 𝐴 − 𝐴L ⊕ 𝐴R is finite rank by [Tan21, Corollary 2.2]. Since the Fredholm

index and essential spectrum are invariant under compact perturbations, it suffices to consider 𝐴′ := 𝐴L ⊕ 𝐴R

from here on. It follows from Lemma II.19 that the following difference is compact;

©«
𝑛⊕
𝑗=1

𝜏∗
♯,𝑛♯

ª®¬ 𝐴♯ ©«
𝑛⊕
𝑗=1

𝜏♯,𝑛♯
ª®¬ − 𝐴(♯)♯.

(i) Since the Fredholmness is invariant under unitary transforms and compact perturbations, we have that

𝐴′ is Fredholm if and only if 𝐴(L)L, 𝐴(R)R are Fredholm. In this case,

ind 𝐴′ = ind 𝐴(L)L + ind 𝐴(R)R.
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On the other hand, it follows from [Tan21, Theorem 2.4] (i) that for each ♯ = L,R the operator 𝐴(♯)♯ is Fredholm

if and only if T 3 𝑧 ↦−→ det �̂�(♯, 𝑧) ∈ C is nowhere vanishing on T. In this case, the Fredholm index of 𝐴(♯)♯ is

given by

ind 𝐴(♯)♯ =


wn

(
det �̂�(+∞, ·)

)
, ♯ = R,

−wn
(
det �̂�(−∞, ·)

)
, ♯ = L.

The claim follows.

(ii) Since the essential spectrum is invariant under unitary transforms and compact perturbations, we have

𝜎ess(𝐴′) = 𝜎ess(𝐴(L)L) ∪ 𝜎ess(𝐴(R)R) =
⋃
𝑧∈T

𝜎

(
�̂�(R, 𝑧)

)
∪

⋃
𝑧∈T

𝜎

(
�̂�(L, 𝑧)

)
,

where the last equality follows from (II.25). �

II.3 Proof of the index formula (Theorem A (i))

The following theorem is a slightly more general version of Theorem A (i);

Theorem II.20. Let (𝛤,𝑈) = (𝛤suz,𝑈suz) be defined by (I.2), (I.3). Suppose that there exist 𝑛−∞, 𝑛+∞ ∈ N with

the property that limits of the form (I.10) exist for each Z = 𝑝, 𝑎, and each ★ = −∞, +∞. Then the following

assertions hold true:

(i) Then ±1 ∉ 𝜎ess(𝑈) if and only if for each ★ = −∞, +∞
𝑛★−1∏
𝑚=0
(1 + 𝑝(★, 𝑚)) (1 ∓ 𝑎(★, 𝑚)) ≠

𝑛★−1∏
𝑚=0
(1 − 𝑝(★, 𝑚)) (1 ± 𝑎(★, 𝑚)). (II.55)

(ii) Let us impose the following condition;

𝑛★−1∏
𝑚=0
(1 + 𝑝(★, 𝑚)) (1 ∓ 𝑎(★, 𝑚)) +

𝑛★−1∏
𝑚=0
(1 − 𝑝(★, 𝑚)) (1 ± 𝑎(★, 𝑚)) > 0. (II.56)

For each ★ = −∞, +∞ let 𝑝(★), 𝑎(★) ∈ [−1, 1] be uniquely defined through (I.12). Then ±1 ∉ 𝜎ess(𝑈) if

and only if 𝑝(±∞) ≠ ±𝑎(±∞). In this case, ind ±(𝛤,𝑈) is given by (I.9).

Theorem II.20 (i) states that the assumption (II.56) is a necessary condition for ±1 ∉ 𝜎ess(𝑈). With the

convention (I.24) in mind, the assumption (II.56) ensures that the left-hand side of (I.12) is a well-defined
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number in [0,∞], since the problematic case 0/0 never occurs. It follows that for each Z (★) ∈ {𝑝(★), 𝑎(★)},

the number Z (★) ∈ [−1, 1] can be uniquely defined through (I.12). We shall make use of the following remark

to prove Theorem II.20;

Remark II.21. Suppose that 𝐴 = 𝛼−1𝐿
−1 + 𝛼0 + 𝛼1𝐿 is a one-dimensional strictly local operator, and that there

exist 𝑛−∞, 𝑛+∞ ∈ N with the property that the following limits exist for each ★ = −∞, +∞;

𝛼 𝑗 (★, 𝑚) := lim
𝑥→★

𝛼 𝑗 (𝑛★ · 𝑥 + 𝑚), 𝑗 = −1, 0, 1, 𝑚 ∈ {0, . . . , 𝑛★ − 1}.

We introduce the following matrices according to (II.32) to (II.33) for each ★ = −∞, +∞;

�̂�(★, 𝑧) :=
∑︁

𝑗=−1,0,1

©«

𝛼 𝑗 (★, 0) 0 0 0

0 𝛼 𝑗 (★, 1) 0 0

0 0
. . . 0

0 0 0 𝛼 𝑗 (★, 𝑛★ − 1)

ª®®®®®®®®®®¬

©«

0

... 1
0

𝑧 0 . . . 0

ª®®®®®®®®®®¬

𝑗

, 𝑧 ∈ T, (II.57)

where 1 denotes the identity matrix of dimension 𝑛★ − 1. Note that each �̂�(★, 𝑧) admits the following explicit

representation;

�̂�(★, 𝑧) =



𝛼−1(★, 0)𝑧∗ + 𝛼0(★, 0) + 𝛼1(★, 0)𝑧, 𝑛★ = 1,

(
𝛼0 (★,0) 𝛼−1 (★,0)𝑧∗+𝛼1 (★,0)

𝛼−1 (★,1)+𝛼1 (★,1)𝑧 𝛼0 (★,1)

)
, 𝑛★ = 2,

©«
𝛼0 (★,0) 𝛼1 (★,0) 0 ··· 0 𝛼−1 (★,0)𝑧∗
𝛼−1 (★,1) 𝛼0 (★,1) 𝛼1 (★,1) ··· 0 0

0 𝛼−1 (★,2) 𝛼0 (★,2) ··· 0 0
...

...
...

. . .
...

...

0 0 0 ··· 𝛼0 (★,𝑛★−2) 𝛼1 (★,𝑛★−2)
𝛼1 (★,𝑛★−1)𝑧 0 0 ··· 𝛼−1 (★,𝑛★−1) 𝛼0 (★,𝑛★−1)

ª®®®®¬
, 𝑛★ ≥ 3.

(II.58)

Lemma II.22. If (𝛤,𝑈) = (𝛤suz,𝑈suz) is defined by (I.3) and (I.2), then there exist two unitary operators 𝜖, [

on ℓ2(Z,C2), such that the following four decompositions hold true:

𝜖∗𝛤𝜖 =
©«
1 0

0 −1

ª®®¬ , 𝜖∗𝑈suz𝜖 =
©«
1 0

0 −1

ª®®¬ ([∗𝜖)∗
©«
1 0

0 −1

ª®®¬ ([∗𝜖), (II.59)

[∗𝛤′[ =
©«
1 0

0 −1

ª®®¬ , [∗𝑈suz[ = ([∗𝜖)
©«
1 0

0 −1

ª®®¬ ([∗𝜖)∗
©«
1 0

0 −1

ª®®¬ . (II.60)
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More explicitly, if we let Z± :=
√︁

1 ± Z for each Z = 𝑝, 𝑎, then the unitary operators 𝜖, [ are given respectively

by

𝜖 :=
1
√

2

©«
1 0

0 𝐿∗

ª®®¬
©«
𝑝+ −𝑝−

𝑝− 𝑝+

ª®®¬ , [ :=
1
√

2

©«
𝑎+ −𝑎−

𝑎− 𝑎+

ª®®¬ . (II.61)

Proof. Note first that we have the following unitary diagonalisation for each Z = 𝑝, 𝑎 and each 𝑥 ∈ Z (see, for

example, [Tan21, Example 3.1]);

©«
Z+ (𝑥)√

2
−Z− (𝑥)√

2
Z− (𝑥)√

2
Z+ (𝑥)√

2

ª®®¬
∗ ©«

Z (𝑥)
√︁

1 − Z (𝑥)2√︁
1 − Z (𝑥)2 −Z (𝑥)

ª®®¬
©«
Z+ (𝑥)√

2
−Z− (𝑥)√

2
Z− (𝑥)√

2
Z+ (𝑥)√

2

ª®®¬ =
©«
1 0

0 −1

ª®®¬ .
This result motivates us to introduce the unitary operators 𝜖, [ defined by (II.61). Indeed,

𝜖∗𝛤𝜖 =
©«
𝑝+√

2
−𝑝−√

2
𝑝−√

2
𝑝+√

2

ª®®¬
∗ ©«

𝑝
√︁

1 − 𝑝2√︁
1 − 𝑝2 −𝑝

ª®®¬
©«
𝑝+√

2
−𝑝−√

2
𝑝−√

2
𝑝+√

2

ª®®¬ =
©«
1 0

0 −1

ª®®¬ ,
[∗𝛤′[ =

©«
𝑎+√

2
−𝑎−√

2
𝑎−√

2
𝑎+√

2

ª®®¬
∗ ©«

𝑎
√

1 − 𝑎2

√
1 − 𝑎2 −𝑎

ª®®¬
©«
𝑎+√

2
−𝑎−√

2
𝑎−√

2
𝑎+√

2

ª®®¬ =
©«
1 0

0 −1

ª®®¬ .
On the other hand,

𝜖∗𝑈suz𝜖 = 𝜖
∗𝛤𝛤′𝜖 = (𝜖∗𝛤𝜖) (𝜖∗[) (𝜖∗𝛤𝜖) ([∗𝜖) =

©«
1 0

0 −1

ª®®¬ ([∗𝜖)∗
©«
1 0

0 −1

ª®®¬ ([∗𝜖),
[∗𝑈suz[ = [∗𝛤𝛤′[ = ([∗𝜖) ([∗𝛤′[) (𝜖∗[) ([∗𝛤′[) = ([∗𝜖)

©«
1 0

0 −1

ª®®¬ ([∗𝜖)∗
©«
1 0

0 −1

ª®®¬ .
�

With the notation introduced in Lemma II.22, it is easy to see that the operator 𝐹 := [∗𝜖 is given explicitly

by

𝐹 =
1
2

©«
𝑝+𝑎+ + 𝑎−𝐿∗𝑝− −𝑝−𝑎+ + 𝑎−𝐿∗𝑝+

−𝑝+𝑎− + 𝑎+𝐿∗𝑝− 𝑝−𝑎− + 𝑎+𝐿∗𝑝+

ª®®¬ =:
©«
𝐹1,− 𝐹2,+

𝐹1,+ 𝐹2,−

ª®®¬ . (II.62)

It follows from [CGWW21, Lemma 3.2] that 𝑈 ∓ 1 is Fredholm if and only if 𝐹1,±, 𝐹2,± are Fredholm. In this

case, we have

ind ±(𝛤,𝑈) = ind ±(𝜖∗𝛤𝜖, 𝜖∗𝑈𝜖) = ind 𝐹1,± = −ind 𝐹2,±,
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where the first equality follows from the unitary invariance of the indices ind ±, and where the last two equalities

follow from [CGWW21, Lemma 3.2]. Therefore, it remains to compute the Fredholm index of the strictly local

operators 𝐹1,± = ∓𝑝+𝑎∓ + 𝑝−(· − 1)𝑎±𝐿∗ with the aid of the following lemma;

Lemma II.23. Let 𝛼, 𝛽 ∈ R, and let 𝑓 (𝑧) := 𝛼 + 𝛽𝑧∗ for each 𝑧 ∈ T. Then 𝑓 is nowhere vanishing if and only if

|𝛼 | ≠ |𝛽 |. In this case, we have

wn( 𝑓 ) =


−1, |𝛼 | < |𝛽 |,

0, |𝛼 | > |𝛽 |.

Proof. On one hand, if 𝛽 = 0, then the constant function 𝑓 = 𝛼 is nowhere vanishing with wn( 𝑓 ) = 0 if and

only if |𝛼 | ≠ 0. On the other hand, if 𝛽 ≠ 0, then the image of 𝑓 is the circle centred at 𝛼 with the non-zero

radius |𝛽 |. Note that the intersection of the circle and the real line R is the two-point set {𝛼 − |𝛽 |, 𝛼 + |𝛽 |}. It

follows that 𝑓 is nowhere vanishing if and only if |𝛼 | ≠ |𝛽 |, where the winding number of 𝑓 is either −1 or 0.

We have wn( 𝑓 ) = −1 if and only if 𝛼 − |𝛽 | < 0 < 𝛼 + |𝛽 | if and only if |𝛼 | < |𝛽 |. Similarly, wn( 𝑓 ) = 0 if and

only if |𝛼 | > |𝛽 |. �

Proof of Theorem II.20. Note first that the formula (I.9) can be rewritten as

ind ±(𝛤,𝑈) =
sign (𝑝(+∞) ∓ 𝑎(+∞)) − sign (𝑝(−∞) ∓ 𝑎(−∞))

2
, (II.63)

where the sign function sign is defined by (I.28).

For each Z = 𝑝, 𝑎, and each ★ = −∞, +∞, let

Z±(★, 𝑚) :=
√︁

1 ± Z (★, 𝑚), 𝑚 ∈ {0, . . . , 𝑛★ − 1}.

If we let 𝑓0,± := ∓𝑝+𝑎∓ and 𝑓−1,± := 𝑝−(· − 1)𝑎±, then 𝐹1,± = 𝑓−1,±𝐿∗ + 𝑓0,± + 0𝐿. For each 𝑧 ∈ T we introduce
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the following matrix according to (II.58);

2�̂�1,±(★, 𝑧) :=



𝑓0,±(★, 0) + 𝑓−1,±(★, 0)𝑧∗, 𝑛★ = 1,

(
𝑓0,± (★,0) 𝑓−1,± (★,0)𝑧∗
𝑓−1,± (★,1) 𝑓0,± (★,1)

)
, 𝑛★ = 2,

©«
𝑓0,± (★,0) 0 0 ··· 0 𝑓−1,± (★,0)𝑧∗
𝑓−1,± (★,1) 𝑓0,± (★,1) 0 ··· 0 0

0 𝑓−1,± (★,2) 𝑓0,± (★,2) ··· 0 0
...

...
...

. . .
...

...

0 0 0 ··· 𝑓0,± (★,𝑛★−2) 0
0 0 0 ··· 𝑓−1,± (★,𝑛★−1) 𝑓0,± (★,𝑛★−1)

ª®®®®¬
, 𝑛★ ≥ 3.

(i) Note first that the following equality holds true, if 𝑛★ = 1, 2;

det(2�̂�1,±(★, 𝑧)) =
𝑛★−1∏
𝑚=0

𝑓0,±(★, 𝑚) + (−1)𝑛★+1
(
𝑛★−1∏
𝑚=0

𝑓−1,±(★, 𝑚)
)
𝑧∗. (II.64)

In fact, the co-factor expansion easily allows us to prove that (II.64) also holds true for any 𝑛★ ≥ 3, since the

determinant of any triangular matrix is the product of its diagonal entries. It follows from (II.64) that

det(2�̂�1,±(★, 𝑧)) =
𝑛★−1∏
𝑚=0
∓𝑝+(★, 𝑚)𝑎∓(★, 𝑚) +

(
(−1)𝑛★+1

𝑛★−1∏
𝑚=0

𝑝−(★, 𝑚)𝑎±(★, 𝑚)
)
𝑧∗,

since 𝑝′− := 𝑝−(· − 1) satisfies

𝑛★−1∏
𝑚=0

𝑝′−(★, 𝑚) = 𝑝−(★, 𝑛★ − 1)𝑝−(★, 0) . . . 𝑝−(★, 𝑛★ − 2) =
𝑛★−1∏
𝑚=0

𝑝−(★, 𝑚).

It follows from Lemma II.23 that 𝑧 ↦−→ det �̂�1,±(★, 𝑧) is nowhere vanishing if and only if (II.55) holds true for

each ★ = −∞, +∞, since

𝑛★−1∏
𝑚=0
∓𝑝+(★, 𝑚)𝑎∓(★, 𝑚) = (∓1)𝑛★

(
𝑛★−1∏
𝑚=0
(1 + 𝑝(★, 𝑚)) (1 ∓ 𝑎(★, 𝑚))

)1/2

,

(−1)𝑛★+1
𝑛★−1∏
𝑚=0

𝑝−(★, 𝑚)𝑎±(★, 𝑚) = (−1)𝑛★+1
(
𝑛★−1∏
𝑚=0
(1 − 𝑝(★, 𝑚)) (1 ± 𝑎(★, 𝑚))

)1/2

.

Moreover, if (II.55) holds true, then 𝑤±(★) := wn(det �̂�1,±(★, ·)) is given by

𝑤±(★) =


−1,

𝑛★−1∏
𝑚=0
(1 + 𝑝(★, 𝑚)) (1 ∓ 𝑎(★, 𝑚)) <

𝑛★−1∏
𝑚=0
(1 − 𝑝(★, 𝑚)) (1 ± 𝑎(★, 𝑚)),

0,
𝑛★−1∏
𝑚=0
(1 + 𝑝(★, 𝑚)) (1 ∓ 𝑎(★, 𝑚)) >

𝑛★−1∏
𝑚=0
(1 − 𝑝(★, 𝑚)) (1 ± 𝑎(★, 𝑚)).

(II.65)
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(ii) We shall make use of (I.25) throughout this proof. Suppose that (II.56) holds true. Note that

Λ(−Z (★))𝑛★ = (Λ(Z (★))𝑛★)−1
=

(∏𝑛★−1
𝑚=0 (1 + Z (★, 𝑚))∏𝑛★−1
𝑚=0 (1 − Z (★, 𝑚))

)−1

=

∏𝑛★−1
𝑚=0 (1 − Z (★, 𝑚))∏𝑛★−1
𝑚=0 (1 + Z (★, 𝑚))

.

We consider

𝑛★−1∏
𝑚=0
(1 + 𝑝(★, 𝑚))

𝑛★−1∏
𝑚=0
(1 ∓ 𝑎(★, 𝑚)) ≶

𝑛★−1∏
𝑚=0
(1 − 𝑝(★, 𝑚))

𝑛★−1∏
𝑚=0
(1 ± 𝑎(★, 𝑚)), (II.66)

where the notation ≶ simultaneously denotes the three binary relations >, =, < . On one hand, if
∏𝑛★−1
𝑚=0 (1 −

𝑝(★, 𝑚)) (1 ± 𝑎(★, 𝑚)) > 0, then (II.66) is equivalent to

Λ(𝑝(★))𝑛★Λ(∓𝑎(★))𝑛★ ≶ 1 if and only if Λ(𝑝(★))Λ(∓𝑎(★)) ≶ 1 if and only if 𝑝(★) ∓ 𝑎(★) ≶ 0,

where the first equivalence follows from the fact that [0,∞] 3 𝑠 ↦−→ 𝑠𝑛★ ∈ [0,∞] is an increasing function. On

the other hand, if
∏𝑛★−1
𝑚=0 (1 + 𝑝(★, 𝑚)) (1 ∓ 𝑎(★, 𝑚)) ≠ 0, then (II.66) is equivalent to

1 ≶ Λ(−𝑝(★))𝑛★Λ(±𝑎(★))𝑛★ if and only if 0 ≶ −𝑝(★) ± 𝑎(★) if and only if 𝑝(★) ∓ 𝑎(★) ≶ 0.

It follows that (II.66) is equivalent to 𝑝(★) ∓ 𝑎(★) ≶ 0. It follows from (i) that ±1 ∉ 𝜎ess(𝑈) if and only if

𝑝(★) ∓ 𝑎(★) ≠ 0. In this case, (II.65) becomes

𝑤±(★) =


−1, 𝑝(★) ∓ 𝑎(★) < 0,

0, 𝑝(★) ∓ 𝑎(★) > 0,

=
sign (𝑝(★) ∓ 𝑎(★)) − 1

2
.

We obtain (II.63) as follows;

ind ±(𝛤,𝑈) = 𝑤±(+∞) − 𝑤±(−∞) =
sign (𝑝(+∞) ∓ 𝑎(+∞)) − sign (𝑝(−∞) ∓ 𝑎(−∞))

2
.

The claim follows. �

Proof of Theorem A (i). The claim immediately follows from Theorem II.20. �
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II.4 Proof of the exponential decay property (Theorem A (ii))

We shall obtain Theorem A (ii) as a special case of the following result;

Theorem II.24. Let𝑈 = 𝑈suz be the evolution operator of Suzuki’s split-step quantum walk given by (I.3), and

let the following inequality hold true for each Z = 𝑝, 𝑎;

sup
𝑥∈Z
|Z (𝑥) | < 1. (II.67)

With (I.25) in mind, let us introduce the following notation for each 𝑗 = 1, 2 :

𝛿 𝑗 ,±(𝑦) := ±
√︁
Λ((−1) 𝑗 𝑝(𝑦))Λ(∓(−1) 𝑗𝑎(𝑦)), 𝑦 ∈ Z, (II.68)

Δ 𝑗 ,± :=
∞∑︁
𝑥=1

©«
𝑥−1∏
𝑦=0
|𝛿 𝑗 ,±(−𝑦 − 1) |−2ª®¬ +

∞∑︁
𝑥=1

©«
𝑥−1∏
𝑦=0
|𝛿 𝑗 ,±(𝑦) |2

ª®¬ , (II.69)

Then Δ1,± and Δ2,± cannot be simultaneously finite, and the following assertions hold true:

(i) The dimension of ker(𝑈 ∓ 1) is at most 1. More explicitly, we have

|ind ±(𝛤,𝑈) | = dim ker(𝑈 ∓ 1), (II.70)

ind ±(𝛤,𝑈) =



+1, Δ1,± < ∞,

−1, Δ2,± < ∞,

0, Δ1,± = Δ2,± = ∞.

(II.71)

In particular, if Δ 𝑗 ,± < ∞ holds true for 𝑗 = 1 or 𝑗 = 2, then Ψ ∈ ker(𝑈 ∓ 1) if and only if there exists

𝜓 ∈ ker(𝐿 − 𝛿 𝑗 ,±) such that the following equality holds true;

Ψ =
©«
∓(−1) 𝑗

√︁
Λ(∓(−1) 𝑗𝑎)𝜓

𝜓

ª®®¬ . (II.72)
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(ii) For each 𝑗 = 1, 2, let

𝛿
↓
𝑗 ,± := min

lim inf
𝑥→∞

©«
𝑥∏
𝑦=1
|𝛿 𝑗 ,±(−𝑦) |−2ª®¬

1/𝑥

, lim inf
𝑥→∞

©«
𝑥−1∏
𝑦=0
|𝛿 𝑗 ,±(𝑦) |2

ª®¬
1/𝑥 , (II.73)

𝛿
↑
𝑗 ,± := max

lim sup
𝑥→∞

©«
𝑥∏
𝑦=1
|𝛿 𝑗 ,±(−𝑦) |−2ª®¬

1/𝑥

, lim sup
𝑥→∞

©«
𝑥−1∏
𝑦=0
|𝛿 𝑗 ,±(𝑦) |2

ª®¬
1/𝑥 , (II.74)

Λ
↓
𝑗 ,± := inf

𝑥∈Z
Λ(∓(−1) 𝑗𝑎(𝑥)) + 1, (II.75)

Λ
↑
𝑗 ,± := sup

𝑥∈Z
Λ(∓(−1) 𝑗𝑎(𝑥)) + 1. (II.76)

If 0 < 𝛿↓
𝑗 ,± ≤ 𝛿

↑
𝑗 ,± < 1 holds true for 𝑗 = 1 or 𝑗 = 2, then Δ 𝑗 ,± < ∞. Moreover, in this case, for any 𝜖 > 0

satisfying 0 < 𝛿↓
𝑗 ,± − 𝜖 < 𝛿

↑
𝑗 ,± + 𝜖 < 1, there exists 𝑥± ∈ N with the property that if 𝜓 ∈ ker(𝐿 − 𝛿 𝑗 ,±) is a

non-zero vector and if Ψ is given by (II.72), then one has the following exponential decay property;

Λ
↓
𝑗 ,±

(
𝛿
↓
𝑗 ,± − 𝜖

) |𝑥 |
≤ ‖Ψ(𝑥)‖

2

|𝜓(0) |2
≤ Λ

↑
𝑗 ,±

(
𝛿
↑
𝑗 ,± + 𝜖

) |𝑥 |
, |𝑥 | ≥ 𝑥±. (II.77)

As we shall see shortly, Theorem II.24 is a generalisation of [FFS18] (see §II.5.3 for details).

Remark II.25.

(i) Note that (II.77) can be rewritten as

Λ
↓
𝑗 ,±𝑒

log
(
𝛿
↓
𝑗 ,±−𝜖

)
|𝑥 | ≤ ‖Ψ(𝑥)‖

2

|𝜓(0) |2
≤ Λ

↑
𝑗 ,±𝑒

log
(
𝛿
↑
𝑗 ,±+𝜖

)
|𝑥 |
, |𝑥 | ≥ 𝑥±,

where 𝜖 > 0 is any fixed number satisfying 0 < 𝛿↓
𝑗 ,± − 𝜖 < 𝛿

↑
𝑗 ,± + 𝜖 < 1,

(ii) It is in general difficult to compute 𝛿↓
𝑗 ,±, 𝛿

↑
𝑗 ,±, but the following estimates may be useful:

𝛿
↓
𝑗 ,± ≥ min

{
lim inf
𝑥→∞

|𝛿 𝑗 ,±(−𝑥) |−2, lim inf
𝑥→∞

|𝛿 𝑗 ,±(𝑥) |2
}
, (II.78)

𝛿
↑
𝑗 ,± ≤ max

{
lim sup
𝑥→∞

|𝛿 𝑗 ,±(−𝑥) |−2, lim sup
𝑥→∞

|𝛿 𝑗 ,±(𝑥) |2
}
. (II.79)

Note that the estimates (II.78) to (II.79) can be easily proved by the following well-known fact (see, for

example, [Rud76, Theorem 3.37]). Given a sequence (𝛼(𝑥))𝑥∈N of positive numbers, we have

lim inf
𝑥→∞

𝛼(𝑥 + 1)
𝛼(𝑥) ≤ lim inf

𝑥→∞
𝛼(𝑥)1/𝑥 ≤ lim sup

𝑥→∞
𝛼(𝑥)1/𝑥 ≤ lim sup

𝑥→∞

𝛼(𝑥 + 1)
𝛼(𝑥) .
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II.4.1 Proof of the general case (Theorem II.24)

The purpose of the current section is to prove Theorem II.24 with the aid of two lemmas. It follows from

Theorem II.24 (i) that (II.72) allows us to construct an explicit linear isomorphism from the vector space

ker(𝐿 − 𝛿 𝑗 ,±) onto the one-dimensional eigenspace ker(𝑈 ∓ 1), under the assumption Δ 𝑗 ,± < ∞ for some

𝑗 = 1, 2. This isomorphism turns out to be a key ingredient in the following result;

Lemma II.26. If (II.67) holds true for each Z = 𝑝, 𝑎, then we have the following well-defined linear isomorphism

for each 𝑗 = 1, 2;

ker(𝐿 − 𝛿 𝑗 ,±) 3 𝜓 ↦−→
©«
∓(−1) 𝑗

√︁
Λ(∓(−1) 𝑗𝑎)𝜓

𝜓

ª®®¬ ∈ ker(𝛤 + (−1) 𝑗 ) ∩ ker(𝛤′ ∓ (−1) 𝑗+1), (II.80)

where the bounded sequence 𝛿 𝑗 ,± is defined by (II.68).

That is,

ker(𝛤 + (−1) 𝑗 ) ∩ ker(𝛤′ ∓ (−1) 𝑗+1) =


©«
∓(−1) 𝑗

√︁
Λ(∓(−1) 𝑗𝑎)𝜓

𝜓

ª®®¬ | 𝜓 ∈ ker(𝐿 − 𝛿 𝑗 ,±)

 , 𝑗 = 1, 2.

Proof. To compute ker(𝛤′ ∓ 1) we consider the following ℓ2(Z) ⊕ ℓ2(Z)-valued sequence;

(𝛤′ ∓ 1)
©«
𝜓1

𝜓2

ª®®¬ =
©«
𝑎 ∓ 1

√
1 − 𝑎2

√
1 − 𝑎2 −(𝑎 ± 1)

ª®®¬
©«
𝜓1

𝜓2

ª®®¬ =
©«
∓(1 ∓ 𝑎)

√
1 − 𝑎2

√
1 − 𝑎2 ∓(1 ± 𝑎)

ª®®¬
©«
𝜓1

𝜓2

ª®®¬ =
©«
∓(1 ∓ 𝑎)𝜓1 +

√
1 − 𝑎2𝜓2

√
1 − 𝑎2𝜓1 ∓ (1 ± 𝑎)𝜓2

ª®®¬ ,
where 𝜓1, 𝜓2 ∈ ℓ2(Z). Then ∓(1 ∓ 𝑎)𝜓1 +

√
1 − 𝑎2𝜓2 = 0 if and only if

√
1 − 𝑎2𝜓1 ∓ (1 ± 𝑎)𝜓2 = 0, since

√
1 − 𝑎2

1 ∓ 𝑎 =
1 ± 𝑎
√

1 − 𝑎2
=

1 ± 𝑎√︁
(1 ± 𝑎) (1 ∓ 𝑎)

=

√︂
1 ± 𝑎
1 ∓ 𝑎 =

√︁
Λ(±𝑎).

It follows that the following equalities hold true;

ker(𝛤′ ∓ 1) = ker
©«
©«

𝑎
√

1 − 𝑎2

√
1 − 𝑎2 −𝑎

ª®®¬ ∓ 1
ª®®¬ =


©«
±
√︁
Λ(±𝑎)𝜓

𝜓

ª®®¬ | 𝜓 ∈ ℓ2(Z)

 .
On the other hand,

ker(𝛤 ∓ 1) = ker
©«
1 0

0 𝐿∗

ª®®¬
©«
©«

𝑝
√︁

1 − 𝑝2√︁
1 − 𝑝2 −𝑝

ª®®¬ ∓ 1
ª®®¬
©«
1 0

0 𝐿

ª®®¬ =


©«
1 0

0 𝐿∗

ª®®¬
©«
±
√︁
Λ(±𝑝)𝜓

𝜓

ª®®¬ | 𝜓 ∈ ℓ2(Z)

 ,
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We obtain the following equalities for each 𝑗 = 1, 2 :

ker(𝛤′ ∓ (−1) 𝑗+1) =


©«
∓(−1) 𝑗

√︁
Λ(∓(−1) 𝑗𝑎)𝜓

𝜓

ª®®¬ | 𝜓 ∈ ℓ2(Z)

 , (II.81)

ker(𝛤 + (−1) 𝑗 ) =


©«
(−1) 𝑗+1

√︁
Λ((−1) 𝑗+1𝑝)𝐿𝜓

𝜓

ª®®¬ | 𝜓 ∈ ℓ2(Z)

 . (II.82)

Next, we show that (II.80) is a well-defined linear transform, where 𝛿 𝑗 ,± = ±
√︁
Λ((−1) 𝑗 𝑝)Λ(∓(−1) 𝑗𝑎). Given

𝜓 ∈ ℓ2(Z), we have that 𝜓 ∈ ker(𝐿 − 𝛿 𝑗 ,±) if and only if 𝐿𝜓 = ±
√︁
Λ((−1) 𝑗 𝑝)Λ(∓(−1) 𝑗𝑎)𝜓. Therefore, if

𝜓 ∈ ker(𝐿 − 𝛿 𝑗 ,±), then

(−1) 𝑗+1
√︃
Λ((−1) 𝑗+1𝑝)𝐿𝜓 = ±(−1) 𝑗+1

√︃
Λ((−1) 𝑗+1𝑝)

√︁
Λ((−1) 𝑗 𝑝)Λ(∓(−1) 𝑗𝑎)𝜓

= ∓(−1) 𝑗
√︁
Λ(−(−1) 𝑗 𝑝)Λ((−1) 𝑗 𝑝)Λ(∓(−1) 𝑗𝑎)𝜓

= ∓(−1) 𝑗
√︁
Λ(∓(−1) 𝑗𝑎)𝜓,

where the last equality follows from Λ(−(−1) 𝑗 𝑝) = Λ((−1) 𝑗 𝑝)−1. It follows that (II.80) is a well-defined

injective linear transform. With (II.81) to (II.82) that (II.80) in mind, the surjectivity of (II.80) can be verified

in an analogous fashion. The claim follows. �

Lemma II.27. Let 𝛿 = (𝛿(𝑥))𝑥∈Z be a bounded sequence of non-zero complex numbers, and let

Δ :=
∞∑︁
𝑥=1

©«
𝑥∏
𝑦=1
|𝛿(−𝑦) |−2ª®¬ +

∞∑︁
𝑥=1

©«
𝑥−1∏
𝑦=0
|𝛿(𝑦) |2ª®¬ .

Then the following assertions hold true:

(i) We have

dim ker (𝐿 − 𝛿) =


1, Δ < ∞,

0, Δ = ∞.
(II.83)

(ii) Let

𝛿↓ := min
lim inf

𝑥→∞
©«
𝑥∏
𝑦=1
|𝛿(−𝑦) |−2ª®¬

1/𝑥

, lim inf
𝑥→∞

©«
𝑥−1∏
𝑦=0
|𝛿(𝑦) |2ª®¬

1/𝑥 , (II.84)

𝛿↑ := max
lim sup

𝑥→∞

©«
𝑥∏
𝑦=1
|𝛿(−𝑦) |−2ª®¬

1/𝑥

, lim sup
𝑥→∞

©«
𝑥−1∏
𝑦=0
|𝛿(𝑦) |2ª®¬

1/𝑥 . (II.85)
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If 0 < 𝛿↓ ≤ 𝛿↑ < 1, then dim ker (𝐿 − 𝛿) = 1. Moreover, in this case, for any 𝜖 > 0 satisfying 0 < 𝛿↓ − 𝜖 ≤

𝛿↑ + 𝜖 < 1, there exists 𝑥𝜖 ∈ N, such that for any 𝜓 ∈ ker (𝐿 − 𝛿) we have

|𝜓(0) |2(𝛿↓ − 𝜖) |𝑥 | ≤ |𝜓(𝑥) |2 ≤ |𝜓(0) |2(𝛿↑ + 𝜖) |𝑥 |, |𝑥 | ≥ 𝑥𝜖 . (II.86)

Note that (i) shows that dim ker (𝐿 − 𝛿) depends only on |𝛿 |.

Proof. (i) We need to solve a difference equation of the form;

𝜓(𝑥 + 1) = 𝛿(𝑥)𝜓(𝑥), ∀𝑥 ∈ Z. (II.87)

Since each 𝛿(𝑥) is non-zero, such a solution is uniquely determined by the initial value 𝜓(0). In particular,

if 𝜓, 𝜓′ ∈ ker (𝐿 − 𝛿) are non-zero vectors, then 𝜓(0), 𝜓′(0) are non-zero, and so the linear combination

𝜓′(0)𝜓 − 𝜓(0)𝜓′ is the zero vector. It follows that 𝜓, 𝜓′ are linearly independent, and so dim ker (𝐿 − 𝛿) ≤ 1.

Suppose that we have a bounded sequence 𝜓 = (𝜓(𝑥))𝑥∈Z satisfying (II.87). We have

𝜓(𝑥) =
𝑥−1∏
𝑦=0

𝛿(𝑦)𝜓(0), 𝜓(−𝑥) =
𝑥∏
𝑦=1

𝛿(−𝑦)−1𝜓(0), 𝑥 ≥ 1. (II.88)

Since
∑
𝑥∈Z |𝜓(𝑥) |2 = |𝜓(0) |2 +∑

𝑥∈N |𝜓(−𝑥) |2 +
∑
𝑥∈N |𝜓(𝑥) |2, we get∑︁

𝑥∈Z
|𝜓(𝑥) |2 = |𝜓(0) |2 + |𝜓(0) |2

∑︁
𝑥∈N

𝑥∏
𝑦=1
|𝛿(−𝑦) |−2 + |𝜓(0) |2

∑︁
𝑥∈N

𝑥−1∏
𝑦=0
|𝛿(𝑦) |2.

That is, dim ker(𝐿 − 𝛿) = 1 if and only if Δ :=
∑∞
𝑥=1

(∏𝑥
𝑦=1 |𝛿(−𝑦) |−2

)
+∑∞

𝑥=1

(∏𝑥−1
𝑦=0 |𝛿(𝑦) |2

)
< ∞.

(ii) If 0 < 𝛿↓ ≤ 𝛿↑ < 1, then dim ker (𝐿 − 𝛿) = 1 by the root test. Let 𝜖 > 0 be any number satisfying

0 < 𝛿↓ − 𝜖 ≤ 𝛿↑ + 𝜖 < 1. It follows that there exists 𝑥𝜖 ∈ N, such that

𝛿↓ − 𝜖 < min
 inf
𝑥≥𝑥𝜖

©«
𝑥∏
𝑦=1
|𝛿(−𝑦) |−2ª®¬

1/𝑥

, inf
𝑥≥𝑥𝜖

©«
𝑥−1∏
𝑦=0
|𝛿(𝑦) |2ª®¬

1/𝑥 , (II.89)

𝛿↑ + 𝜖 > max
 sup
𝑥≥𝑥𝜖

©«
𝑥∏
𝑦=1
|𝛿(−𝑦) |−2ª®¬

1/𝑥

, sup
𝑥≥𝑥𝜖

©«
𝑥−1∏
𝑦=0
|𝛿(𝑦) |2ª®¬

1/𝑥 . (II.90)

Let 𝜓 ∈ ker(𝐿 − 𝛿), and let |𝑥 | ≥ 𝑥𝜖 . On one hand, if 𝑥 ≥ 𝑥𝜖 , then |𝜓(𝑥) |2 =
∏𝑥−1
𝑦=0 |𝛿(𝑦) |2 |𝜓(0) |2, and so

(𝛿↓ − 𝜖)𝑥 |𝜓(0) |2 < |𝜓(𝑥) |2 < (𝛿↑ + 𝜖)𝑥 |𝜓(0) |2.
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On the other hand, if −𝑥 ≥ 𝑥𝜖 , then |𝜓(𝑥) |2 =
∏−𝑥
𝑦=1 |𝛿(−𝑦) |−2 |𝜓(0) |2, and so

(𝛿↓ − 𝜖)−𝑥 |𝜓(0) |2 < |𝜓(𝑥) |2 < (𝛿↑ + 𝜖)−𝑥 |𝜓(0) |2.

The claim follows. �

Proof of Theorem II.24. With the notation introduced in Remark II.5, for each 𝑗 = 1, 2, we obtain

𝑚 𝑗 ,± = dim
(
ker(𝛤 + (−1) 𝑗 ) ∩ ker(𝛤′ ∓ (−1) 𝑗+1)

)
= dim ker(𝐿 − 𝛿 𝑗 ,±),

where the last equality follows from Lemma II.26. Clearly, Lemma II.27 is applicable to the pair (𝛿,Δ) :=

(𝛿 𝑗 ,±,Δ 𝑗 ,±), and so we obtain

𝑚 𝑗 ,± =


1, Δ 𝑗 ,± < ∞,

0, otherwise.
(II.91)

Assume the contrary thatΔ 𝑗 ,± < ∞ for each 𝑗 = 1, 2. In this case, for each 𝑗 = 1, 2,we have
∏𝑥−1
𝑦=0 |𝛿 𝑗 ,±(𝑦) |2 → 0

as 𝑥 → ∞. Therefore,
∏𝑥−1
𝑦=0 |𝛿1,±(𝑦) |2 |𝛿2,±(𝑦) |2 → 0 as 𝑥 → ∞. Note, however, that this is impossible, since

for each 𝑦 = 0, . . . , 𝑥 − 1 we have

|𝛿1,±(𝑦) |2 |𝛿2,±(𝑦) |2 = Λ(𝑝(𝑦))−1Λ(∓𝑎(𝑦))−1Λ(𝑝(𝑦))Λ(∓𝑎(𝑦)) = 1.

This contradiction shows Δ1,± + Δ2,± = ∞.

(i) If Δ1,± = Δ2,± = ∞, then we get the trivial equalities ind ±(𝛤,𝑈) = 0 = dim ker(𝑈 ∓ 1). On one hand,

if Δ1,± < ∞, then ind ±(𝛤,𝑈) = 1 − 0 and dim ker(𝑈 ∓ 1) = 1 + 0. On the other hand, if Δ2,± < ∞, then

ind ±(𝛤,𝑈) = 0 − 1 and dim ker(𝑈 ∓ 1) = 0 + 1. Thus, the formulas (II.70) to (II.71) have been verified. If

Δ 𝑗 ,± < ∞ holds true for 𝑗 = 1 or 𝑗 = 2, then the linear isomorphism (II.80) becomes

ker(𝐿 − 𝛿 𝑗 ,±) 3 𝜓 ↦−→
©«
∓(−1) 𝑗

√︁
Λ(∓(−1) 𝑗𝑎)𝜓

𝜓

ª®®¬ ∈ ker(𝑈 ∓ 1),

since ker(𝑈 ∓ 1) = ker(𝛤 + (−1) 𝑗 ) ∩ ker(𝛤′ ∓ (−1) 𝑗+1).

(ii) If 0 < 𝛿
↓
𝑗 ,± ≤ 𝛿

↑
𝑗 ,± < 1 for some 𝑗 = 1, 2, then Δ 𝑗 ,± < ∞ by the root test. Let 𝜖 > 0 be any number

satisfying 0 < 𝛿↓
𝑗 ,± − 𝜖 < 𝛿

↑
𝑗 ,± + 𝜖 < 1. It follows from Lemma II.27 (ii) that there exists 𝑥± ∈ N, such that for
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any non-zero 𝜓 ∈ ker(𝐿 − 𝛿 𝑗 ,±), we have

(𝛿↓
𝑗 ,± − 𝜖)

|𝑥 | ≤ |𝜓(𝑥) |
2

|𝜓(0) |2
≤ (𝛿↑

𝑗 ,± + 𝜖)
|𝑥 |, |𝑥 | ≥ 𝑥𝜖 .

Let Ψ be defined by (II.72). With (II.72) in mind, we have ‖Ψ(𝑥)‖2 = (Λ(∓(−1) 𝑗𝑎(𝑥)) + 1) |𝜓(𝑥) |2. for each

𝑥 ∈ Z. The claim follows. �

II.4.2 Proof of the special case (Theorem A (ii))

We shall prove Theorem A (ii) via Theorem II.24 and the following lemma;

Lemma II.28. Let (𝛼(𝑥))∞
𝑥=0 be a sequence of positive numbers, and let us assume that there exists a natural

number 𝑛0 ∈ N such that the following limits exist in (0,∞) :

𝛼(+∞, 𝑚) := lim
𝑥→∞

𝛼(𝑛0𝑥 + 𝑚), 𝑚 ∈ {0, . . . , 𝑛0 − 1}. (II.92)

Then
(∏𝑥−1

𝑚=0 𝛼(𝑚)
)1/𝑥
→

(∏𝑛0−1
𝑚=0 𝛼(+∞, 𝑚)

)1/𝑛0
as 𝑥 →∞.

Note that the special case 𝑛0 = 1 is nothing but the well-known result that the geometric mean of a convergent

positive sequence converges to its limit, and that we shall make use of this result in the proof below.

Proof. Let 𝑚0 ∈ {1, . . . , 𝑛0} be fixed. If let 𝛽(𝑥) =
(∏𝑥−1

𝑚=0 𝛼(𝑚)
)1/𝑥

for each 𝑥 ∈ N, then

𝛽(𝑛0𝑥 + 𝑚0) =
(
𝑛0𝑥−1∏
𝑚=0

𝛼(𝑚)
𝑚0−1∏
𝑚=0

𝛼(𝑛0𝑥 + 𝑚)
)

=

(
𝑛0𝑥−1∏
𝑚=0

𝛼(𝑚)
) (

𝑚0−1∏
𝑚=0

𝛼(𝑛0𝑥 + 𝑚)
)

=

𝑛0−1∏
𝑚=0

(
𝑥−1∏
𝑥𝑚=0

𝛼(𝑥𝑚𝑛0 + 𝑚)
) (

𝑚0−1∏
𝑚=0

𝛼(𝑛0𝑥 + 𝑚)
)
,

where
(∏𝑚0−1

𝑚=0 𝛼(𝑛0𝑥 + 𝑚)
)
𝑥∈N

converges to the positive number
∏𝑚0−1
𝑚=0 𝛼(+∞, 𝑚).Moreover, we get as 𝑥 →∞

log

(
𝑚0−1∏
𝑚=0

𝛼(𝑛0𝑥 + 𝑚)
) 1

𝑛0𝑥+𝑚0

=
log

∏𝑚0−1
𝑚=0 𝛼(𝑛0𝑥 + 𝑚)
𝑛0𝑥 + 𝑚0

→ 0,
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where the last step follows from the fact that
(
log

∏𝑚0−1
𝑚=0 𝛼(𝑛0𝑥 + 𝑚)

)
𝑥∈N

is a bounded sequence. It follows

from the continuity of the exponential function that(
𝑚0−1∏
𝑚=0

𝛼(𝑛0𝑥 + 𝑚)
) 1

𝑛0𝑥+𝑚0

→ 𝑒0 = 1. (II.93)

On the other hand, it follows that as 𝑥 →∞
𝑛0−1∏
𝑚=0

𝑥−1∏
𝑥𝑚=0

𝛼(𝑥𝑚𝑛0 + 𝑚)
1
𝑥 →

𝑛0−1∏
𝑚=0

𝛼(+∞, 𝑚)
1
𝑥0 . (II.94)

It follows from (II.93) to (II.94) as 𝑥 →∞ we have

𝛽(𝑛0𝑥 + 𝑚0)
1

𝑛0𝑥+𝑚0 =

(
𝑛0−1∏
𝑚=0

𝑥−1∏
𝑥𝑚=0

𝛼(𝑥𝑚𝑛0 + 𝑚)1/𝑥
) 𝑥

𝑛0𝑥+𝑚0
(
𝑚0−1∏
𝑚=0

𝛼(𝑛0𝑥 + 𝑚)
) 1

𝑛0𝑥+𝑚0

→
(
𝑛0−1∏
𝑚=0

𝛼(+∞, 𝑚)
) 1

𝑥0

.

It follows that any subsequence of (𝛽(𝑥)1/𝑥)𝑥∈N also converges to
(∏𝑛0−1

𝑚=0 𝛼(+∞, 𝑚)
) 1

𝑥0
, since the constant 𝑚0

was chosen arbitrarily. The claim follows. �

Proof of Theorem A (ii). Let 𝛿 𝑗 ,±(𝑦) be defined by (II.68), and let Δ 𝑗 ,± be defined by (II.69).

(i) Note first that the two non-negative numbers Δ1,± and Δ2,± cannot be simultaneously finite, since

|𝛿1,±(𝑦)𝛿2,±(𝑦) |2 = 1 for each 𝑦 ∈ Z. With this result in mind, it follows from Theorem II.24 (i) that

|ind ±(𝛤,𝑈) | = dim ker(𝑈 ∓ 1), where ind ±(𝛤,𝑈) is given explicitly by (II.71). We are required to show

that (II.71) agrees with (I.9) by making use of the root test. Since the function Λ is continuous, for each

Z = −𝑝, +𝑝,−𝑎, +𝑎 and each ★ = −∞, +∞, the following numbers belong to (0,∞);

Λ(Z (★, 𝑦)) = lim
𝑥→★

Λ(Z (𝑛★ · 𝑥 + 𝑦)), 𝑦 ∈ {0, . . . , 𝑛★ − 1},

where |Z (★, 𝑛0) | < 1. It follows from Lemma II.28 that as 𝑥 →∞

lim
𝑥→∞

©«
𝑥−1∏
𝑦=0

Λ(Z (−𝑦 − 1))ª®¬
1
𝑥

=
©«
𝑛−∞−1∏
𝑦=0

Λ(Z (−∞, 𝑦))ª®¬
1

𝑛−∞

,

lim
𝑥→∞

©«
𝑥−1∏
𝑦=0

Λ(Z (𝑦))ª®¬
1
𝑥

=
©«
𝑛+∞−1∏
𝑦=0

Λ(Z (∞, 𝑦))ª®¬
1

𝑛+∞

.
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Since |𝛿 𝑗 ,±(𝑦) |2 = (Λ(𝑝(𝑦))Λ(∓𝑎(𝑦))) (−1) 𝑗 for each 𝑦 ∈ Z, we have

lim
𝑥→∞

©«
𝑥−1∏
𝑦=0
|𝛿 𝑗 ,±(−𝑦 − 1) |−2ª®¬

1/𝑥

= (Λ(𝑝(−∞))Λ(∓𝑎(−∞))) (−1) 𝑗+1 ,

lim
𝑥→∞

©«
𝑥−1∏
𝑦=0
|𝛿 𝑗 ,±(𝑦) |2

ª®¬
1/𝑥

= (Λ(𝑝(+∞))Λ(∓𝑎(+∞))) (−1) 𝑗 ,

where Λ(𝑝(★))Λ(∓𝑎(★)) ≠ 1 for each ★ = −∞, +∞, since we assume 𝑝(★) ∓ 𝑎(★) ≠ 0. That is, the root test

is applicable to each of the two infinite series on the right hand side of (II.69), and we obtain the following

equivalence for each 𝑗 = 1, 2;

Δ 𝑗 ,± < ∞ if and only if (−1) 𝑗 (𝑝(+∞) ∓ 𝑎(+∞)) < 0 < (−1) 𝑗 (𝑝(−∞) ∓ 𝑎(−∞)). (II.95)

It is now easy to see that (II.71) becomes (I.9).

(ii) Let Δ 𝑗 ,± < ∞ for some 𝑗 = 1, 2 throughout. It follows from Theorem II.24 (ii) that we have the following

linear isomorphism;

ker(𝐿 − 𝛿 𝑗 ,±) ∈ 𝜓 ↦−→
©«
∓(−1) 𝑗

√︁
Λ(∓(−1) 𝑗𝑎)𝜓

𝜓

ª®®¬ ∈ ker(𝑈 ∓ 1), (II.96)

where dim ker(𝑈 ∓ 1) = 1. In other words, for any non-zero vector Ψ± ∈ ker(𝑈 ∓ 1) there exists a unique

non-zero vector 𝜓± ∈ ker
(
𝐿 +

√︁
Λ((−1) 𝑗 𝑝)Λ(∓(−1) 𝑗𝑎)

)
, such that Ψ± is given explicitly by

Ψ± =
©«
∓(−1) 𝑗

√︁
Λ(∓(−1) 𝑗𝑎)𝜓±

𝜓±

ª®®¬ . (II.97)

Finally, we introduce the following positive constants to show that Ψ± exhibits exponential decay.

𝛿
↓
𝑗 ,± := min

{
(Λ(𝑝(−∞))Λ(∓𝑎(−∞))) (−1) 𝑗+1 , (Λ(𝑝(+∞))Λ(∓𝑎(+∞))) (−1) 𝑗

}
, (II.98)

𝛿
↑
𝑗 ,± := max

{
(Λ(𝑝(−∞))Λ(∓𝑎(−∞))) (−1) 𝑗+1 , (Λ(𝑝(+∞))Λ(∓𝑎(+∞))) (−1) 𝑗

}
, (II.99)

Λ
↓
𝑗 ,± := inf

𝑥∈Z
Λ(∓(−1) 𝑗𝑎(𝑥)) + 1, (II.100)

Λ
↑
𝑗 ,± := sup

𝑥∈Z
Λ(∓(−1) 𝑗𝑎(𝑥)) + 1. (II.101)
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Note that 0 < 𝛿↓
𝑗 ,± ≤ 𝛿

↑
𝑗 ,± < 1, where the last inequality follows from (II.95) with Δ 𝑗 ,± < ∞. Let 𝜖 > 0 be small

enough, so that 0 < 𝛿↓
𝑗 ,± − 𝜖 < 𝛿

↑
𝑗 ,± + 𝜖 < 1 holds true. It then follows from Theorem II.24 (iii) that there exists

𝑥± ∈ N, such that (II.77) holds true. We obtain (I.15), if we let

^
↓
𝑗 ,± := |𝜓(0) |2Λ↓

𝑗 ,±, 𝑐
↓
𝑗 ,± := − log

(
𝛿
↓
𝑗 ,± − 𝜖

)
, (II.102)

^
↑
𝑗 ,± := |𝜓(0) |2Λ↑

𝑗 ,±, 𝑐
↑
𝑗 ,± := − log

(
𝛿
↑
𝑗 ,± + 𝜖

)
. (II.103)

�

Remark II.29. The proof of Theorem A (ii) above gives yet another derivation of the index formula (I.9) via

(II.71). This latter derivation relies only on elementary analysis of first-order difference equations inspired

by [FFS18], while the former derivation outlined in §II.3 makes extensive use of Toeplitz operators. Note,

however, that despite its simplicity the latter method alone is insufficient to justify where the technical assumption

𝑝(±∞) ≠ ±𝑎(±∞) comes from. It is precisely the language of Toeplitz operators that allows us to establish the

non-trivial equivalence of this assumption and the essential gap condition ±1 ∉ 𝜎ess(𝑈) (see Theorem II.20 (ii)

for details).

II.5 Discussion

II.5.1 The essential spectrum

Further classifications for the essential spectrum of the evolution operator associated with Suzuki’s one-

dimensional split-step quantum walk can be found in this subsection. We start with the following broad

description of the essential spectrum;

Theorem II.30. Let (𝛤,𝑈) = (𝛤suz,𝑈suz) be defined by (I.2), (I.3). Suppose that there exist 𝑛−∞, 𝑛+∞ ∈ N with

the property that limits of the form (I.10) exist for each Z = 𝑝, 𝑎. Let �̂�+(★, 𝑧), �̂�−(★, 𝑧) be the 𝑛★ × 𝑛★ matrices
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defined by the following formula;

2�̂�±(★, 𝑧) :=



𝑟1,±(★, 0)𝑧∗ + 𝑟0,±(★, 0) + 𝑟1,±(★, 0)𝑧, 𝑛★ = 1,

(
𝑟0,± (★,0) 𝑟1,± (★,0)+𝑟1,± (★,1)𝑧∗

𝑟1,± (★,0)+𝑟1,± (★,1)𝑧 𝑟0,± (★,1)

)
, 𝑛★ = 2,

©«
𝑟0,± (★,0) 𝑟1,± (★,0) 0 ··· 0 𝑟1,± (★,𝑛★−1)𝑧∗
𝑟1,± (★,0) 𝑟0,± (★,1) 𝑟1,± (★,1) ··· 0 0

0 𝑟1,± (★,1) 𝑟0,± (★,2) ··· 0 0
...

...
...

. . .
...

...

0 0 0 ··· 𝑟0,± (★,𝑛★−2) 𝑟1,± (★,𝑛★−2)
𝑟1,± (★,𝑛★−1)𝑧 0 0 ··· 𝑟1,± (★,𝑛★−2) 𝑟0,± (★,𝑛★−1)

ª®®®®¬
, 𝑛★ ≥ 3,

(II.104)

𝑟0,±(★, 𝑚) := (𝑝(★, 𝑚) ± 1)𝑎(★, 𝑚) + (𝑝(★, 𝑚) ∓ 1)𝑎(★, 𝑚 + 1), (II.105)

𝑟1,±(★, 𝑚) :=
√︃
(1 ∓ 𝑝(★, 𝑚)) (1 ± 𝑝(★, 𝑚 + 1)) (1 − 𝑎(★, 𝑚 + 1)2), (II.106)

where we let 𝑝(★, 𝑛★) := 𝑝(★, 0) and 𝑎(★, 𝑛★) := 𝑎(★, 0). Then

𝜎ess(𝑈) = 𝜎(−∞) ∪ 𝜎(+∞), (II.107)

𝜎(★) :=
{
𝑧 ∈ T | Re 𝑧 ∈ 𝜎

(
�̂�−(★, 𝑧)

)
∪ 𝜎

(
�̂�+(★, 𝑧)

)}
, ★ = −∞, +∞. (II.108)

Note that𝑈suz in Theorem II.30 is a 2-dimensional strictly local operator. In theory, it is possible to compute

𝜎ess(𝑈suz) by making use of Theorem II.8 (ii), but we shall end up with spectral analysis of 2𝑛★ × 2𝑛★ matrices

according to (II.32). In order to reduce the complexity of computations, we shall make use of the following

lemma;

Lemma II.31. With the notation introduced in Lemma II.22, let 𝑅,𝑄 be the real and imaginary parts of 𝑈suz.

Then the unitary operator 𝜖 gives the following decomposition;

𝜖∗𝑅𝜖 =
©«
𝑅𝜖1 0

0 𝑅𝜖2

ª®®¬ , 𝜖∗𝑄𝜖 =
©«

0 𝑄∗𝜖0

𝑄𝜖0 0

ª®®¬ , (II.109)

where the three operators 𝑅𝜖1 , 𝑅𝜖2 , 𝑄𝜖0 are defined respectively by

2𝑅𝜖1 := 𝑝−𝐿𝑝+
√︁

1 − 𝑎2 + 𝑝+
√︁

1 − 𝑎2𝐿∗𝑝− + (1 + 𝑝)𝑎 − (1 − 𝑝)𝑎(· + 1), (II.110)

2𝑅𝜖2 := 𝑝+𝐿𝑝−
√︁

1 − 𝑎2 + 𝑝−
√︁

1 − 𝑎2𝐿∗𝑝+ − (1 − 𝑝)𝑎 + (1 + 𝑝)𝑎(· + 1), (II.111)

−2𝑖𝑄𝜖0 := 𝑝+𝐿𝑝+
√︁

1 − 𝑎2 − 𝑝−
√︁

1 − 𝑎2𝐿∗𝑝− −
√︃

1 − 𝑝2(𝑎 + 𝑎(· + 1)). (II.112)
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Proof. Recall that 𝐹 := [∗𝜖 is given by (II.62). It follows from the second equality in (II.59) that

𝜖∗𝑈suz𝜖 =
©«
𝐹∗1,−𝐹1,− − 𝐹∗1,+𝐹1,+ −(𝐹∗2,−𝐹1,+ − 𝐹∗2,+𝐹1,−)∗

𝐹∗2,−𝐹1,+ − 𝐹∗2,+𝐹1,− 𝐹∗2,−𝐹2,− − 𝐹∗2,+𝐹2,+

ª®®¬ .
Since 𝜖∗𝑅𝜖, 𝜖∗𝑄𝜖 are the real and imaginary parts of 𝜖∗𝑈suz𝜖 respectively, we get

𝜖∗𝑅𝜖 =
©«
𝐹∗1,−𝐹1,− − 𝐹∗1,+𝐹1,+ 0

0 𝐹∗2,−𝐹2,− − 𝐹∗2,+𝐹2,+

ª®®¬ ,
𝜖∗𝑄𝜖 =

©«
0 𝑖(𝐹∗2,−𝐹1,+ − 𝐹∗2,+𝐹1,−)∗

−𝑖(𝐹∗2,−𝐹1,+ − 𝐹∗2,+𝐹1,−) 0

ª®®¬ ,
where 2𝐹1,± = ∓𝑝+𝑎∓ + 𝑎±𝐿∗𝑝− and 2𝐹2,± = ∓𝑝−𝑎± + 𝑎∓𝐿∗𝑝+. The claim follows from the following direct

computations;

4(𝐹∗1,−𝐹1,− − 𝐹∗1,+𝐹1,+) = 4𝑅𝜖1 ,

4(𝐹∗2,−𝐹2,− − 𝐹∗2,+𝐹2,+) = 4𝑅𝜖2 ,

4(𝐹∗2,−𝐹1,+ − 𝐹∗2,+𝐹1,−) = 4𝑖𝑄𝜖0 .

�

Remark II.32. It immediately follows from (II.5) and (II.109) that

𝜎ess(𝑈) =
{
𝑧 ∈ T | Re 𝑧 ∈ 𝜎ess(𝑅𝜖1) ∪ 𝜎ess(𝑅𝜖2)

}
, (II.113)

where each 𝑅𝜖 𝑗 is a one-dimensional strictly local operator, unlike the evolution operator 𝑈 itself. We are now

in a position to apply the argument outlined in Remark II.21 to 𝑅𝜖 𝑗 .

Proof of Theorem II.30. Note that the two operators 𝑅+ := 𝑅𝜖1 and 𝑅− := 𝑅𝜖2 , defined respectively by (II.110)

to (II.111), are operators of the form 2𝑅± = 𝑟1,±(· − 1)𝐿−1 + 𝑟0,± + 𝑟1,±𝐿. The formula (II.58) motivates us to

define �̂�±(★, 𝑧) by (II.104). It follows from Theorem II.8 (ii) that

𝜎ess (𝑅±) =
⋃

★=−∞,+∞

(⋃
𝑧∈T

𝜎
(
�̂�±(★, 𝑧)

))
. (II.114)
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We get

𝜎ess(𝑈) = {𝑧 ∈ T | Re 𝑧 ∈ 𝜎ess(𝑅−) ∪ 𝜎ess(𝑅+)} =
⋃

★=−∞,+∞
𝜎(★),

where the first equality follows from (II.113), and where the last equality follows from (II.114). �

It is shown in Theorem II.30 that 𝜎ess(𝑈) = 𝜎(−∞) ∪ 𝜎(+∞), where for each ★ = −∞, +∞ the subset

𝜎(★) of T is defined by (II.108). The purpose of this subsection is to give a further classification of 𝜎(★) by

restricting attention to 𝑛★ = 1 and 𝑛★ = 2. We introduce the following notation for simplicity;

𝑞 :=
√︃

1 − 𝑝2, 𝑏 :=
√︁

1 − 𝑎2. (II.115)

Given a fixed real number 𝑟0 and a compact interval [𝑟1, 𝑟2] in R, we let

𝑟0 + [𝑟1, 𝑟2] := [𝑟0 + 𝑟1, 𝑟0 + 𝑟2], 𝑟0 − [𝑟1, 𝑟2] := [𝑟0 − 𝑟2, 𝑟0 − 𝑟1] .

II.5.1.1 The asymptotically 1-periodic case

We focus on the case 𝑛★ = 1 first. The following proposition can be found in [Tan21], but we give an alternative

derivation via Theorem II.30.

Proposition II.33 ([Tan21, Theorem B(ii)]). With the notation introduced in Theorem II.30 in mind, if 𝑛★ = 1,

then we have 𝜎(★) = 𝜎
(
�̂�+(★, 𝑧)

)
= 𝜎

(
�̂�−(★, 𝑧)

)
for each 𝑧 ∈ T. More precisely,

𝜎(★) = {𝑧 ∈ T | Re 𝑧 ∈ 𝐼 (★)} , (II.116)

where the closed subinterval 𝐼 (★) of [−1, 1] is defined by

𝐼 (★) := 𝑝(★, 0)𝑎(★, 0) + [−𝑞(★, 0)𝑏(★, 0), 𝑞(★, 0)𝑏(★, 0)] . (II.117)

Moreover, ±1 ∉ 𝜎(★) if and only if 𝑝(★) ≠ ±𝑎(★).

Proof. It follows from (II.104) that if 𝑛★ = 1, then

2�̂�±(★, 𝑒𝑖𝑡) = 𝑟0,±(★, 0) + 2𝑟1,±(★, 0) cos(𝑡),
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where

𝑟0,±(★, 0) = (𝑝(★, 0) ± 1)𝑎(★, 0) + (𝑝(★, 0) ∓ 1)𝑎(★, 0) = 2𝑝(★, 0)𝑎(★, 0),

𝑟1,±(★, 0) =
√︃
(1 ∓ 𝑝(★, 0)) (1 ± 𝑝(★, 0)) (1 − 𝑎(★, 0)2) = 𝑞(★, 0)𝑏(★, 0).

It follows that �̂�+(★, 𝑒𝑖𝑡) = �̂�−(★, 𝑒𝑖𝑡) =: �̂�0(★, 𝑒𝑖𝑡) for each 𝑡 ∈ [0, 2𝜋], and we get (II.116). It is easy to see

that 𝐼 (★) = [𝑝(★, 0)𝑎(★, 0) − 𝑞(★, 0)𝑏(★, 0), 𝑝(★, 0)𝑎(★, 0) + 𝑞(★, 0)𝑏(★, 0)] is a subset of [−1, 1];

|𝑝(★, 0)𝑎(★, 0) | + 𝑞(★, 0)𝑏(★, 0) ≤ 𝑝(★, 0)2 + 𝑎(★, 0)2
2

+ (1 − 𝑝(★, 0)
2) + (1 − 𝑎(★, 0)2)

2
≤ 1.

It remains to show that ±1 ∉ 𝜎(★) is equivalent to 𝑝(★) ≠ ±𝑎(★), but we defer the proof until Remark II.35. �

II.5.1.2 The asymptotically 2-periodic case

Next, we focus on the case 𝑛★ = 2.

Theorem II.34. With the notation introduced in Theorem II.30 in mind, if 𝑛★ = 2, then we have 𝜎(★) =⋃
𝑧∈T 𝜎

(
�̂�+(★, 𝑧)

)
=

⋃
𝑧∈T 𝜎

(
�̂�−(★, 𝑧)

)
for each 𝑧 ∈ T. More precisely,

𝜎(★) = {𝑧 ∈ T | Re 𝑧 ∈ 𝐼1(★) ∪ 𝐼2(★)} , (II.118)

where each closed subinterval 𝐼 𝑗 (★) of [−1, 1] is defined by

𝐼 𝑗 (★) := 𝑑 (★) + (−1) 𝑗
[√︁
𝑑 (★)2 + 𝑑1(★),

√︁
𝑑 (★)2 + 𝑑2(★)

]
, (II.119)

𝑑 (★) :=
(𝑝(★, 0) + 𝑝(★, 1)) (𝑎(★, 0) + 𝑎(★, 1))

4
, (II.120)

𝑑 𝑗 (★) :=
2 − (1 + 𝑝(★, 0)𝑝(★, 1)) (1 + 𝑎(★, 0)𝑎(★, 1)) + (−1) 𝑗 ∏𝑚=0,1 𝑞(★, 𝑚)𝑏(★, 𝑚)

2
. (II.121)

Furthermore, we have the following assertions:

(i) The set 𝐼 𝑗 (★) given by (II.119) is a well-defined closed interval in the sense that 0 ≤ 𝑑 (★)2 + 𝑑1(★) ≤

𝑑 (★)2 + 𝑑2(★). Moreover, 𝐼1(★) lies to the left of 𝐼2(★).

(ii) We have ±1 ∉ 𝜎(★) if and only if∏
𝑚=0,1
(1 + 𝑝(★, 𝑚)) (1 ∓ 𝑎(★, 𝑚)) ≠

∏
𝑚=0,1
(1 − 𝑝(★, 𝑚)) (1 ± 𝑎(★, 𝑚)) (II.122)
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(iii) If
∏
𝑚=0,1(1 + 𝑝(★, 𝑚)) (1 ∓ 𝑎(★, 𝑚)) +

∏
𝑚=0,1(1 − 𝑝(★, 𝑚)) (1 ± 𝑎(★, 𝑚)) > 0, then we uniquely define

𝑝(★), 𝑎(★) ∈ [−1, 1] through∏𝑛★−1
𝑚=0 (1 + Z (★, 𝑚))∏𝑛★−1
𝑚=0 (1 − Z (★, 𝑚))

=

(
1 + Z (★)
1 − Z (★)

)2
, Z = 𝑝, 𝑎. (II.123)

Then ±1 ∉ 𝜎(★) if and only if 𝑝(★) ≠ ±𝑎(★).

(iv) The sets 𝐼1(★), 𝐼2(★) are singleton sets if and only if {𝑝(★, 0), 𝑝(★, 1), 𝑎(★, 0), 𝑎(★, 1)} contains either −1

or +1. In this case, each 𝐼 𝑗 (★) is given explicitly by

𝐼 𝑗 (★) =
{
𝑑 (★) + (−1) 𝑗

√︂
𝑑 (★)2 + 2 − (1 + 𝑝(★, 0)𝑝(★, 1)) (1 + 𝑎(★, 0)𝑎(★, 1))

2

}
.

We show first that Proposition II.33 is a special case of Theorem II.34.

Remark II.35. With the notation introduced in Theorem II.30 in mind, let 𝑛★ = 2. If 𝑝(★, 0) = 𝑝(★, 1) and if

𝑎(★, 0) = 𝑎(★, 1), then

𝑑 (★) = (𝑝(★, 0) + 𝑝(★, 1)) (𝑎(★, 0) + 𝑎(★, 1))
4

= 𝑝(★, 0)𝑎(★, 0),

𝑑 𝑗 (★) =
2 − (1 + 𝑝(★, 0)2) (1 + 𝑎(★, 0)2) + (−1) 𝑗 (1 − 𝑝(★, 0)2) (1 − 𝑎(★, 0)2)

2
.

It follows that 𝑑 (★)2 + 𝑑1(★) = 0, and that 𝑑 (★)2 + 𝑑2(★) = (1 − 𝑝(★, 0)2) (1 − 𝑎(★, 0)2).

𝐼1(★) = [𝑝(★, 0)𝑎(★, 0) − 𝑞(★, 0)𝑏(★, 0), 𝑝(★, 0)𝑎(★, 0)] ,

𝐼2(★) = [𝑝(★, 0)𝑎(★, 0), 𝑝(★, 0)𝑎(★, 0) + 𝑞(★, 0)𝑏(★, 0)] .

Therefore, 𝐼1(★) ∪ 𝐼2(★) = [𝑝(★, 0)𝑎(★, 0) − 𝑞(★, 0)𝑏(★, 0), 𝑝(★, 0)𝑎(★, 0) + 𝑞(★, 0)𝑏(★, 0)] coincides with

𝐼 (★) given by (II.117). It follows from Theorem II.34 (ii),(iii) that ±1 ∉ 𝜎(★) if and only if 𝑝(★) ≠ ±𝑎(★).

We prove Theorem II.34 with the aid of the following lemma;

Lemma II.36. Given 𝛼1, 𝛼2 ∈ R and 𝛽1, 𝛽2 ≥ 0, let us consider the one-parameter family {𝑅(𝑧)}𝑧∈T of 2 × 2

Hermitian matrices defined by the following formula;

𝑅(𝑧) :=
1
2

©«
𝛼1 𝛽1 + 𝛽2𝑧

∗

𝛽1 + 𝛽2𝑧 𝛼2

ª®®¬ , 𝑧 ∈ T. (II.124)
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For each 𝑗 = 1, 2, let

𝐼 𝑗 :=
𝛼1 + 𝛼2

4
+ (−1) 𝑗

[√︁
(𝛼1 − 𝛼2)2 + 4(𝛽1 − 𝛽2)2

4
,

√︁
(𝛼1 − 𝛼2)2 + 4(𝛽1 + 𝛽2)2

4

]
.

Then the following assertions hold true:

(i) We have
⋃
𝑧∈T 𝜎(𝑅(𝑧)) = 𝐼1 ∪ 𝐼2, where 𝐼1 lies to the left of 𝐼2.

(ii) The set 𝐼1 ∪ 𝐼2 is connected if and only if 𝛼1 = 𝛼2 and 𝛽1 = 𝛽2. In this case, we have 𝐼1 ∪ 𝐼2 =

[𝛼1/2 − 𝛽1, 𝛼1/2 + 𝛽1] .

Note that 𝐼1, 𝐼2 are well-defined, since (𝛽1 − 𝛽2)2 ≤ (𝛽1 + 𝛽2)2 follows from (𝛽1 ± 𝛽2)2 = 𝛽2
1 ± 2𝛽1𝛽2 + 𝛽2

2.

Proof. We shall identify the unit-circle T with [0, 1] through [0, 1] 3 𝑡 ↦−→ 𝑒𝑖𝑡 ∈ T.

(i) We have

2 · tr 𝑅(𝑡) = 𝛼1 + 𝛼2,

4 · det 𝑅(𝑡) = 𝛼1𝛼2 − |𝛽1 + 𝛽2𝑒
𝑖𝑡 |2 = 𝛼1𝛼2 − (𝛽2

1 + 𝛽
2
2) − 2𝛽1𝛽2 cos 𝑡.

The eigenvalues of 𝑅(𝑡) are given by

_ 𝑗 (𝑡) =
𝛼1 + 𝛼2 + (−1) 𝑗

√︃
(𝛼1 − 𝛼2)2 + 4(𝛽2

1 + 2𝛽1𝛽2 cos 𝑡 + 𝛽2
2)

4
,

where 𝑗 = 1, 2. We get ⋃
𝑡∈[0,2𝜋]

𝜎(𝑅(𝑡)) =
⋃

𝑡∈[0,2𝜋]
{_1(𝑡)} ∪

⋃
𝑡∈[0,2𝜋]

{_2(𝑡)}.

The range of [0, 2𝜋] 3 𝑡 ↦−→
√︃
(𝛼1 − 𝛼2)2 + 4(𝛽2

1 + 2𝛽1𝛽2 cos 𝑡 + 𝛽2
2) ∈ R is[√︃

(𝛼1 − 𝛼2)2 + 4(𝛽1 − 𝛽2)2,
√︃
(𝛼1 − 𝛼2)2 + 4(𝛽1 + 𝛽2)2

]
,

where (𝛽1 − 𝛽2)2 ≤ (𝛽1 + 𝛽2)2. Therefore,
⋃
𝑡∈[0,2𝜋]{_ 𝑗 (𝑡)} = 𝐼 𝑗 for each 𝑗 = 1, 2. Note also that 𝐼1 is located

to the left of 𝐼2;

Δ(𝐼1, 𝐼2) := min 𝐼2 −max 𝐼1 =

√︃
(𝛼1 − 𝛼2)2 + 4(𝛽1 − 𝛽2)2 ≥ 0.

(ii) The gap Δ(𝐼1, 𝐼2) becomes 0 if and only if 𝛼1 − 𝛼2 = 0 = 𝛽1 − 𝛽2. In this case,

𝐼1 ∪ 𝐼2 = [𝛼1/2 − 𝛽1, 𝛼1/2 + 𝛽1] .
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�

Proof of Theorem II.34. Since 𝑛★ = 2, it follows from (II.104) that

�̂�±(★, 𝑧) =
1
2

©«
𝑟0,±(★, 0) 𝑟1,±(★, 0) + 𝑟1,±(★, 1)𝑧∗

𝑟1,±(★, 0) + 𝑟1,±(★, 1)𝑧 𝑟0,±(★, 1)

ª®®¬ . (II.125)

Let us first prove that
⋃
𝑧∈T 𝜎

(
�̂�±(★, 𝑧)

)
does not depend on the choice of ± in order to show (II.118). For each

Z = 𝑝, 𝑞, 𝑎, 𝑏, and each 𝑚 = 0, 1, we write Z𝑚 := Z (★, 𝑚) for simplicity from here on. With this convention in

mind, we let

𝑟0,±(★, 0) = (𝑝0 ± 1)𝑎0 + (𝑝0 ∓ 1)𝑎1 =: 𝛼1,±,

𝑟0,±(★, 1) = (𝑝1 ± 1)𝑎1 + (𝑝1 ∓ 1)𝑎0 =: 𝛼2,±,

𝑟1,±(★, 0) =
√︁
(1 ∓ 𝑝0) (1 ± 𝑝1)𝑏1 =: 𝛽1,±,

𝑟1,±(★, 1) =
√︁
(1 ± 𝑝0) (1 ∓ 𝑝1)𝑏0 =: 𝛽2,±,

where 𝛼1,±, 𝛼2,± ∈ R, and where 𝛽1,±, 𝛽2,± ≥ 0. It follows that (II.125) is a special case of (II.124). We shall

make use of the following equalities in order to apply Lemma II.36 (i) to �̂�±(★, 𝑧) :

𝛼1,± + 𝛼2,± = (𝑝0 + 𝑝1) (𝑎0 + 𝑎1),

(𝛼1,± − 𝛼2,±)2 = (𝑝0 − 𝑝1)2(𝑎0 + 𝑎1)2 + 4(𝑎0 − 𝑎1)2 ± 4(𝑝0 − 𝑝1) (𝑎2
0 − 𝑎

2
1),

(𝛽1,± + (−1) 𝑗 𝛽2,±)2 = (1 − 𝑝0𝑝1) (2 − 𝑎2
0 − 𝑎

2
1) + 2(−1) 𝑗𝑞0𝑞1𝑏0𝑏1 ∓ (𝑝0 − 𝑝1) (𝑎2

0 − 𝑎
2
1),

where 𝑗 = 1, 2, and where we use 𝛽2
1,± + 𝛽

2
2,± = (1− 𝑝0𝑝1) (2− 𝑎2

0− 𝑎
2
1) ∓ (𝑝0− 𝑝1) (𝑎2

0− 𝑎
2
1) in the last equality.

It follows that 𝑑′
𝑗

:= (𝛼1,± − 𝛼2,±)2 + 4(𝛽1,± + (−1) 𝑗 𝛽2,±)2 ≥ 0 does not depend on the choice of ± for each

𝑗 = 1, 2. Moreover,

𝑑′𝑗 = (𝑝0 − 𝑝1)2(𝑎0 + 𝑎1)2 + 4(𝑎0 − 𝑎1)2 + 4(1 − 𝑝0𝑝1) (2 − 𝑎2
0 − 𝑎

2
1) + 8(−1) 𝑗𝑞0𝑞1𝑏0𝑏1

= (𝑝0 + 𝑝1)2(𝑎0 + 𝑎1)2 + 8(2 − (1 + 𝑝0𝑝1) (1 + 𝑎0𝑎1) + (−1) 𝑗𝑞0𝑞1𝑏0𝑏1)

= 16(𝑑 (★)2 + 𝑑 𝑗 (★)),
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where the second equality follows from (𝑝0 − 𝑝1)2 = (𝑝0 + 𝑝1)2 − 4𝑝0𝑝1. If we define 𝐼 𝑗 (★) according to

(II.119), then it follows from Lemma II.36 (i) that

⋃
𝑧∈T

𝜎
(
�̂�+(★, 𝑧)

)
=

⋃
𝑧∈T

𝜎
(
�̂�−(★, 𝑧)

)
= 𝐼1(★) ∪ 𝐼2(★).

Note that (II.118) follows from Theorem II.30.

(i) It is obvious that 0 ≤ 𝑑 (★)2 + 𝑑1(★) ≤ 𝑑 (★)2 + 𝑑2(★), and that 𝐼1(★) lies to the left of 𝐼2(★). It remains

to show 𝐼1(★) ∪ 𝐼2(★) ⊆ [−1, 1] . Let

𝑑±(★) := 𝑑 (★) ±
√︁
𝑑 (★)2 + 𝑑2(★),

where 𝑑−(★) (resp. 𝑑+(★)) is the minimum (resp. maximum) of 𝐼1(★)∪𝐼2(★). Let the notation 5 simultaneously

denote ≤ and = . We are required to prove that the following equivalent conditions hold true with |𝑑 (★) | ≤ 1 in

mind;

± 𝑑±(★) 5 1 if and only if 0 5 (1 + 𝑝0𝑝1) (1 + 𝑎0𝑎1) ∓ (𝑝0 + 𝑝1) (𝑎0 + 𝑎1) − 𝑞0𝑞1𝑏0𝑏1, (II.126)

where (1 + 𝑝0𝑝1) (1 + 𝑎0𝑎1) ∓ (𝑝0 + 𝑝1) (𝑎0 + 𝑎1) ≥ 0. Indeed,

(1 + 𝑝0𝑝1) (1 + 𝑎0𝑎1) ∓ (𝑝0 + 𝑝1) (𝑎0 + 𝑎1)

=


0, 𝑝0𝑝1 = −1 or 𝑎0𝑎1 = −1,

(1 + 𝑝0𝑝1) (1 + 𝑎0𝑎1)
(
1 ∓ 𝑝0+𝑝1

1+𝑝0𝑝1

𝑎0+𝑎1
1+𝑎0𝑎1

)
, otherwise.

It remains to prove

0 5 ((1 + 𝑝0𝑝1) (1 + 𝑎0𝑎1) ∓ (𝑝0 + 𝑝1) (𝑎0 + 𝑎1))2 − (1 − 𝑝2
0) (1 − 𝑝

2
1) (1 − 𝑎

2
0) (1 − 𝑎

2
1). (II.127)

Let

𝑠± := ((1 + 𝑝0𝑝1) (1 + 𝑎0𝑎1) ∓ (𝑝0 + 𝑝1) (𝑎0 + 𝑎1))2 ,

𝑠′± := ((1 + 𝑝0𝑝1) (𝑎0 + 𝑎1) ∓ (1 + 𝑎0𝑎1) (𝑝0 + 𝑝1))2.
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We show that the right hand side of (II.127) is 𝑠′± ≥ 0;

𝑠± − 𝑠′± = (1 + 𝑝0𝑝1)2((1 + 𝑎0𝑎1)2 − (𝑎0 + 𝑎1)2) − (𝑝0 + 𝑝1)2((1 + 𝑎0𝑎1)2 − (𝑎0 + 𝑎1)2)

= ((1 + 𝑝0𝑝1)2 − (𝑝0 + 𝑝1)2) ((1 + 𝑎0𝑎1)2 − (𝑎0 + 𝑎1)2)

= (1 − 𝑝2
0) (1 − 𝑝

2
1) (1 − 𝑎

2
0) (1 − 𝑎

2
1).

It follows that (II.127) holds true. We get −1 ≤ 𝑑−(★) ≤ 𝑑+(★) ≤ 1 by (II.126), and so 𝐼1 ∪ 𝐼2 ⊆ [−1, 1] .

(ii) It follows from (i) that

𝑑±(★) = ±1 if and only if 𝑠′± = 0. (II.128)

It follows from a direct computation that

∏
𝑚=0,1
(1 + 𝑝𝑚) (1 ∓ 𝑎𝑚) −

∏
𝑚=0,1
(1 − 𝑝𝑚) (1 ± 𝑎𝑚) = ∓2((1 + 𝑝0𝑝1) (𝑎0 + 𝑎1) ∓ (1 + 𝑎0𝑎1) (𝑝0 + 𝑝1)).

Therefore, ±1 ∉ 𝜎(★) if and only if
∏
𝑚=0,1(1 + 𝑝𝑚) (1 ∓ 𝑎𝑚) ≠

∏
𝑚=0,1(1 − 𝑝𝑚) (1 ± 𝑎𝑚).

(iii) If
∏
𝑚=0,1(1+ 𝑝𝑚) (1∓𝑎𝑚) +

∏
𝑚=0,1(1− 𝑝𝑚) (1±𝑎𝑚) > 0, then we define 𝑝(★), 𝑎(★) ∈ [−1, 1] through

(II.123). Note that (II.122) is equivalent to 𝑝(★) ∓ 𝑎(★) ≠ 0 as in the proof of Theorem II.20 (ii). The claim

follows from (ii).

(iv) Note that 𝐼 𝑗 (★) given by (II.119) is a singleton set if and only if 𝑑1(★) = 𝑑2(★) if and only if∏
𝑚=0,1 𝑞(★, 𝑚)𝑏(★, 𝑚) = 0. The claim follows. �

II.5.1.3 The general case

It is desirable to give a complete classification of 𝜎(★) in full generality. The special cases 𝑛★ = 1, 2 we have

considered in this subsection are intended as motivating examples for this general approach. It is worth noting

that the proof of Theorem II.34 is already far from obvious. The general case 𝑛★ ≥ 3 naturally leads to spectral
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analysis of Hermitian matrices of the following form;

©«

𝛼0 𝛽0 0 · · · 0 𝛾0

𝛾1 𝛼1 𝛽1 · · · 0 0

0 𝛾2 𝛼2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 𝛼𝑛−2 𝛽𝑛−2

𝛽𝑛−1 0 0 · · · 𝛾𝑛−1 𝛼𝑛−1

ª®®®®®®®®®®®®®®®®®¬

. (II.129)

It is not known to the author whether or not there is a general standard method for this.

II.5.2 Decay rates and spectral gaps in the essential spectrum

It is shown in the proof of Theorem A (ii) that (II.77) is a more precise version of the exponential decay property

(I.15), where we recall that 𝛿↓
𝑗 ,±, 𝛿

↑
𝑗 ,± are given respectively by the following formulas (see (II.98) to (II.99)):

𝛿
↓
𝑗 ,± = min

{
(Λ(𝑝(−∞))Λ(∓𝑎(−∞))) (−1) 𝑗+1 , (Λ(𝑝(+∞))Λ(∓𝑎(+∞))) (−1) 𝑗

}
,

𝛿
↑
𝑗 ,± = max

{
(Λ(𝑝(−∞))Λ(∓𝑎(−∞))) (−1) 𝑗+1 , (Λ(𝑝(+∞))Λ(∓𝑎(+∞))) (−1) 𝑗

}
.

The purpose of the current subsection is to show that the two numbers 𝛿↓
𝑗 ,±, 𝛿

↑
𝑗 ,±, viewed as decay rates of the

symmetry-protected bound state Ψ, depend on the size of spectral gaps in 𝜎ess(𝑈). For simplicity, we assume

that the anisotropic assumption (I.8) holds true for each ★ = −∞, +∞ and each Z = 𝑝, 𝑎 throughout (that is to

say, we let 𝑛★ = 1 for each ★ = −∞, +∞). We consider the following two examples:

Example II.37 (half-gapped case). Let 0 < 𝑝0 < 1, and let

𝑝(−∞) := −𝑝0, 𝑎(−∞) := ±𝑝0,

𝑝(+∞) := 𝑝0, 𝑎(+∞) := ∓𝑝0.

Since ±𝑎(−∞) = 𝑝0 ≠ 𝑝(−∞) and ±𝑎(+∞) = −𝑝0 ≠ 𝑝(+∞), the essential spectrum of the operator 𝑈 has a spectral gap at ±1.

Moreover,

𝑝(−∞) ∓ 𝑎(−∞) = −2𝑝0 < 0 < 2𝑝0 = 𝑝(+∞) ∓ 𝑎(+∞).
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We get ind ± (𝛤,𝑈) = dim ker(𝑈 ∓ 1) = 1. It follows from §II.5.1.1 that the essential spectrum of𝑈 is given explicitly by

𝜎ess (𝑈) = {𝑧 ∈ T | Re 𝑧 ∈ 𝐼±} , 𝐼± := [∓𝑝2
0 − (1 − 𝑝

2
0),∓𝑝

2
0 + (1 − 𝑝

2
0)] .

More precisely, the essential spectrum 𝜎ess (𝑈) can be classified into the following two distinct cases:

(i) (𝑎(−∞), 𝑎(+∞)) = (𝑝0,−𝑝0)

𝜎ess(𝑈) = {𝑧 ∈ T | Re 𝑧 ∈ 𝐼+}

1

𝑖

Re

Im

(ii) (𝑎(−∞), 𝑎(+∞)) = (−𝑝0, 𝑝0)

𝜎ess(𝑈) = {𝑧 ∈ T | Re 𝑧 ∈ 𝐼−}

1

𝑖

Re

Im

Figure II.1: The black connected regions depict 𝜎ess (𝑈). We have −1 ∈ 𝜎ess (𝑈) in Case (i), whereas +1 ∈ 𝜎ess (𝑈) in Case (ii).

We have 𝐼+ = [−1, 1 − 2𝑝2
0] in Case (i), and 𝐼− = [−1 + 2𝑝2

0, +1] in Case (ii). This motivates us to introduce the gap width

Ω(𝑝0) := 2𝑝2
0. Moreover, we have

𝛿
↑
1,± = 𝛿

↓
1,± = Λ(−𝑝0)2.

Note that Ω(𝑝0) = 2𝑝2
0 increases as 𝑝0 → 1. In this case, the convergence rates 𝛿↑1,± = 𝛿

↓
1,± decrease, since Λ(−𝑝0)2 → 0.

Example II.38 (Double-gapped case). We let 𝑝(𝑥) = 0 for each 𝑥 ∈ Z. We have the following index formula;

ind ± (𝛤,𝑈) =



+1, ∓𝑎(−∞) < 0 < ∓𝑎(+∞),

−1, ∓𝑎(+∞) < 0 < ∓𝑎(−∞),

0, otherwise.

(II.130)

Note that we have

𝛿
↓
𝑗 ,± = min

{
Λ(∓(−1) 𝑗𝑎(+∞))), 1

Λ(∓(−1) 𝑗𝑎(−∞)))

}
, (II.131)

𝛿
↑
𝑗 ,± = max

{
Λ(∓(−1) 𝑗𝑎(+∞))), 1

Λ(∓(−1) 𝑗𝑎(−∞)))

}
, (II.132)
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It follows from §II.5.1.1 that

𝜎ess (𝑈) =
⋃

★=±∞
{𝑧 ∈ T | Re 𝑧 ∈ 𝐼 (★)} , (II.133)

𝐼 (★) := [−
√︁

1 − 𝑎(★)2,
√︁

1 − 𝑎(★)2], ★ = ±∞. (II.134)

1

𝑖

Re

Im

Figure II.2: This figure depicts 𝜎ess (𝑈).

Figure II.2 motivates us to introduce the following gap width;

Ω := min{1 −
√︁

1 − 𝑎(−∞)2, 1 −
√︁

1 − 𝑎(+∞)2}.

Suppose that ∓𝑎(−∞) < 0 < ∓𝑎(+∞) holds true. Then Λ(∓𝑎(−∞)) < 1 and 1
Λ(∓𝑎 (+∞)) < 1. Note that Ω increases as |𝑎(★) | → 1 for

each ★ = −∞, +∞. This corresponds to ∓𝑎(−∞) → −1 and ∓𝑎(+∞) → +1. Thus, Λ(∓𝑎(−∞)) → 0 and 1
Λ(∓𝑎 (+∞)) → 0. It follows

that 𝛿↑2,± → 0 and 𝛿↓2,± → 0.

II.5.3 The spectral mapping theorem for chirally symmetric unitary operators

The purpose of the current subsection is to revisit the previously mentioned formula (II.19) in the context of

the so-called spectral mapping theorem for chirally symmetric unitary operators [HKSS14, SS16, SS19] as

mentioned in Remark II.5. Let us start with a brief overview of this well-known theorem under the setting

of Proposition II.4. If the underlying Hilbert space H is separable, then we can canonically decompose

the unitary self-adjoint operator 𝛤′ as the difference 𝛤′ = 𝜕∗𝜕 − (1 − 𝜕∗𝜕) for some operator 𝜕 from H =

ker(𝛤′ − 1) ⊕ ker(𝛤′ + 1) into an auxiliary Hilbert space K, satisfying 𝜕𝜕∗ = 1 (see, for example, [Suz19,
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Lemma 3.3]). Here, 𝜕∗𝜕 (resp. 1 − 𝜕∗𝜕) turns out to be the orthogonal projection onto ker(𝛤′ − 1) (resp.

ker(𝛤′ + 1)). It is partly shown in the spectral mapping theorem that for each eigenvalue 𝑧 of𝑈, we have

dim ker(𝑈 − 𝑧) =



dim ker
(
𝜕𝛤𝜕∗ − 𝑧+𝑧∗

2

)
, |𝑧 | < 1,

dim ker(𝜕𝛤𝜕∗ − 1) + dim (ker(𝛤 + 1) ∩ ker 𝜕) , 𝑧 = 1,

dim ker(𝜕𝛤𝜕∗ + 1) + dim (ker(𝛤 − 1) ∩ ker 𝜕) , 𝑧 = −1,

(II.135)

where the spectrum of the self-adjoint operator 𝑇 := 𝜕𝛤𝜕∗ is a subset of [−1, 1], since ‖𝑇 ‖ ≤ 1 immediately

follows from ‖𝛤‖ = 1 and from ‖𝜕‖2 = ‖𝜕∗‖2 = ‖𝜕∗𝜕‖ = 1. The complete statement of the spectral mapping

theorem can be found, for example, in [SS19, Theorem 1.2]. Mathematical utilities of the spectral mapping

theorem are confirmed in the context of chirally symmetric quantum walks [FFS17, FFS18].

If |𝑧 | < 1, then the formula (II.135) has the following graphical interpretation;

𝑧

𝑧∗

𝑧+𝑧∗
2

Re

Im

Figure II.3: Given the chirally symmetric unitary operator𝑈 = 𝛤𝛤 ′, where 𝛤 ′ = 𝜕∗𝜕 − (1− 𝜕∗𝜕), we have that 𝑧 ∈ T is an eigenvalue

of 𝑈 if and only if so is 𝑧∗. In this case, their real part (𝑧 + 𝑧∗)/2 turns out to be an eigenvalue of the self-adjoint operator 𝑇 = 𝜕𝛤𝜕∗,

provided that |𝑧 | < 1.

On the other hand, if 𝑧 = −1 or 𝑧 = 1, then special care needs to be taken, since dim ker(𝑈 ∓ 1) is greater

than dim ker(𝑇 ∓ 1) in general. More precisely, the formula (II.135) becomes dim ker(𝑈 ∓ 1) = 𝑚± + 𝑀± in

this case, where 𝑚±, 𝑀± are defined respectively by

𝑚± := dim ker(𝑇 ∓ 1), 𝑀± := dim (ker(𝛤 ± 1) ∩ ker 𝜕) . (II.136)
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In fact, it is shown in [Suz19, Theorem 3.1] that

𝜕∗ ker(𝑇 ∓ 1) = ker(𝛤 ∓ 1) ∩ ker(𝛤′ − 1), (II.137)

ker(𝛤 ± 1) ∩ ker 𝜕 = ker(𝛤 ± 1) ∩ ker(𝛤′ + 1), (II.138)

where the isometry 𝜕∗ in (II.137) gives a bijective linear transform ker(𝑇 ∓ 1) 3 𝜓 ↦−→ 𝜕∗𝜓 ∈ 𝜕∗ ker(𝑇 ∓ 1).

It follows that the four numbers defined by (II.136) can be fully characterised by 𝛤, 𝛤′ without referring to 𝜕.

More precisely, we obtain the following four equalities by Remark II.5:

𝑚+ = dim (ker(𝛤 − 1) ∩ ker(𝛤′ − 1)) = 𝑚1,+, (II.139)

𝑚− = dim (ker(𝛤 + 1) ∩ ker(𝛤′ − 1)) = 𝑚2,−, (II.140)

𝑀+ = dim (ker(𝛤 + 1) ∩ ker(𝛤′ + 1)) = 𝑚2,+, (II.141)

𝑀− = dim (ker(𝛤 − 1) ∩ ker(𝛤′ + 1)) = 𝑚1,−. (II.142)

It follows that dim ker(𝑈 ∓ 1) = 𝑚± + 𝑀± is indeed consistent with the previously mentioned formula (II.19).

In particular, if dim ker(𝑈 ∓ 1) < ∞, then (II.18) can be analogously interpreted as

ind ±(𝛤,𝑈) = ±(𝑚± − 𝑀±). (II.143)

It is worth recalling at this point that the four numbers 𝑚±, 𝑀± previously mentioned are originally defined

by the formula (II.136) in the statement of the spectral mapping theorem (see, for example, [SS16, SS19]).

In particular, we may refer to each of B± := ker(𝛤 ± 1) ∩ ker 𝜕 as a birth eigenspace following [Seg13,

MOS17]. For concreteness, let us consider [FFS18], the primary focus of which is a characterisation of the

birth eigenspaces for the evolution operator of Suzuki’s split-step quantum walk given by (I.2) under the extra

assumption of 𝑝 = (𝑝(𝑥))𝑥∈Z being a constant sequence. This classification implicitly makes use of (II.138),

where ker(𝛤′ + 1) = ker 𝜕 immediately follows from 𝛤′ + 1 = 2𝜕∗𝜕. On the other hand, at the time of writing

[FFS18], the authors were presumably unaware of the less trivial equality (II.137). Otherwise, (II.137) would

have immediately led to an analogous classification result for ker(𝑇 ∓ 1).

On a final note, we draw the following conclusion. It is certainly possible to start with (II.143) as a defining

property of ind ±(𝛤,𝑈) via the spectral mapping theorem in contrast to the setting of §II.1.2. Note, however,
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that this method of defining ind ±(𝛤,𝑈) has the following significant drawback. As in the concrete example

mentioned above, it is not easy to directly deduce from the formula (II.143) that 𝑚± and 𝑀± are analogous in

the sense that (II.139) to (II.142) actually hold true. This is partly due to the technical nature of the spectral

mapping theorem. In fact, the ultimate purpose of §II.1.2 is to show that the indices ind ±(𝛤,𝑈) admit a

yet another caracterisation. Recall that the key step to this elementary construction, which makes no use

of the spectral mapping theorem at all, lies in the canonical decomposision of the real part 𝑅 := Re𝑈 into

𝑅 = 𝑅1 ⊕ 𝑅2 based on the Z2-grading of the underlying Hilbert space ker(𝛤 − 1) ⊕ ker(𝛤 + 1). It follows

from a direct algebraic computation that ker(𝑈 ∓ 1) = ker(𝑅1 ∓ 1) ⊕ ker(𝑅1 ∓ 2), and this motivates us to let

ind ±(𝛤,𝑈) := dim ker(𝑅1 ∓ 1) − dim ker(𝑅2 ∓ 1). Note that each 𝑚 𝑗 ,± = dim ker(𝑅 𝑗 ∓ 1) satisfies (II.139)

to (II.142) according to Remark II.5 as mentioned previously.

II.5.4 A new derivation of the existing index formulas

Let 𝑈suz, 𝛤suz, 𝛤
′
suz be given respectively by (I.2), (I.3), and let (𝑈, 𝛤, 𝛤′) := (𝑈suz, 𝛤suz, 𝛤

′
suz) for simplicity.

Classification of the indices ind (𝛤,𝑈), ind (𝛤′,𝑈) is one of the main subjects of [ST19b, Mat20, Tan21] under

the assumption that a limit of the form (I.8) exists for each★ = −∞, +∞ and each Z = 𝑝, 𝑎. More precisely, it is

shown in [Tan21, Theorem B] that we have |𝑝(★) | ≠ |𝑎(★) | for each★ = −∞, +∞ if and only if −1, 1 ∉ 𝜎ess(𝑈).
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In this case, we have

ind (𝛤,𝑈) =



0, |𝑝(−∞)| < |𝑎(−∞)| and |𝑝(+∞)| < |𝑎(+∞)|,

+sign 𝑝(+∞), |𝑝(−∞)| < |𝑎(−∞)| and |𝑝(+∞)| > |𝑎(+∞)|,

−sign 𝑝(−∞), |𝑝(−∞)| > |𝑎(−∞)| and |𝑝(+∞)| < |𝑎(+∞)|,

+sign 𝑝(+∞) − sign 𝑝(−∞), |𝑝(−∞)| > |𝑎(−∞)| and |𝑝(+∞)| > |𝑎(+∞)|,

(II.144)

ind (𝛤′,𝑈) =



−sign 𝑎(+∞) + sign 𝑎(−∞), |𝑝(−∞)| < |𝑎(−∞)| and |𝑝(+∞)| < |𝑎(+∞)|,

+sign 𝑎(−∞), |𝑝(−∞)| < |𝑎(−∞)| and |𝑝(+∞)| > |𝑎(+∞)|,

−sign 𝑎(+∞), |𝑝(−∞)| > |𝑎(−∞)| and |𝑝(+∞)| < |𝑎(+∞)|,

0, |𝑝(−∞)| > |𝑎(−∞)| and |𝑝(+∞)| > |𝑎(+∞)|,

(II.145)

where the sign function sign is given by (I.28). Note that (I.22) coincides with (II.144), if we let 𝛾(𝑥) = 0 for

each 𝑥 ∈ Z. The purpose of the current subsection is to show that the same formulas (II.144) to (II.145) still

hold true, even if we replace the anisotropic assumption (I.8) by (I.10) for each Z = 𝑝, 𝑎.

Theorem II.39. With the notation introduced in Theorem II.20 in mind, we have |𝑝(★) | ≠ |𝑎(★) | for each

★ = −∞, +∞ if and only if −1, 1 ∉ 𝜎ess(𝑈). In this case, the indices ind (𝛤,𝑈), ind (𝛤′,𝑈) are given respectively

by (II.144) to (II.145).

This theorem is a generalisation of [Tan21, Theorem B] mentioned above.

Proof. The first part immediately follows from Theorem II.20 (ii). We shall make use of the formula (II.63)

throughout. Let 𝑖1 (resp. 𝑖2) be defined by the right hand side of (II.144) (resp. of (II.145)). We are required to

show 𝑖1 = ind (𝛤,𝑈) and 𝑖2 = ind (𝛤′,𝑈). For each 𝛼1, 𝛼2 ∈ [−1, 1] such that 𝛼1 ≠ 𝛼2, let

𝑤 𝑗 (𝛼1, 𝛼2) :=
sign (𝛼1 − 𝛼2) + (−1) 𝑗+1sign (𝛼1 + 𝛼2)

2
, 𝑗 = 1, 2.

We have −𝑤2(𝛼2, 𝛼1) = 𝑤1(𝛼1, 𝛼2), where

𝑤(𝛼1, 𝛼2) =


sign𝛼1, |𝛼1 | > |𝛼2 |,

0, |𝛼1 | < |𝛼2 |.
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With this result in mind, we obtain 𝑖 𝑗 = 𝑤 𝑗 (𝑝(+∞), 𝑎(+∞)) − 𝑤 𝑗 (𝑝(−∞), 𝑎(−∞)) for each 𝑗 = 1, 2. On the

other hand, direct computations show

ind +(𝛤,𝑈) + (−1) 𝑗+1ind −(𝛤,𝑈) = 𝑤 𝑗 (𝑝(+∞), 𝑎(+∞)) − 𝑤 𝑗 (𝑝(−∞), 𝑎(−∞)).

The claim follows. �

II.5.5 The square of the evolution operator

Theorem II.24 gives a concrete quantum walk example with the property that the estimate (I.7) becomes an

equality. The purpose of the current subsection is to show that this is not always the case. Our counter example

is based on the following simple proposition.

Proposition II.40. If (𝛤,𝑈) is an abstract chiral pair on a Hilbert spaceH , then (𝛤,𝑈2) and (𝛤′𝛤𝛤′,𝑈2) are

unitarily equivalent chiral pairs. Moreover, the following assertions hold true:

(i) If ker(𝑈2 − 1) = ker(𝑈 − 1) ⊕ ker(𝑈 + 1) is finite-dimensional, then

ind +(𝛤,𝑈2) = ind (𝛤,𝑈). (II.146)

(ii) If ker(𝑈2 + 1) = ker(𝑈 − 𝑖) ⊕ ker(𝑈 + 𝑖) is finite-dimensional, then

ind −(𝛤,𝑈2) = 0. (II.147)

(iii) If ker(𝑈2 − 1) ⊕ ker(𝑈2 + 1) is finite-dimensional, then ind (𝛤,𝑈2) = ind (𝛤,𝑈).

Proof. Note that (𝛤,𝑈2) and (𝛤′𝛤𝛤′,𝑈2) are chiral pairs, since𝑈2 = 𝛤 (𝛤′𝛤𝛤′). We have

(𝛤,𝑈2) = (𝛤, 𝛤𝛤′𝛤𝛤′) � (𝛤′𝛤𝛤′, 𝛤′(𝛤𝛤′𝛤𝛤′)𝛤′) = (𝛤′𝛤𝛤′, 𝛤′𝛤𝛤′𝛤) = (𝛤′𝛤𝛤′, (𝑈2)∗) � (𝛤′𝛤𝛤′,𝑈2),

(II.148)

where � represents unitary equivalence. If 𝑈 admits the standard representation of the form (II.2), then 𝑈2

admits the following standard representation;

𝑈2 =
©«
2𝑅2

1 − 1 2𝑖𝑄2𝑅2

2𝑖𝑄1𝑅1 2𝑅2
2 − 1

ª®®¬ . (II.149)
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It follows that

ind ±(𝛤,𝑈2) := dim ker((2𝑅2
1 − 1) ∓ 1) − dim ker((2𝑅2

2 − 1) ∓ 1). (II.150)

(i) If ker(𝑈2 − 1) = ker(𝑈 − 1) ⊕ ker(𝑈 + 1) is finite-dimensional, then ker(𝑈 − 1) = ker(𝑅 − 1) and

ker(𝑈 + 1) = ker(𝑅 + 1) are finite-dimensional. In this case,

ind +(𝛤,𝑈2) = dim ker((2𝑅2
1 − 1) − 1) − dim ker((2𝑅2

2 − 1) − 1)

= dim ker(𝑅2
1 − 1) − dim ker(𝑅2

2 − 1)

= dim ker(𝑅1 − 1) + dim ker(𝑅1 + 1) − (dim ker(𝑅2 − 1) + dim ker(𝑅2 − 1))

= dim ker(𝑅1 − 1) − dim ker(𝑅2 − 1) + dim ker(𝑅1 + 1) − dim ker(𝑅2 − 1)

= ind +(𝛤,𝑈) + ind −(𝛤,𝑈)

= ind (𝛤,𝑈).

(ii) If ker(𝑈2 + 1) = ker(𝑈 − 𝑖) ⊕ ker(𝑈 + 𝑖) is finite-dimensional, then it follows from (II.148) that

ind −(𝛤,𝑈2) = ind −(𝛤′𝛤𝛤′,𝑈2) = −ind −(𝛤,𝑈2),

where the last equality follows from (II.14). We get ind −(𝛤,𝑈2) = 0.

(iii) This follows from (i) and (ii). �

Remark II.41. If ker(𝑈2 + 1) = ker(𝑈 − 𝑖) ⊕ ker(𝑈 + 𝑖) is finite-dimensional, then ind −(𝛤,𝑈2) = 0. It follows

from (II.150) that ker 𝑅1 and ker 𝑅2 have the same finite dimension, say, 𝑛. We get dim(ker(𝑈2 + 1)) = 2𝑛.

Example II.42. Let 𝑈 be the evolution operator of Suzuki’s split-step quantum walk, and let 𝑝(𝑥) = 0 for each 𝑥 ∈ Z. Suppose

that there exists 𝑎0 ∈ (0, 1) with the property that 𝑎(𝑥) → ±𝑎0 as 𝑥 → ±∞. We make use of the index formula (II.130). Since

𝑎(−∞) = −𝑎0 < 0 < 𝑎0 = 𝑎(+∞), we have ind + (𝛤,𝑈) = −1 and ind − (𝛤,𝑈) = 1. Thus ind + (𝛤,𝑈2) = 0. On the other hand, we get

dim ker(𝑈2 − 1) = dim(ker(𝑈 − 1) ⊕ ker(𝑈 + 1)) = |ind + (𝛤,𝑈) | + |ind − (𝛤,𝑈) | = 2.

Then dim ker(𝑈2 − 1) = 2 and ind + (𝛤,𝑈2) = 0. That is, |ind + (𝛤,𝑈2) | ≠ dim ker(𝑈2 − 1).
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Non-unitary Models

III.1 The statement of the main theorem (Theorem B)

We consider index theory for non-unitary operators 𝑈 satisfying the chiral symmetry condition (I.1) in this

chapter. We start with the following definition;

Definition III.1. Let (𝛤,𝑈) be a chiral pair on a Hilbert spaceH , and let (II.2) be the standard representation of

𝑈 with respect to 𝛤.We say that (𝛤,𝑈) is Fredholm, if𝑄1 is Fredholm (or, equivalently,𝑄2 = 𝑄∗1 is Fredholm).

In this case, we define ind (𝛤,𝑈) := ind𝑄1, where the right hand side is the Fredholm index of 𝑄1.

We are now in a position to state the main theorem of the current chapter;

Theorem B. Let 𝑚 be a fixed non-zero integer, and let 𝛤𝑚,𝑈𝑚 be two block-operator matrices on ℓ2(Z,C2) =

ℓ2(Z) ⊕ ℓ2(Z) defined respectively by

𝛤𝑚 :=
©«
1 0

0 𝐿−𝑚

ª®®¬
©«

𝑝
√︁

1 − 𝑝2√︁
1 − 𝑝2 −𝑝

ª®®¬
©«
1 0

0 𝐿𝑚

ª®®¬ , (III.1)

𝑈𝑚 :=
©«
1 0

0 𝐿−𝑚

ª®®¬
©«

𝑝
√︁

1 − 𝑝2√︁
1 − 𝑝2 −𝑝

ª®®¬
©«
1 0

0 𝐿𝑚

ª®®¬
©«

𝑒−2𝛾(·+1)𝑎 𝑒𝛾−𝛾(·+1)
√

1 − 𝑎2

𝑒𝛾−𝛾(·+1)
√

1 − 𝑎2 −𝑒2𝛾𝑎

ª®®¬ , (III.2)

where 𝛾 = (𝛾(𝑥))𝑥∈Z is a bounded R-valued sequence, and where 𝑝 = (𝑝(𝑥))𝑥∈Z, 𝑎 = (𝑎(𝑥))𝑥∈Z are two

R-valued sequences satisfying 𝑝(𝑥), 𝑎(𝑥) ∈ [−1, 1] for each 𝑥 ∈ Z. If a limit of the form (I.8) exists for each

69
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★ = −∞, +∞ and each Z = 𝛾, 𝑝, 𝑎, then the following two assertions hold true:

(i) Index formula. For each ★ = −∞, +∞, we let

𝑝𝛾 (★) :=
𝑝(★)√︃

𝑝(★)2 + (1 − 𝑝(★)2) cosh2(2𝛾(★))
. (III.3)

Then the chiral pair (𝛤𝑚,𝑈𝑚) is Fredholm if and only if |𝑝𝛾 (★) | ≠ |𝑎(★) | for each ★ = −∞, +∞. In this

case, we have ind (𝛤𝑚,𝑈𝑚) ∈ {−2𝑚,−𝑚, 0, 𝑚, 2𝑚}, and

ind (𝛤𝑚,𝑈𝑚)
𝑚

=



0, |𝑝𝛾 (−∞)| < |𝑎(−∞)| and |𝑝𝛾 (+∞)| < |𝑎(+∞)|,

+sign 𝑝(+∞), |𝑝𝛾 (−∞)| < |𝑎(−∞)| and |𝑝𝛾 (+∞)| > |𝑎(+∞)|,

−sign 𝑝(−∞), |𝑝𝛾 (−∞)| > |𝑎(−∞)| and |𝑝𝛾 (+∞)| < |𝑎(+∞)|,

sign 𝑝(+∞) − sign 𝑝(−∞), |𝑝𝛾 (−∞)| > |𝑎(−∞)| and |𝑝𝛾 (+∞)| > |𝑎(+∞)|,

(III.4)

where the sign function sign is defined by (I.28).

(ii) Essential spectrum. There exist two subsets 𝜎(−∞), 𝜎(+∞) of T ∪ R, such that

𝜎ess(𝑈𝑚) = 𝜎(−∞) ∪ 𝜎(+∞).

More precisely, for each ★ = −∞, +∞ the set 𝜎(★) is given explicitly by the following formulas:

𝑠(★) := sign (𝑝(★)𝑎(★)), (III.5)

Λ±(★) := |𝑝(★)𝑎(★) | cosh(2𝛾(★)) ±
√︃
(1 − 𝑝(★)2) (1 − 𝑎(★)2), (III.6)

𝜎(★) :=
⋃

𝑛∈{−1,1}

{(
𝑥 +

√︁
𝑥2 − 1

)𝑛 ��� 𝑠(★)𝑥 ∈ [Λ−(★),Λ+(★)]} . (III.7)

Furthermore, for each ★ = −∞, +∞, there exists a well-defined closed interval [𝛾−(★), 𝛾+(★)] ⊆ [0,∞],

such that the set 𝜎(★) admits the following further classification:

Case I. If |𝛾(★) | ≤ 𝛾−(★), then [Λ−(★),Λ+(★)] ⊆ [−1, 1], and so 𝜎(★) is a subset of T.

Case II. If 𝛾−(★) < |𝛾(★) | < 𝛾+(★), then [Λ−(★), 1] ⊆ [−1, 1] and [1,Λ+(★)] ⊆ [1,∞), and so

𝜎(★) is a connected subset of T ∪ R containing 𝑠(★).

Case III. If 𝛾+(★) ≤ |𝛾(★) |, then [Λ−(★),Λ+(★)] ⊆ [1,∞), and so 𝜎(★) is a subset of R.
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More precisely, for each ★ = −∞, +∞, the two numbers 𝛾−(★), 𝛾+(★) mentioned above are given by

𝛾±(★) :=


1
2 cosh−1

(
1±
√
(1−𝑝(★)2) (1−𝑎(★)2)
|𝑝(★)𝑎(★) |

)
, 𝑝(★)𝑎(★) ≠ 0,

∞, 𝑝(★)𝑎(★) = 0,
(III.8)

where cosh−1 denotes the inverse function of [0,∞) 3 𝑥 ↦−→ cosh 𝑥 ∈ [1,∞).

Remark III.2. We have the following remarks:

(i) If 𝛾 is identically 0 and if 𝑚 = 1, then (𝛤1,𝑈1) = (𝛤suz,𝑈suz) with 𝑝𝛾 (★) = 𝑝(★). It is easy to see that in

this case the index formula (III.4) becomes the previously mentioned formula (II.144).

(ii) If 𝛾 is identically 0, then 𝑈𝑚 fails to be unitary. In particular, if 𝑚 = 2, then 𝑈2 turns out to be unitarily

equivalent to a certain well-known non-unitary model in the physics literature (see §IV.3 for details).

Note that Figure III.1 below helps us to visualise the classification of the subset 𝜎(★) of T ∪ R in Theo-

rem B (ii).

Case I

|𝛾(★) | ≤ 𝛾−(★)

Re

Im

Case II

𝛾−(★) < |𝛾(★) | < 𝛾+(★)

Re

Im

Case III

𝛾+(★) ≤ |𝛾(★) |

Re

Im

Figure III.1: For each★ = −∞, +∞, the subset 𝜎(★) of T∪R is classified into Cases I, II, III as above according to the size of |𝛾(★) |.

With (III.5) in mind, if 𝑠(★) = 1 (resp. if 𝑠(★) = −1), then the black regions (resp. gray regions) in each of the above three cases

depict the subset 𝜎(★). Therefore, there are six distinct cases in total. In particular, 𝜎(★) is a connected subset of T ∪ R containing

either −1 or +1 in Case II.

More explicit formulas for 𝜎(★) will be given shortly in §III.2.2. The proof of Theorem B will be deferred

to §III.3, and we directly proceed to the following discussion;
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III.2 Discussion

III.2.1 Symmetry protection of bound states for non-unitary quantum walks

Whether or not an estimate analogous to (I.20) holds true for non-unitary𝑈 is a highly non-trivial open question.

This problem is in fact far beyond the scope of the present thesis. Nevertheless, it is expected that Theorem B

forms a basis for further investigation into symmetry protection of eigenstates for non-unitary quantum walks

based on the following reasons. Firstly, Theorem B (i) states that the index ind (𝛤,𝑈) on the left hand side of

(I.20) remains as a robust quantity, even if we consider the non-unitary variant of Suzuki’s split-step quantum

walk characterised by (III.1) to (III.2). Evidently, we are required to make an appropriate modification to the

right hand side of (I.20) somehow. To do so, the following procedure might be useful. With the notation

introduced in Theorem B, if we let 𝛾(𝑥) = 0 for each 𝑥 ∈ Z, then the evolution operator 𝑈𝑚 becomes a unitary

operator. We can then alter the asymptotic values 𝑝(★), 𝑎(★) in such a way that the index (III.4) becomes non-

zero, in which case (I.20) ensures the existence of at least one eigenvalue _0 ∈ {−1, +1}. As we monotonically

increase 𝛾(★) from 0, the evolution operator 𝑈𝑚 becomes non-unitary. In this case, we might be able to keep

track of the continuous movement of the eigenvalue _0 in a mathematically rigorous fashion; one of the obvious

candidates for this investigation is the transfer matrix method (see, for example, [KS21]), since it is applicable

to non-unitary time-evolutions. This is work in progress.

III.2.2 The gapless case

We start with the following result;

Theorem III.3. With the notation introduced in Theorem B, suppose that the following two conditions hold

true for each ★ = −∞, +∞ :

|𝑝𝛾 (★) | ≠ |𝑎(★) |, 𝛾−(★) < |𝛾(★) | < 𝛾+(★). (III.9)

Then (𝛤𝑚,𝑈𝑚) is Fredholm, yet the essential spectrum of 𝑈𝑚 contains −1 or 1. That is, the characterisation

(II.4) does not hold true in general for non-unitary𝑈.
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Proof. Let us first start with the following explicit classification of 𝜎ess(𝑈𝑚).We consider theR-valued function

𝑔 defined by

𝑔(𝑥) := 𝑥 +
√︁
𝑥2 − 1, 𝑥 ∈ (−∞,−1] ∪ [1,∞).

Figure III.2 shows the graphs of 𝑔, 1/𝑔;

−1 1
−1

1
𝑥

𝑦
𝑦 = 𝑔(𝑥)
𝑦 = 1

𝑔(𝑥)

Figure III.2: The black graph corresponds to 𝑔, while the gray graph corresponds to 1/𝑔.

Evidently, 𝑔(𝑥)𝑔(−𝑥)−1 = −1 for |𝑥 | ≥ 1. It follows that for each★ = −∞, +∞ the set 𝜎(★) is classified into

the following six distinct cases:

Case I. If |𝛾(★) | ≤ 𝛾−(★), then

𝜎(★) =


{
𝑥 ± 𝑖
√

1 − 𝑥2
}
𝑥∈[Λ− (★),Λ+ (★)]

, 𝑠(★) = 1,{
𝑥 ± 𝑖
√

1 − 𝑥2
}
𝑥∈[−Λ+ (★),−Λ− (★)]

, 𝑠(★) = −1.

Case II. If 𝛾−(★) < |𝛾(★) | < 𝛾+(★), then

𝜎(★) =


{
𝑥 ± 𝑖
√

1 − 𝑥2
}
𝑥∈[Λ− (★),1]

∪ [𝑔(Λ+(★))−1, 𝑔(Λ+(★))], 𝑠(★) = 1,{
𝑥 ± 𝑖
√

1 − 𝑥2
}
𝑥∈[−1,−Λ− (★)]

∪ [−𝑔(Λ+(★)),−𝑔(Λ+(★))−1], 𝑠(★) = −1.

Case III. If 𝛾+(★) ≤ |𝛾(★) |, then

𝜎(★) =


[𝑔(Λ+(★))−1, 𝑔(Λ−(★))−1] ∪ [𝑔(Λ−(★)), 𝑔(Λ+(★))], 𝑠(★) = 1,

[−𝑔(Λ+(★)),−𝑔(Λ−(★))] ∪ [−𝑔(Λ−(★))−1,−𝑔(Λ+(★))−1], 𝑠(★) = −1.

It immediately follows from Theorem B and (III.9) that (𝛤𝑚,𝑈𝑚) is Fredholm, and that 𝜎ess(𝑈𝑚) = 𝜎(−∞) ∪

𝜎(+∞). In particular, for each ★ = −∞, +∞, the set 𝜎(★) is classified as Case II. That is, each 𝜎(★) is a

connected subset of T ∪ R containing either −1 or +1. The claim follows. �
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Theorem III.3 motivates us to consider the following explicit example;

Example III.4. Let (𝛤𝑚,𝑈𝑚) be the chiral pair in Theorem B. Let

𝛾0 := 0.7, 𝑝0 := 0.7, 𝑎0 := 0.3.

If 𝑎(±∞) := ±𝑎0 and 𝑝(±∞) := ±𝑝0, then (III.8) becomes

𝛾− (−∞) = 𝛾− (+∞) =
1
2

cosh−1 ©«
1 −

√︃
1 − 𝑝2

0

√︃
1 − 𝑎2

0

|𝑝0𝑎0 |
ª®®¬ ≈ 0.4891,

𝛾+ (−∞) = 𝛾+ (+∞) =
1
2

cosh−1 ©«
1 +

√︃
1 − 𝑝2

0

√︃
1 − 𝑎2

0

|𝑝0𝑎0 |
ª®®¬ ≈ 1.3847.

If we let 𝛾(±∞) := 𝛾0, then 𝛾− (±∞) < |𝛾0 | < 𝛾+ (±∞). It follows from Theorem B (ii) that 𝜎ess (𝑈𝑚) = 𝜎(−∞) = 𝜎(+∞), since

𝑠(−∞) = 𝑠(+∞) = 1 and Λ± (−∞) = Λ± (+∞) =: Λ±.

𝜎ess (𝑈𝑚) = {𝑧 ∈ T | Re 𝑧 ∈ [Λ−, 1]} ∪ [𝑔(Λ+)−1, 𝑔(Λ+)],

Λ± = 𝑝0𝑎0 cosh(2𝛾0) ±
√︃

1 − 𝑝2
0

√︃
1 − 𝑎2

0.

The connected black region in Case II of Figure III.1 depicts the subset 𝜎ess (𝑈𝑚) containing 1. Furthermore, (III.3) becomes

|𝑝𝛾 (±∞)| =
|𝑝0 |√︃

𝑝2
0 + (1 − 𝑝

2
0) cosh2 (2𝛾0)

≈ 0.4147 > |𝑎(±∞)| = 0.3.

It follows that (𝛤𝑚,𝑈𝑚) is Fredholm, and that ind (𝛤𝑚,𝑈𝑚) = 𝑚(+1−(−1)) = 2𝑚 by the index formula (III.4). That is, we have chosen

the asymptotic values 𝛾(±∞), 𝑝(±∞), 𝑎(±∞), in such a way that the essential spectrum of𝑈𝑚 is gapless at 1, yet ind (𝛤𝑚,𝑈𝑚) = 2𝑚

is well-defined.

III.2.3 Numerical spectral analysis

It is shown in Theorem B (ii) that 𝜎ess(𝑈𝑚) is a subset of R ∪ T under the assumption that a limit of the form

(I.8) exists for each ★ = −∞, +∞ and each Z = 𝛾, 𝑝, 𝑎. The purpose of the current subsection is to numerically

show that this is not the case in general, if we replace (I.8) by the asymptotically periodic assumption (I.10);

Lemma III.5. For each ★ = −∞, +∞ let

Z (★, 𝑚) := lim
𝑥→★

Z (2𝑥 + 𝑚), Z ∈ {𝛾, 𝑝, 𝑎}, 𝑚 = 0, 1.
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Then the essential spectrum of𝑈𝑚 is given by

𝜎ess(𝑈𝑚) =
⋃
★=±∞

⋃
𝑧∈T

𝜎
(
�̂�𝑚 (★, 𝑧)

)
, (III.10)

�̂�𝑚 (★, 𝑧) := ©«
𝑝(★,0)𝑎(★,0)𝑒−2𝛾 (★,1) 𝑞(★,0)𝑏(★,1)𝑒𝛾 (★,1)−𝛾 (★,0) 𝑝(★,0)𝑏(★,0)𝑒𝛾 (★,0)−𝛾 (★,1) −𝑞(★,0)𝑎(★,1)𝑒2𝛾 (★,1)

𝑞(★,1)𝑏(★,0)𝑒𝛾 (★,0)−𝛾 (★,1) 𝑧 𝑝(★,1)𝑎(★,1)𝑒−2𝛾 (★,0) −𝑞(★,1)𝑎(★,0)𝑒2𝛾 (★,0) 𝑧 𝑝(★,1)𝑏(★,1)𝑒𝛾 (★,1)−𝛾 (★,0)
−𝑝(★,1)𝑏(★,0)𝑒𝛾 (★,0)−𝛾 (★,1) 𝑞(★,1)𝑎(★,1)𝑒−2𝛾 (★,0) 𝑧∗ 𝑝(★,1)𝑎(★,0)𝑒2𝛾 (★,0) 𝑞(★,1)𝑏(★,1)𝑒𝛾 (★,1)−𝛾 (★,0) 𝑧∗
𝑞(★,0)𝑎(★,0)𝑒−2𝛾 (★,1) −𝑝(★,0)𝑏(★,1)𝑒𝛾 (★,1)−𝛾 (★,0) 𝑞(★,0)𝑏(★,0)𝑒𝛾 (★,0)−𝛾 (★,1) 𝑝(★,0)𝑎(★,1)𝑒2𝛾 (★,1)

ª®¬
(III.11)

Proof. For simplicity, let𝑈 = 𝑈1. Note that we have

𝑈 =
©«

0𝐿−1 + 𝑝𝑒−2𝛾(·+1)𝑎 + 𝑞𝑏(· + 1)𝑒𝛾(·+1)−𝛾(·+2)𝐿 0𝐿−1 + 𝑝𝑏𝑒𝛾−𝛾(·+1) − 𝑞𝑎(· + 1)𝑒2𝛾(·+1)𝐿

𝑞(· − 1)𝑎(· − 1)𝑒−2𝛾𝐿−1 − 𝑝(· − 1)𝑏𝑒𝛾−𝛾(·+1) + 0𝐿 𝑞(· − 1)𝑏(· − 1)𝑒𝛾(·−1)−𝛾𝐿−1 + 𝑝(· − 1)𝑎𝑒2𝛾 + 0𝐿

ª®®¬
=:

©«
𝑈11 𝑈12

𝑈21 𝑈22

ª®®¬ .
We introduce the following matrices according to Theorem II.8 (ii) and to (II.58);

�̂�𝑚 (★, 𝑧) :=
©«
�̂�11(★, 𝑧) �̂�12(★, 𝑧)

�̂�12(★, 𝑧) �̂�22(★, 𝑧)

ª®®¬ ,
where

�̂�11(★, 𝑧) :=
©«

𝑝(★, 0)𝑎(★, 0)𝑒−2𝛾(★,1) 𝑞(★, 0)𝑏(★, 1)𝑒𝛾(★,1)−𝛾(★,0)

𝑞(★, 1)𝑏(★, 0)𝑒𝛾(★,0)−𝛾(★,1)𝑧 𝑝(★, 1)𝑎(★, 1)𝑒−2𝛾(★,0)

ª®®¬ ,
�̂�12(★, 𝑧) :=

©«
𝑝(★, 0)𝑏(★, 0)𝑒𝛾(★,0)−𝛾(★,1) −𝑞(★, 0)𝑎(★, 1)𝑒2𝛾(★,1)

−𝑞(★, 1)𝑎(★, 0)𝑒2𝛾(★,0)𝑧 𝑝(★, 1)𝑏(★, 1)𝑒𝛾(★,1)−𝛾(★,0)

ª®®¬ ,
�̂�21(★, 𝑧) :=

©«
−𝑝(★, 1)𝑏(★, 0)𝑒𝛾(★,0)−𝛾(★,1) 𝑞(★, 1)𝑎(★, 1)𝑒−2𝛾(★,0)𝑧∗

𝑞(★, 0)𝑎(★, 0)𝑒−2𝛾(★,1) −𝑝(★, 0)𝑏(★, 1)𝑒𝛾(★,1)−𝛾(★,0)

ª®®¬ ,
�̂�22(★, 𝑧) :=

©«
𝑝(★, 1)𝑎(★, 0)𝑒2𝛾(★,0) 𝑞(★, 1)𝑏(★, 1)𝑒𝛾(★,1)−𝛾(★,0)𝑧∗

𝑞(★, 0)𝑏(★, 0)𝑒𝛾(★,0)−𝛾(★,1) 𝑝(★, 0)𝑎(★, 1)𝑒2𝛾(★,1)

ª®®¬ .
It follows that �̂�𝑚 (★, 𝑧) is consistent with (III.11), and that (III.10) holds true by Theorem II.8 (ii). �
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It follows from Lemma III.5 that in order to determine 𝜎ess(𝑈𝑚) it is necessary to compute the eigenvalues

of the 4 × 4 matrix �̂�𝑚 (★, 𝑧) defined by (III.11). We consider the following Mathematica code in order to plot⋃
𝑧∈T 𝜎(�̂�𝑚 (★, 𝑧)).

� �
ClearAll["Global‘∗"]
ComplexSplit = Function[z, {Re@z, Im@z}, Listable];
Tex[tex_] := ToString[ToExpression[tex, TeXForm, HoldForm], TraditionalForm];
U1[p0_, p1_, q0_, q1_, a0_, a1_, b0_, b1_, z_, gamma0_, gamma1_] :=

{
{p0∗a0∗Exp[−2 gamma1], q0∗b1∗Exp[gamma1 − gamma0], p0∗b0∗Exp[gamma0 − gamma1], −q0∗a1∗Exp[2 gamma1]},
{q1∗b0∗Exp[gamma0 − gamma1]∗z, p1∗a1∗Exp[−2 gamma0], −q1∗a0∗z∗Exp[2 gamma0], p1∗b1∗Exp[gamma1 − gamma0]},
{−p1∗b0∗Exp[gamma0 − gamma1], q1∗a1∗Conjugate[z]∗Exp[−2 gamma0], p1∗a0∗Exp[2 gamma0], q1∗b1∗Exp[gamma1 − gamma0]∗Conjugate[z]},
{q0∗a0∗Exp[−2 gamma1], −p0∗b1∗Exp[gamma1 − gamma0], q0∗b0∗Exp[gamma0 − gamma1], p0∗a1∗Exp[2 gamma1]}

};
U2[p0_, p1_, a0_, a1_, z_, gamma0_, gamma1_] := U1[p0, p1, Sqrt[1 − (p0)^2], Sqrt[1 − (p1)^2], a0, a1, Sqrt[1 − (a0)^2], Sqrt[1 − (a1)^2], z, gamma0, gamma1];
ExactEigenvalues[p0_, p1_, a0_, a1_, t_, gamma0_, gamma1_] := ComplexSplit[Eigenvalues[U2[p0, p1, a0, a1, Exp[I∗t], gamma0, gamma1]]];
DiscretisedEigenvalues[p0_, p1_, a0_, a1_, gamma0_, gamma1_, n_, j_] := Table[Part[ExactEigenvalues[p0, p1, a0, a1, 2 Pi∗(k − 1)/n, gamma0, gamma1], j],{k, n + 1}];
CollectiveEigenvalues[p0_, p1_, a0_, a1_, gamma0_, gamma1_, n_] := Join[

DiscretisedEigenvalues[p0, p1, a0, a1, gamma0, gamma1, n, 1], DiscretisedEigenvalues[p0, p1, a0, a1, gamma0, gamma1, n, 2],
DiscretisedEigenvalues[p0, p1, a0, a1, gamma0, gamma1, n, 3], DiscretisedEigenvalues[p0, p1, a0, a1, gamma0, gamma1, n, 4]

];

Manipulate[
circle = ParametricPlot[{Cos[k], Sin[k]}, {k, 0, 2 Pi}, PlotStyle −> {Black, Thin}, PlotRange −> {{−width, width}, {−1.2, 1.2}}, Ticks −> Automatic];
plot = ListPlot[CollectiveEigenvalues[p0, p1, a0, a1, gamma0, gamma1, number],
PlotStyle −> {Blue}, PlotMarkers −> {Automatic, thickness}];
Show[circle, plot],
{{gamma0, 0, Tex["\\gamma(\\star,0)"]}, 0, 2, 0.1, Appearance −> "Labeled"},
{{gamma1, 0, Tex["\\gamma(\\star,1)"]}, 0, 2, 0.1, Appearance −> "Labeled"},
{{p0, 0.1, Tex["p(\\star,0)" ]}, −1, 1, 0.1, Appearance −> "Labeled"},
{{p1, 0.1, Tex["p(\\star,1)" ]}, −1, 1, 0.1, Appearance −> "Labeled"},
{{a0, 0.1, Tex["a(\\star,0)" ]}, −1, 1, 0.1, Appearance −> "Labeled"},
{{a1, 0.1, Tex["a(\\star,1)" ]}, −1, 1, 0.1, Appearance −> "Labeled"},
{{width, 2, "Width"}, 1, 10, 0.1, Appearance −> "Labeled"},
{{thickness, 5, "Thickness"}, 1, 5, 1, Appearance −> "Labeled"},
{{number, 50, "Sample␣Number"}, 50, 1000, 50, Appearance −> "Labeled"}

]
� �

The above Mathematica code produces the following interactive object;

The image of the mapping z U m( , z)

( , 0) 0.2

( , 1) 1.2

p( , 0) -0.5

p( , 1) 0.4

a( , 0) -0.1

a( , 1) 0.2

Width 1.6

Thickness 2

Sample Number 1000

-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.9

-0.4

0.1

0.6

1.1

Figure III.3: It is shown in this figure that
⋃

𝑧∈T 𝜎(�̂�𝑚 (★, 𝑧)) is not a subset of R ∪ T, if we set

(𝛾(★, 0), 𝛾(★, 1), 𝑝(★, 0), 𝑝(★, 1), 𝑎(★, 0), 𝑎(★, 1)) := (0.2, 1.2,−0.5, 0.4,−0.1, 0.2).
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III.3 Proof of the main theorem (Theorem B)

We are now in a position to prove Theorem B via Theorem II.7 and the following unitary invariance property

of the index;

Lemma III.6. Let (𝛤0,𝑈0), (𝛤,𝑈) be two chiral pairs on Hilbert spacesH0,H respectively. If (𝛤0,𝑈0), (𝛤,𝑈)

are unitarily equivalent in the sense that (𝛤0,𝑈0) = (𝜖∗𝛤𝜖, 𝜖∗𝑈𝜖) for some unitary operator 𝜖 : H0 →H , then

(𝛤0,𝑈0) is Fredholm if and only if so is (𝛤,𝑈). In this case, we have ind (𝛤0,𝑈0) = ind (𝛤,𝑈).

Proof. The claim immediately follows from the proof of Lemma II.3 (ii). �

III.3.1 Proof of the index formula (Theorem B (i))

Notation. With the notation introduced in (III.2), we shall also make use of the following notation throughout

§III.3.1 for simplicity;

(𝛤,𝑈) := (𝛤𝑚,𝑈𝑚), 𝐶 :=
©«
𝛼1 𝛽∗

𝛽 𝛼2

ª®®¬ :=
©«
𝑒−2𝛾(·+1)𝑎 𝑒𝛾−𝛾(·+1)𝑏

𝑒𝛾−𝛾(·+1)𝑏 −𝑒2𝛾𝑎

ª®®¬ .
With the above notation, the operator𝑈 can be written as𝑈 = 𝛤𝐶.

In order to compute ind (𝛤,𝑈) we shall closely follow [Tan21, §3.2]. Note first that the underlying Hilbert

space ℓ2(Z,C2) admits the following two orthogonal decompositions:

ℓ2(Z,C2) = ker(𝛤 − 1) ⊕ ker(𝛤 + 1) = ℓ2(Z) ⊕ ℓ2(Z),

where ker(𝛤 ∓ 1) ≠ ℓ2(Z). On one hand, the imaginary part 𝑄 of 𝑈 admits an off-diagonal block operator

matrix representation with respect to the former decomposition as in the second equality of (II.1), where 𝑄0

is an operator of the form 𝑄0 : ker(𝛤 − 1) → ker(𝛤 + 1). On the other hand, the same operator 𝑄 can not

be expressed as an off-diagonal block-operator matrix with respect to the latter decomposition. Lemma III.6

motivates us to construct a unitary operator 𝜖 : ℓ2(Z) → ℓ2(Z), in such a way that the imaginary part 𝜖∗𝑄𝜖 of

𝜖∗𝑈𝜖 become off-diagonal with respect to ℓ2(Z) ⊕ ℓ2(Z).
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Lemma III.7. Let 𝑅,𝑄 be the real and imaginary parts of 𝑈 respectively. For each 𝑥 ∈ Z, let 𝑝±(𝑥) :=√︁
1 ± 𝑝(𝑥). Let

−2𝑖𝑄𝜖0 := 𝑝+𝐿𝑚𝛽𝑝+ − 𝑝−𝛽∗𝐿−𝑚𝑝− − |𝑞 | (𝛼1 − 𝛼2(· + 𝑚)), (III.12)

2𝑅𝜖1 := 𝑝−𝐿𝑚𝛽𝑝+ + 𝑝+𝛽∗𝐿−𝑚𝑝− + (1 + 𝑝)𝛼1 + (1 − 𝑝)𝛼2(· + 𝑚), (III.13)

2𝑅𝜖2 := 𝑝+𝐿𝑚𝛽𝑝− + 𝑝−𝛽∗𝐿−𝑚𝑝+ − (1 − 𝑝)𝛼1 − (1 + 𝑝)𝛼2(· + 𝑚). (III.14)

Then there exists a unitary operator 𝜖 on ℓ2(Z,C2), such that the following block-operator matrix representations

hold true with respect to ℓ2(Z,C2) = ℓ2(Z) ⊕ ℓ2(Z) :

𝜖∗𝛤𝜖 =
©«
1 0

0 −1

ª®®¬ , 𝜖∗𝑈𝜖 =
©«
𝑅𝜖1 𝑖𝑄∗𝜖0

𝑖𝑄𝜖0 𝑅𝜖2

ª®®¬ , 𝜖∗𝑅𝜖 =
©«
𝑅𝜖1 0

0 𝑅𝜖2

ª®®¬ , 𝜖∗𝑄𝜖 =
©«

0 𝑄∗𝜖0

𝑄𝜖0 0

ª®®¬ ,
Moreover, the chiral pair (𝛤,𝑈) is Fredholm if and only if 𝑄𝜖0 is Fredholm. In this case, we have

ind (𝛤,𝑈) = ind𝑄𝜖0 . (III.15)

The derivation of the formula (III.15) as described below only requires the boundedness of the given

sequences 𝛾, 𝑝, 𝑎, 𝑞, 𝑏, and so (I.8) turns out to be redundant. Note, however, that this assumption is necessary

to prove the index formula (III.4).

Proof. Note first that 𝛤 can be written as

𝛤 =
©«

𝑝 𝑞𝐿𝑚

𝐿−𝑚𝑞 −𝑝(· − 𝑚)

ª®®¬ =
©«
1 0

0 𝐿−𝑚

ª®®¬
©«
𝑝 𝑞

𝑞 −𝑝

ª®®¬
©«
1 0

0 𝐿𝑚

ª®®¬ ,
where the middle matrix on the right hand side of the second equality admits the following diagonalisation.

𝜖∗0
©«
𝑝 𝑞

𝑞 −𝑝

ª®®¬ 𝜖0 =
©«
1 0

0 −1

ª®®¬ , 𝜖0 :=
1
√

2

©«
𝑝+ −𝑝−

𝑝− 𝑝+

ª®®¬ . (III.16)

Since 𝜖0 is unitary, the following operator is also unitary;

𝜖 :=
©«
1 0

0 𝐿−𝑚

ª®®¬ 𝜖0 =
1
√

2

©«
1 0

0 𝐿−𝑚

ª®®¬
©«
𝑝+ −𝑝−

𝑝− 𝑝+

ª®®¬ .
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It follows from the first equality that

𝜖∗𝛤𝜖 = 𝜖∗0
©«
1 0

0 𝐿𝑚

ª®®¬
©«
1 0

0 𝐿−𝑚

ª®®¬
©«
𝑝 𝑞

𝑞 −𝑝

ª®®¬
©«
1 0

0 𝐿𝑚

ª®®¬
©«
1 0

0 𝐿−𝑚

ª®®¬ 𝜖0 =
©«
1 0

0 −1

ª®®¬ ,
where the last equality follows from (III.16).

Given an operator 𝑋 on ℓ2(Z,C2), we introduce the shorthand 𝑋𝜖 := 𝜖∗𝑋𝜖. With this convention in mind,

we have [𝛤𝜖 , 𝑅𝜖 ] = 0 = {𝛤𝜖 , 𝑄𝜖 }, where 𝛤𝜖 = 1 ⊕ (−1) with respect to ℓ2(Z,C2) = ℓ2(Z) ⊕ ℓ2(Z). It follows

that we have the following representations:

𝑅𝜖 =
©«
𝑅′𝜖1 0

0 𝑅′𝜖2

ª®®¬ , 𝑄𝜖 =
©«

0 (𝑄′𝜖0)
∗

𝑄′𝜖0 0

ª®®¬ , 𝑈𝜖 = 𝑅𝜖 + 𝑖𝑄𝜖 =
©«
𝑅′𝜖1 𝑖(𝑄′𝜖0)

∗

𝑖𝑄′𝜖0 𝑅′𝜖2

ª®®¬ . (III.17)

On one hand, we get

2𝐶𝜖 = 𝛤𝜖 (2𝑈𝜖 ) =
©«
1 0

0 −1

ª®®¬
©«

2𝑅′𝜖1 2𝑖(𝑄′𝜖0)
∗

2𝑖𝑄′𝜖0 2𝑅′𝜖2

ª®®¬ =
©«

2𝑅′𝜖1 2𝑖(𝑄′𝜖0)
∗

−2𝑖𝑄′𝜖0 −2𝑅′𝜖2

ª®®¬ . (III.18)

On the other hand, a direct computation gives

2𝐶𝜖 = 2𝜖∗
©«
0 𝛽∗

𝛽 0

ª®®¬ 𝜖 + 2𝜖∗
©«
𝛼1 0

0 𝛼2

ª®®¬ 𝜖 =
©«

2𝑅𝜖1 2𝑖𝑄∗𝜖0

−2𝑖𝑄𝜖0 −2𝑅𝜖2

ª®®¬ . (III.19)

By comparing (III.18) with (III.19), the three operators 𝑄′𝜖0 , 𝑅
′
𝜖1 , 𝑅

′
𝜖2 coincide with the ones defined by the

formulas (III.12) to (III.14).

On one hand, the operator 𝑄𝜖 admits the following representations;

𝑄𝜖 =
©«

0 𝑄∗𝜖0

𝑄𝜖0 0

ª®®¬ℓ2 (Z)⊕ℓ2 (Z)

=

©«

0 0 0 𝑄𝜖0

0 0 0 0

0 0 0 0

𝑄𝜖0 0 0 0

ª®®®®®®®®®®¬ℓ2 (Z)⊕{0}⊕{0}⊕ℓ2 (Z)

, (III.20)

where 0 denotes the zero operator of the form 0 : {0} → {0}. On the other hand, the imaginary part 𝑄𝜖 of 𝑈𝜖

admits the following off-diagonal block-operator matrix representation as in the second equality in (II.1);

𝑄𝜖 =
©«

0 (𝑄′0)
∗

𝑄′0 0

ª®®¬ker(𝛤𝜖−1)⊕ker(𝛤𝜖 +1)

=
©«

0 (𝑄′0)
∗

𝑄′0 0

ª®®¬(ℓ2 (Z)⊕{0})⊕({0}⊕ℓ2 (Z))

. (III.21)
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It follows from (III.20) to (III.21) that 𝑄′0 is an off-diagonal block-operator matrix of the form;

𝑄′0 =
©«

0 0

𝑄𝜖0 0

ª®®¬ .
Since 0 is a Fredholm operator of zero index, we have that 𝑄′0 is Fredholm if and only if 𝑄𝜖0 is Fredholm. In

this case, we have ind𝑄′0 = ind𝑄𝜖0 . The claim follows from Lemma III.6. �

We are now in a position to apply Theorem II.7 (i) to 𝑄𝜖0 . We introduce the following notation;

𝑐(★) := |𝑞(★) |𝑎(★) cosh(2𝛾(★)), (III.22)

𝑓 (★, 𝑧) :=
(𝑝(★) + 1)𝑏(★)𝑧𝑚 + (𝑝(★) − 1)𝑏(★)𝑧−𝑚 − 2𝑐(★)

−2𝑖
, (III.23)

where ★ = ±∞ and 𝑧 ∈ T. It follows from Theorem II.7 (i) that 𝐴 = 𝑄𝜖0 is Fredholm if and only if 𝑓 (★, ·) is

nowhere vanishing on T for each ★ = −∞, +∞. In this case, we have

ind (𝛤,𝑈) = ind 𝐴 = wn( 𝑓 (+∞, ·)) − wn( 𝑓 (−∞, ·)). (III.24)

It remains to compute the winding number of 𝑓 (★, ·).

Lemma III.8. For each ★ = −∞, +∞, let 𝑓 (★, ·) be defined by (III.22) to (III.23), and let 𝑝𝛾 (★) be defined by

(III.3). Then the function T 3 𝑧 ↦−→ 𝑓 (★, 𝑧) ∈ C is nowhere vanishing if and only if |𝑝𝛾 (★) | ≠ |𝑎(★) |. In this

case, we have

wn( 𝑓 (★, ·)) =


𝑚 · sign 𝑝(★), |𝑝𝛾 (★) | > |𝑎(★) |,

0, |𝑝𝛾 (★) | < |𝑎(★) |.
(III.25)

Proof. Let us first prove that the function T 3 𝑧 ↦−→ 𝑓 (★, 𝑧) ∈ C is nowhere vanishing if and only if

|𝑝(★)𝑏(★) | ≠ |𝑐(★) |, and that in this case

wn( 𝑓 (★, ·)) =


𝑚 · sign 𝑝(★), |𝑝(★)𝑏(★) | > |𝑐(★) |,

0, |𝑝(★)𝑏(★) | < |𝑐(★) |.
(III.26)

Let us consider the following function on R;

2𝐹 (𝑠) := ( |𝑝(★)𝑏(★) | + |𝑏(★) |)𝑒𝑖𝑠 + (|𝑝(★)𝑏(★) | − |𝑏(★) |)𝑒−𝑖𝑠, 𝑠 ∈ R.
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We have 2𝐹 (𝑠) = 2|𝑝(★)𝑏(★) | cos 𝑠 + 𝑖2|𝑏(★) | sin 𝑠 for each 𝑠 ∈ R. Since 𝑝(★) = sign 𝑝(★) |𝑝(★) |, we get the

following for each 𝑡 ∈ [0, 2𝜋];

−2𝑖 𝑓 (★, 𝑒𝑖𝑡) + 2𝑐(★) = (𝑝(★) + 1)𝑏(★)𝑒𝑖𝑚𝑡 + (𝑝(★) − 1)𝑏(★)𝑒−𝑖𝑚𝑡

= sign 𝑝(★) · 2𝐹 (sign 𝑝(★)𝑚𝑡)).

It follows that −𝑖 𝑓 (★, 𝑒𝑖𝑡) = sign 𝑝(★) · 𝐹 (sign 𝑝(★)𝑚𝑡) − 𝑐(★) for each 𝑡 ∈ [0, 2𝜋], where the constant −𝑖

does not play any significant role in this proof. On one hand, if 𝑝(★)𝑏(★) = 0, then the image of the function

−𝑖 𝑓 (★, ·) coincides with that of the vertical line segment [−1, 1] 3 𝑡 ↦−→ −𝑐(★) + 𝑖 |𝑏(★) |𝑡 ∈ C passing through

−𝑐(★). That is, the function 𝑓 (★, ·) is nowhere vanishing if and only if |𝑐(★) | ≠ 0 = |𝑝(★)𝑏(★) |, and in this

case wn( 𝑓 (★, ·)) = 0. This is a special case of (III.26). On the other hand, if 𝑝(★)𝑏(★) ≠ 0, then the image of

−𝑖 𝑓 (★, ·) is an ellipse as in Figure III.4. The winding number of the curve [0, 2𝜋] 3 𝑡 ↦−→ −𝑖 𝑓 (★, 𝑒𝑖𝑡) ∈ C with

respect to its center −𝑐(★) on the real axis is 𝑚 · sign 𝑝(★).

−𝑐(★) − |𝑝(★)𝑏(★) | −𝑐(★) + |𝑝(★)𝑏(★) |−𝑐(★)
Re

Figure III.4: This figure shows the image of the curve [0, 2𝜋] 3 𝑡 ↦−→ −𝑖 𝑓 (★, 𝑒𝑖𝑡 ) ∈ C.

If |𝑝(★)𝑏(★) | > |𝑐(★) |, then the origin is inside the interior of the ellipse, and so wn( 𝑓 (★, ·)) = wn(−𝑖 𝑓 (★, ·)) =

𝑚 ·sign 𝑝(★). If |𝑝(★)𝑏(★) | < |𝑐(★) |, then the origin is inside the exterior of the ellipse, and so wn( 𝑓 (★, ·)) = 0.

Clearly, the curve [0, 2𝜋] 3 𝑡 ↦−→ −𝑖 𝑓 (★, 𝑒𝑖𝑡) ∈ C passes through the origin if and only if |𝑝(★)𝑏(★) | = |𝑐(★) |.

It follows that (III.26) holds true.

It remains to check that (III.26) coincides with (III.25). If the notation ≶ simultaneously denotes >, =, <,

then |𝑝(★)𝑏(★) | ≶ |𝑐(★) | if and only if 𝑝(★)2(1 − 𝑎(★)2) ≶ |𝑞(★) |2𝑎(★)2 cosh2(2𝛾(★)). It follows from the
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obvious rearrangement that |𝑝(★)𝑏(★) | ≶ |𝑐(★) | if and only if |𝑝𝛾 (★) | ≶ |𝑎(★) |. The claim follows. �

Proof of Theorem B (i). The index formula (III.4) immediately follows from (III.24) and (III.25). �

III.3.2 Proof of the classification formula (Theorem B (ii))

Proof of Theorem B (ii). Note first that𝑈𝑚 is a strictly local operator of the form

𝑈𝑚 =
©«

𝑝𝑒−2𝛾(·+1)𝑎 + 𝑞𝐿𝑚𝑒𝛾−𝛾(·+1)𝑏 𝑝𝑒𝛾−𝛾(·+1)𝑏 − 𝑞𝐿𝑚𝑒2𝛾𝑎

𝐿−𝑚𝑞𝑒−2𝛾(·+1)𝑎 − 𝑝(· − 𝑚)𝑒𝛾−𝛾(·+1)𝑏 𝐿−𝑚𝑞𝑒𝛾−𝛾(·+1)𝑏 + 𝑝(· − 𝑚)𝑒2𝛾𝑎

ª®®¬ .
For each ★ = −∞, +∞, we let

𝑈𝑚 (★) :=
©«
𝑞(★)𝑏(★)𝐿𝑚 + 𝑝(★)𝑎(★)𝑒−2𝛾(★) −𝑞(★)𝑎(★)𝑒2𝛾(★)𝐿𝑚 + 𝑝(★)𝑏(★)

𝑞(★)𝑎(★)𝑒−2𝛾(★)𝐿−𝑚 − 𝑝(★)𝑏(★) 𝑞(★)𝑏(★)𝐿−𝑚 + 𝑝(★)𝑎(★)𝑒2𝛾(★)

ª®®¬ .
The above 2 × 2 matrix with 𝐿 replaced by the complex variable 𝑧 ∈ T will be denoted by �̂�𝑚 (★, 𝑧). It follows

from Theorem II.7 (ii) that

𝜎ess(𝑈𝑚) = 𝜎ess(𝑈𝑚 (−∞)) ∪ 𝜎ess(𝑈𝑚 (+∞)),

𝜎ess(𝑈𝑚 (★)) =
⋃
𝑧∈T

𝜎
(
�̂�𝑚 (★, 𝑧)

)
, ★ = ±∞.

Let us first prove that 𝜎′(★) :=
⋃
𝑡∈[0,2𝜋] 𝜎

(
�̂�𝑚 (★, 𝑒𝑖𝑡)

)
coincides with 𝜎(★) given by (III.7) for each fixed

★ = ±∞. Let

�̂�𝑚 (★, 𝑒𝑖𝑡) =:
©«
𝑋1(𝑒𝑖𝑡) −𝑌1(𝑒𝑖𝑡)

𝑌2(𝑒𝑖𝑡) 𝑋2(𝑒𝑖𝑡)

ª®®¬ , 𝑡 ∈ [0, 2𝜋] .

We obtain the following two equalities for each 𝑡 ∈ [0, 2𝜋] :

tr �̂�𝑚 (★, 𝑒𝑖𝑡)
2

= 𝑝(★)𝑎(★) cosh(2𝛾(★)) + |𝑞(★)𝑏(★) | cos(𝑚𝑡),

det �̂�𝑚 (★, 𝑒𝑖𝑡) = 1.

This result motivates us to introduce the following notation;

Λ(★, 𝑠) := 𝑝(★)𝑎(★) cosh(2𝛾(★)) + |𝑞(★)𝑏(★) |𝑠, − 1 ≤ 𝑠 ≤ 1,

_±(★, 𝑠) := Λ(★, 𝑠) ±
√︁
Λ(★, 𝑠)2 − 1, − 1 ≤ 𝑠 ≤ 1.
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Indeed, for each 𝑡 ∈ [0, 2𝜋] the eigenvalues of �̂�𝑚 (★, 𝑒𝑖𝑡) are given by

tr �̂�𝑚 (★, 𝑒𝑖𝑡) ±
√︁
(tr �̂�𝑚 (★, 𝑒𝑖𝑡))2 − 4
2

= _±(★, cos(𝑚𝑡)).

We have

𝜎′(★) =
⋃

𝑡∈[0,2𝜋]
𝜎

(
�̂�𝑚 (★, 𝑒𝑖𝑡)

)
=

⋃
𝑠∈[−1,1]

{_±(★, 𝑠)} =
⋃

𝑠∈[−1,1]
{_+(★, 𝑠)±1},

where the second equality follows from the fact that the range of the cosine function is [−1, 1], and the

last equality follows from _+(★, 𝑡)_−(★, 𝑡) = 1 for each 𝑡 ∈ [0, 2𝜋] . It follows that 𝜎′(★) = 𝜎(★), and so

𝜎ess(𝑈𝑚) = 𝜎(−∞) ∪ 𝜎(+∞). Note first that (III.8) is well-defined, because of the following estimate;

|𝑝(★)𝑎(★) | + |𝑞(★)𝑏(★) | ≤ |𝑝(★) |
2 + |𝑎(★) |2

2
+ |𝑞(★) |

2 + |𝑏(★) |2
2

≤ 1.

Note also that [Λ−(★),Λ+(★)] ⊆ [−1,∞) follows from

−1 ≤ −|𝑞(★)𝑏(★) | ≤ |𝑝(★)𝑎(★) | cosh(2𝛾(★)) − |𝑞(★)𝑏(★) | = Λ−(★).

If 𝑝(★)𝑎(★) = 0, then Λ+(★) = |𝑞(★)𝑏(★) | ≤ 1. This is a special case of Case I, since 𝛾−(★) = 𝛾+(★) = ∞

according to (III.8). It remains to consider the case 𝑝(★)𝑎(★) ≠ 0. We shall make use of the fact that the

hyperbolic cosine is an even function throughout. It follows from (III.8) that

|𝑝(★)𝑎(★) | cosh(2𝛾±(★)) = 1 ± |𝑞(★)𝑏(★) |. (III.27)

Case I. If |𝛾(★) | ≤ 𝛾−(★), then

Λ+(★) ≤ |𝑝(★)𝑎(★) | cosh(2𝛾−(★)) + |𝑞(★)𝑏(★) | = 1,

where the first inequality follows from cosh(2𝛾(★)) ≤ cosh(2𝛾−(★)), and the last equality follows from (III.27).

Thus [Λ−(★),Λ+(★)] ⊆ [−1, 1] .

Case II. If 𝛾−(★) < |𝛾(★) | < 𝛾+(★), then it follows from (III.27) that Λ−(★) < 1 < Λ+(★). It follows that the

interval [Λ−(★),Λ+(★)] ⊆ [−1,∞) can be written as [Λ−(★),Λ+(★)] = [Λ−(★), 1] ∪ [1,Λ+(★)] .

Case III. If 𝛾+(★) ≤ |𝛾(★) |. Then [Λ−(★),Λ+(★)] ⊆ [1,∞) follows from

1 = |𝑝(★)𝑎(★) | cosh(2𝛾+(★)) − |𝑞(★)𝑏(★) | ≤ Λ−(★),
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where the first equality follows from (III.27) and the last inequality follows from cosh(2𝛾+(★)) ≤ cosh(2𝛾(★)).

�

On a final note, a typical computation of the essential spectrum makes use of the discrete Fourier transform

and Weyl’s criterion in the setting of 2-phase quantum walks (see, for example, [FFS17, Lemma 3.3]). Weyl’s

criterion is applicable to, for example, non-compact perturbations (see, for example, [SS17]), but its usage is

restricted to normal operators. This is why the method described above is not suitable for proving Theorem B (ii).



Chapter IV

Unitary Transforms of Some One-dimensional

Quantum Walks

The following one-dimensional models in the physics literature can be viewed as variants of the non-unitary

model𝑈𝑚 defined by (III.2):

• Kitagawa’s split-step quantum walk [KRBD10, Kit+12, Kit12].

• Mochizuki-Kim-Obuse model [MKO16].

The purpose of this supplementary chapter is to show that 𝑈𝑚 completely unifies the above two models. We

start with the following preliminary section.

IV.1 Elimination of the phase terms

Theorem IV.1. Let 𝑚 ∈ Z \ {0}, and let

𝑆 :=
©«
𝛼1 𝛽1𝐿

𝑚

𝐿−𝑚𝛽∗1 𝛼′1(· − 𝑚)

ª®®¬ , 𝐶 :=
©«
𝛼2 𝛽2

𝛽∗2 𝛼′2

ª®®¬ , (IV.1)

85
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where 𝛼1, 𝛼
′
1, 𝛼2, 𝛼

′
2 are boundedR-valued sequences, and where 𝛽1, 𝛽2 are boundedC-valued sequences. Then

there exist R-valued sequences 𝑓 , 𝑔, such that the following two equalities hold true:

©«
𝑒−𝑖 𝑓 0

0 𝑒−𝑖𝑔

ª®®¬ 𝑆
©«
𝑒𝑖 𝑓 0

0 𝑒𝑖𝑔

ª®®¬ =
©«

𝛼1 |𝛽1 |𝐿𝑚

𝐿−𝑚 |𝛽1 | 𝛼′1(· − 𝑚)

ª®®¬ ,©«
𝑒−𝑖 𝑓 0

0 𝑒−𝑖𝑔

ª®®¬𝐶
©«
𝑒𝑖 𝑓 0

0 𝑒𝑖𝑔

ª®®¬ =
©«
𝛼2 |𝛽2 |

|𝛽2 | 𝛼′2

ª®®¬ .
Note that this unitary transform is strongly based on the method of proof of [NOW21, Corollary 4.4], and

we give a direct proof merely for the convenience of the reader.

Proof. We only prove the case for 𝑚 > 0. For each 𝑗 = 1, 2, let \ 𝑗 = (\ 𝑗 (𝑥))𝑥∈Z be any R-valued sequence,

such that 𝛽 𝑗 (𝑥) = 𝑒𝑖\ 𝑗 (𝑥) |𝛽 𝑗 (𝑥) |. Note that we have

©«
𝑒−𝑖 𝑓 0

0 𝑒−𝑖𝑔

ª®®¬ 𝑆
©«
𝑒𝑖 𝑓 0

0 𝑒𝑖𝑔

ª®®¬ =
©«
1 0

0 𝐿−𝑦

ª®®¬
©«
𝑒−𝑖 𝑓 0

0 𝑒−𝑖𝑔(·+𝑚)

ª®®¬
©«
𝛼1 𝛽1

𝛽∗1 𝛼′1

ª®®¬
©«
𝑒𝑖 𝑓 0

0 𝑒𝑖𝑔(·+𝑚)

ª®®¬
©«
1 0

0 𝐿𝑚

ª®®¬ .
We obtain the following two unitary transforms of the given multiplication operators:

©«
𝑒−𝑖 𝑓 0

0 𝑒−𝑖𝑔(·+𝑚)

ª®®¬
©«
𝛼1 𝛽1

𝛽∗1 𝛼′1

ª®®¬
©«
𝑒𝑖 𝑓 0

0 𝑒𝑖𝑔(·+𝑚)

ª®®¬ =
©«

𝛼1 |𝛽1 |𝑒𝑖(\1+𝑔(·+𝑚)− 𝑓 )

|𝛽1 |𝑒−𝑖(\1+𝑔(·+𝑚)− 𝑓 ) 𝛼′1

ª®®¬ , (IV.2)

©«
𝑒−𝑖 𝑓 0

0 𝑒−𝑖𝑔

ª®®¬
©«
𝛼2 𝛽2

𝛽∗2 𝛼′2

ª®®¬
©«
𝑒𝑖 𝑓 0

0 𝑒𝑖𝑔

ª®®¬ =
©«

𝛼2 |𝛽2 |𝑒𝑖(\2+𝑔− 𝑓 )

|𝛽2 |𝑒−𝑖(\2+𝑔− 𝑓 ) 𝛼′2

ª®®¬ . (IV.3)

The unitary transform (IV.3) motivates us to define 𝑔 := 𝑓 − \2. It remains to define 𝑓 in such a way that

\1 + 𝑔(· + 𝑚) − 𝑓 = 0 holds true. If we let 𝜙 := \2(· + 𝑚) − \1, then this equality is equivalent to

𝑓 (𝑥 + 𝑚) − 𝑓 (𝑥) = 𝜙(𝑥) ∀𝑥 ∈ Z. (IV.4)

For each 𝑥 ∈ Z, we consider 𝑍𝑥 := {𝑚𝑥 + 0, . . . , 𝑚𝑥 + (𝑚 − 1)} consisting of 𝑚 integers. It is obvious that Z

partitions into the disjoint union Z =
⋃
𝑥∈Z 𝑍𝑥 .We let 𝑓 (𝑛) := 0 for each 𝑛 ∈ 𝑍0. Note that any arbitrary number

in Z \ 𝑍0 can be uniquely written as 𝑚𝑥 + 𝑛, where 𝑥 ∈ Z \ {0}, and where 𝑛 ∈ 𝑍0. This allows us to let

𝑓 (𝑚𝑥 + 𝑛) :=


+∑𝑥−1

𝑦=0 𝜙(𝑚𝑦 + 𝑛), 𝑥 ≥ 1,

−∑−𝑥
𝑦=1 𝜙(−𝑚𝑦 + 𝑛), 𝑥 ≤ −1.

(IV.5)
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Let us first prove that (IV.4) holds true on 𝑍−1 ∪ 𝑍0. If 𝑛 ∈ 𝑍0, then 𝑓 (𝑛) = 0 by construction, and so

𝑓 (𝑛 + 𝑚) − 𝑓 (𝑛) = 𝑓 (𝑛 + 𝑚) − 0 = 𝑓 (𝑚 × 1 + 𝑛) = 𝜙(𝑚 × 0 + 𝑛) = 𝜙(𝑛),

𝑓 ((𝑛 − 𝑚) + 𝑚) − 𝑓 (𝑛 − 𝑚) = 𝑓 (𝑛) − 𝑓 (𝑛 − 𝑚) = 0 − 𝑓 (𝑚 × (−1) + 𝑛) = 𝜙(𝑚 × (−1) + 𝑛) = 𝜙(𝑛 − 𝑚),

where 𝑛 − 𝑚 belongs to 𝑍−1 = 𝑍0 − 𝑚. Let 𝑥′ ∉ 𝑍−1 ∪ 𝑍0. On one hand, if 𝑥 ≥ 1 and if 𝑥′ = 𝑚𝑥 + 𝑛, then

𝑓 (𝑥′ + 𝑚) − 𝑓 (𝑥′) = 𝑓 (𝑚(𝑥 + 1) + 𝑛) − 𝑓 (𝑚𝑥 + 𝑛) =
𝑥∑︁
𝑦=0

𝜙(𝑚𝑦 + 𝑛) −
𝑥−1∑︁
𝑦=0

𝜙(𝑚𝑦 + 𝑛) = 𝜙(𝑚𝑥 + 𝑛) = 𝜙(𝑥′).

On the other hand, if 𝑥 ≤ −2 and if 𝑥′ = 𝑚𝑥 + 𝑛, then

𝑓 (𝑥′ +𝑚) − 𝑓 (𝑥′) = 𝑓 (𝑚(𝑥 + 1) + 𝑛) − 𝑓 (𝑚𝑥 + 𝑛) = −
−𝑥−1∑︁
𝑦=1

𝜙(−𝑚𝑦 + 𝑛) +
−𝑥∑︁
𝑦=1

𝜙(−𝑚𝑦 + 𝑛) = 𝜙(𝑚𝑥 + 𝑛) = 𝜙(𝑥′).

�

As can be seen from [Tan21, Lemma 3.4] or [AFST21, Lemma 11], the presence of off-diagonal phase

terms often create a non-trivial hindrance in the existing literature. Note, however, that the unitary transform in

Theorem IV.1 immediately makes these lemmas completely redundant.

IV.2 Kitagawa’s split-step quantum walk

Kitagawa’s (one-dimensional) split-step quantum walk [KRBD10, Kit+12, Kit12] can be characterised by the

following unitary time-evolution;

𝑈kit :=
©«
1 0

0 𝐿

ª®®¬
©«
cos \2 − sin \2

sin \2 cos \2

ª®®¬
©«
𝐿∗ 0

0 1

ª®®¬
©«
cos \1 − sin \1

sin \1 cos \1

ª®®¬ , (IV.6)

where \1 = (\1(𝑥))𝑥∈Z, \2 = (\2(𝑥))𝑥∈Z are R-valued sequences.

In the physical context, the theme of symmetry-protection of eigenstates we have discussed in §I.2.1.1

belongs to the broad subject of topological phases of matter. It is the works of T. Kitagawa that clearly

demonstrate great effectiveness of discrete-time quantum walks in exploring topological phases. Kitagawa’s

previous studies mentioned above focus on the symmetry-protection of eigenstates associated with (IV.6) and
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its higher-dimensional variants. In particular, it is shown in [Kit+12] that such eigenstates, often referred to as

symmetry-protected edge-states, can be observed in an optical network experiment. This is a brief description of

the bulk-edge correspondence for chirally symmetric unitary quantum walks [AO13]. Mathematically rigorous

studies of the bulk-edge correspondence for various symmetry types, including chiral symmetry (I.1), can be

found in the existing literature [CGSVWW16, CGGSVWW18, CGSVWW18].

The following lemma shows that the evolution operator of kitagawa split-step quantum walk can be made

unitarily equivalent to that of Suzuki’s split-step quantum walk defined by (I.2);

Lemma IV.2. Let

𝑝 := sin \2(· + 1), 𝑞 := cos \2(· + 1), 𝑎 := − sin \1, 𝑏 := cos \1.

Then ©«
0 1

1 0

ª®®¬𝑈kit
©«
0 1

1 0

ª®®¬ =
©«
𝑝 𝑞𝐿

𝐿∗𝑞 −𝑝(· − 1)

ª®®¬
©«
𝑎 𝑏

𝑏 −𝑎

ª®®¬ .
It follows from Theorem IV.1 that𝑈kit is unitarily equivalent to𝑈suz.

Proof. Let 𝜎1 be the first Pauli matrix. Given any R-valued sequence \ = (\ (𝑥))𝑥∈Z, we consider the following

rotation matrix;

𝑅(\) :=
©«
cos \ − sin \

sin \ cos \

ª®®¬ .
It is obvious that 𝑅(\)𝑅(𝜙) = 𝑅(\ + 𝜙) for any R-valued sequences \, 𝜙. If we let 𝛤 := 𝜎1(1⊕ 𝐿)𝑅(\2) (𝐿∗ ⊕ 1)

and 𝛤′ := 𝑅(\1)𝜎1, then

𝜎1𝑈kit𝜎1 = 𝛤𝛤′.

We have

𝑅(\ 𝑗 )𝜎1 =
©«
cos \ 𝑗 − sin \ 𝑗

sin \ 𝑗 cos \ 𝑗

ª®®¬
©«
0 1

1 0

ª®®¬ =
©«
− sin \ 𝑗 cos \ 𝑗

cos \ 𝑗 sin \ 𝑗

ª®®¬ .
Now

𝛤 = 𝜎1(1 ⊕ 𝐿)𝑅(\2) (𝐿∗ ⊕ 1) =
©«
𝑝 𝑞𝐿

𝐿∗𝑞 −𝑝(· − 1)

ª®®¬ .
�
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IV.3 Mochizuki-Kim-Obuse model

The evolution operator of the Mochizuki-Kim-Obuse model is characterised by the following operator on

H = ℓ2(Z,C2);

𝑈mko := 𝑆𝐺Φ𝐶2𝑆𝐺
−1Φ𝐶1, (IV.7)

where the operators 𝑆, 𝐺,Φ, 𝐶1, 𝐶2 are defined respectively as the following block-operator matrices on H =

ℓ2(Z,C) ⊕ ℓ2(Z,C) :

𝑆 :=
©«
𝐿 0

0 𝐿−1

ª®®¬ , 𝐺 :=
©«
𝑒𝛾 0

0 𝑒−𝛾(·+1)

ª®®¬ , Φ :=
©«
𝑒𝑖𝜙 0

0 𝑒−𝑖𝜙(·+1)

ª®®¬ , 𝐶 𝑗 :=
©«

cos \ 𝑗 𝑖 sin \ 𝑗

𝑖 sin \ 𝑗 cos \ 𝑗

ª®®¬ ,
where 𝛾 = (𝛾(𝑥))𝑥∈Z, 𝜙 = (𝜙(𝑥))𝑥∈Z, \1 = (\1(𝑥))𝑥∈Z, \2 = (\2(𝑥))𝑥∈Z are fourR-valued sequences. This model

is slightly more general than the homogenous model considered in [MKO16, §III.A]. In particular, (IV.7) is

consistent with the optical network experiment setup in [RBMOCP12], where the parameter 𝛾 represents the

gain-loss effect of photons (see [MKO16, §I-II] for details). If 𝛾 is identically zero, then there is no such effect,

and so the corresponding time-evolution𝑈mko becomes unitary.

Lemma IV.3. Let𝑈mko be given by (IV.7). Then there exists a unitary self-adjoint operator 𝛤mko on ℓ2(Z,C2),

such that (𝛤mko,𝑈mko) forms a chiral pair. Moreover, the chiral pair (𝛤mko,𝑈mko) is unitarily equivalent to the

chiral pair (𝛤2,𝑈2) introduced in Theorem B.

Proof. Let

𝑝 := − sin \1(· + 1), 𝑞 := −𝑖 cos \1(· + 1), 𝑎 := sin \2, 𝑏 := 𝑖 cos \2𝑒
𝑖(𝜙+𝜙(·+1)) . (IV.8)
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We have

𝑈mko𝐶
−1
1 = 𝑆(𝐺Φ)𝐶2𝑆(𝐺−1Φ)

= 𝑆
©«
𝑒𝛾+𝑖𝜙 0

0 𝑒−𝛾(·+1)−𝑖𝜙(·+1)

ª®®¬
©«

cos \2 𝑖 sin \2

𝑖 sin \2 cos \2

ª®®¬ 𝑆
©«
𝑒−𝛾+𝑖𝜙 0

0 𝑒𝛾(·+1)−𝑖𝜙(·+1)

ª®®¬
= 𝑆

©«
𝑒𝛾+𝑖𝜙 0

0 𝑒−𝛾(·+1)−𝑖𝜙(·+1)

ª®®¬
©«

cos \2 𝑖 sin \2

𝑖 sin \2 cos \2

ª®®¬
©«
𝑒−𝛾(·+1)+𝑖𝜙(·+1) 0

0 𝑒𝛾−𝑖𝜙

ª®®¬ 𝑆
= 𝑆

©«
cos \2𝑒

𝛾−𝛾(·+1)+𝑖(𝜙+𝜙(·+1)) 𝑖 sin \2𝑒
2𝛾

𝑖 sin \2𝑒
−2𝛾(·+1) cos \2𝑒

𝛾−𝛾(·+1)−𝑖(𝜙+𝜙(·+1))

ª®®¬ 𝑆,
where the third equality follows from 𝐿±1𝜓 = 𝜓(· ± 1)𝐿±1 for any bounded sequence 𝜓 = (𝜓(𝑥))𝑥∈Z, viewed as

a multiplication operator on ℓ2(Z). If 𝜎2 =
©«
0 −𝑖

𝑖 0

ª®®¬ denotes the second Pauli matrix, then 𝜎2
2 = 1, and so

𝑈mko = (𝑆𝜎2)𝜎2
©«
cos \2𝑒

𝛾−𝛾(·+1)+𝑖(𝜙+𝜙(·+1)) 𝑖 sin \2𝑒
2𝛾

𝑖 sin \2𝑒
−2𝛾(·+1) cos \2𝑒

𝛾−𝛾(·+1)−𝑖(𝜙+𝜙(·+1))

ª®®¬ 𝑆𝐶1

= (𝑆𝜎2)
©«

sin \2𝑒
−2𝛾(·+1) −𝑖 cos \2𝑒

𝛾−𝛾(·+1)−𝑖(𝜙+𝜙(·+1))

𝑖 cos \2𝑒
𝛾−𝛾(·+1)+𝑖(𝜙+𝜙(·+1)) − sin \2𝑒

2𝛾

ª®®¬ 𝑆𝐶1

= (𝑆𝜎2)
©«
𝑒−2𝛾(·+1)𝑎 𝑒𝛾−𝛾(·+1)𝑏

𝑒𝛾−𝛾(·+1)𝑏 −𝑒2𝛾𝑎

ª®®¬ (𝑆𝜎2) (𝜎2𝐶1),

where the last equality follows from (IV.8). If we let [ := (𝜎2𝐶1) (𝑆𝜎2), where 𝜎2𝐶1 and 𝑆𝜎2 are unitary

self-adjoint, then

[∗𝑈mko[ = (𝑆𝜎2) (𝜎2𝐶1) (𝑆𝜎2)
©«
𝑒−2𝛾(·+1)𝑎 𝑒𝛾−𝛾(·+1)𝑏

𝑒𝛾−𝛾(·+1)𝑏 −𝑒2𝛾𝑎

ª®®¬ .
It remains to compute (𝑆𝜎2) (𝜎2𝐶1) (𝑆𝜎2);

(𝑆𝜎2) (𝜎2𝐶1) (𝑆𝜎2) =
©«

0 −𝑖𝐿

𝑖𝐿−1 0

ª®®¬
©«

sin \1 −𝑖 cos \1

𝑖 cos \1 − sin \1

ª®®¬
©«

0 −𝑖𝐿

𝑖𝐿−1 0

ª®®¬ .
The claim follows from Theorem IV.1. �
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