Clinical and Experimental Nephrology Relationship between Glomerular Number in Fresh Kidney Biopsy Samples and Light Microscopy Samples --Manuscript Draft--

Manuscript Number:	CENE-D-21-00430R2
Full Title:	Relationship between Glomerular Number in Fresh Kidney Biopsy Samples and Light Microscopy Samples
Article Type:	Original article
Keywords:	Kidney biopsy; procedure; on-site evaluation; glomerular number; microscopy; tissue analysis
Corresponding Author:	Yuji Kamijo, M.D., Ph.D. Shinshu University School of Medicine Matsumoto, Nagano JAPAN
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Shinshu University School of Medicine
Corresponding Author's Secondary Institution:	
First Author:	Kosuke Sonoda, M.D.
First Author Secondary Information:	
Order of Authors:	Kosuke Sonoda, M.D.
	Makoto Harada, M.D., Ph.D.
	Daiki Aomura, M.D.
	Yuuta Hara, M.D.
	Yosuke Yamada, M.D., Ph.D.
	Akinori Yamaguchi, M.D., Ph.D.
	Koji Hashimoto, M.D., Ph.D.
	Yuji Kamijo, M.D., Ph.D.
Order of Authors Secondary Information:	
Funding Information:	
Abstract:	Background: On-site evaluation of fresh kidney biopsy (FKB) samples at the time of biopsy is useful to verify that adequate specimens are acquired. However, some cases present poor correlation between glomerular number in FKB samples and light microscopy (LM) samples. We examined the usefulness of such on-site evaluation. Methods: We conducted a retrospective cross-sectional observational study (n = 129) to assess the correlation between glomerular number in FKB samples and LM samples and the associated factors hindering the evaluation. Results: There was a significant positive correlation between glomerular number in FKB samples and LM samples. The median ratio of glomerular number (LM samples/FKB samples) was 0.74. According to this ratio, cases were divided into three groups: reasonable estimation (65 cases), underestimation (32 cases), and overestimation (32 cases). Comparing the reasonable and underestimation groups, significant differences were detected in the extent of interstitial fibrosis and tubular atrophy (IFTA) and interstitial inflammation. Logistic regression analysis demonstrated that IFTA and interstitial inflammation were significantly associated with the underestimation. Moreover, the cortex length of FKB samples correlated with glomerular number in LM samples regardless of tubulointerstitial lesions. Conclusions: Glomerular number determined during on-site evaluation can be a reference for the actual number of glomeruli in LM samples. Since tubulointerstitial

	lesions make it difficult to recognize glomeruli in FKB samples, the possibility of underestimation for cases with possibly severe tubulointerstitial lesions should be considered. In such cases, evaluation of cortex length of FKB samples may substitute for evaluating glomeruli on-site.
Additional Information:	
Question	Response
Does your manuscript (Original Article) include clinical research (both observational studies and interventional studies. Retrospective study is also included)?	Yes - This manuscript includes clinical research
Did authors obtain an IRB approval number? A statement affirming that IRB/Ethics Committee/Animal Welfare Committee approval has been obtained, along with the IRB approval number, must be included in the "Compliance with Ethical Standards" section before the References. If authors did not obtain an IRB approval number, the IRB approval form should be submitted and a statement should be inserted in the text before the References section affirming that IRB/EthicsCommittee/Animal Welfare Committee approval has been obtained. as follow-up to "Does your manuscript (Original Article) include clinical research (both observational studies and interventional studies. Retrospective study	Yes - Authors have obtained an IRB approval number
The IRB approval number is: as follow-up to "Did authors obtain an IRB approval number? A statement affirming that IRB/Ethics Committee/Animal Welfare Committee approval has been obtained, along with the IRB approval number, must be included in the "Compliance with Ethical Standards" section before the References. If authors did not obtain an IRB approval number, the IRB approval form should be submitted and a statement should be inserted in the text before the References section affirming that IRB/EthicsCommittee/Animal Welfare Committee approval has been obtained.	4431

Does your manuscript include prospective interventional studies?	No - This manuscript does not include prospective interventional studies
For clinical research papers dealing with prospective interventional studies, it is necessary to register with a public clinical trial registry, e.g., ClinicalTrials.gov or UMIN, before the clinical trials are initiated. The unique registration number must be included in the abstract as evidence of registration.	
as follow-up to "Does your manuscript (Original Article) include clinical research (both observational studies and interventional studies. Retrospective study is also included)?"	
Please indicate the word count of the article.	4264
Original Article should not exceed 4000 words and should be arranged as follows:	
Abstract, Introduction, Materials and methods, Results, Discussion, Conclusion(s) (optional), References.	
Review Article should not exceed 4000 words.	
Letters to the editor should not exceed 500 words .	
* Use the Word Count function in Microsoft Word to calculate the number of words.	
* Manuscripts that exceed the maximum number of words may be returned to the authors without peer-review.	
Does this manuscript belong to a special issue?	No
Author Comments:	December 24, 2021 Shinya Kaname, M.D., Ph.D. Editor-in-Chief Clinical and Experimental Nephrology Dear Dr. Kaname: I wish to re-submit the manuscript titled "Relationship between Glomerular Number in Fresh Kidney Biopsy Samples and Light Microscopy Samples." The manuscript ID is CENE-D-21-00430R1.

We thank you and the reviewers for your thoughtful suggestions and insights. The manuscript has benefited from these insightful suggestions. I look forward to working with you and the reviewers to move this manuscript closer to publication in Clinical and Experimental Nephrology.
The manuscript has been rechecked and the necessary changes have been made in accordance with the reviewers' suggestions. The responses to all comments have been prepared and attached herewith. The revisions are marked by single underlining with red font in the revised manuscript.
Thank you for your consideration. I look forward to hearing from you.
Sincerely, Yuji Kamijo, M.D., Ph.D. Department of Nephrology Shinshu University Hospital 3-1-1, Asahi, Matsumoto, 390-8621, Japan Tel.: +81-263-37-2634 Fax: +81-263-32-9412 yujibeat@shinshu-u.ac.jp

Responses to the reviewers' comments

We thank the reviewers for their valuable comments. We have revised the manuscript in accordance with the comments. The changes in the revised manuscript are marked by single underlining with red font.

Our responses to the reviewers' comments as given below.

Reviewer #1: Comment to the authors:

The manuscript is very nicely revised.

I would like to ask authors one more thing. The reviewer recommends to present Supplemental Figure 2 in the main text (not as supplemental material). I am sure that including the pictures of on-site evaluation greatly increase the impact to the readers. Additionally, please indicate glomeruli in the picture by arrows and add the explanations in the Figure legend.

Thank you for your valuable comment. We have moved Supplemental Figure 2 to Figure 2 shown in the main text. In addition, we have added arrows to the representative glomeruli among structures evaluated as glomeruli.

Reviewer #2: The manuscript has been modified to make it easier for the reader to understand.

It might be helpful to clarify that the authors evaluated ti (total inflammation) scores, not i (inflammation) scores for the Banff classification.

In supplemental figure 2, it is better to add arrows to the area evaluated as glomerulus.

Thank you for your valuable comment. We have added the explanation for the evaluation of the extent of interstitial inflammation, as described below.

"The extent of interstitial inflammation was evaluated as ti (total inflammation) scores rather than i (inflammation) scores, which was indicated by the Banff classification [15]."

We have added arrows to the representative glomeruli among structures evaluated as glomeruli in Figure 2 (modified Supplemental Figure 2).

1 2 3 4	1	Relationship between Glomerular Number in Fresh Kidney Biopsy
5 6 7	2	Samples and Light Microscopy Samples
8 9 10	3	
11 12 13	4	Kosuke Sonoda, ¹ M.D., Makoto Harada, ¹ M.D., Ph.D., Daiki Aomura, ¹ M.D., Yuuta Hara, ¹ M.D.,
14 15 16 17	5	Yosuke Yamada, ¹ M.D., Ph.D., Akinori Yamaguchi, ¹ M.D., Ph.D., Koji Hashimoto, ¹ M.D., Ph.D.,
18 19 20	6	and Yuji Kamijo, ¹ M.D., Ph.D.
21 22 23	7	
24 25 26	8	¹ Department of Nephrology, Shinshu University Hospital, 3-1-1, Asahi, Matsumoto, Japan
27 28 29	9	
30 31 32 33	10	Correspondence:
34 35 36	11	Yuji Kamijo, M.D., Ph.D.
37 38 39	12	Department of Nephrology, Shinshu University Hospital
40 41 42	13	3-1-1, Asahi, Matsumoto, 390-8621, Japan
43 44 45	14	Tel: +81-263-37-2634
46 47 48	15	Fax: +81-263-32-9412
49 50 51 52	16	yujibeat@shinshu-u.ac.jp
53 54 55	17	
56 57 58	18	Word count: <u>4264</u>
59 60 61		
62 63 64		_
65		l

19 Abstract

Background: On-site evaluation of fresh kidney biopsy (FKB) samples at the time of biopsy is useful to verify that adequate specimens are acquired. However, some cases present poor correlation between glomerular number in FKB samples and light microscopy (LM) samples. We examined the usefulness of such on-site evaluation. Methods: We conducted a retrospective cross-sectional observational study (n = 129) to assess the correlation between glomerular number in FKB samples and LM samples and the associated factors hindering the evaluation. Results: There was a significant positive correlation between glomerular number in FKB samples and LM samples. The median ratio of glomerular number (LM samples/FKB samples) was 0.74. According to this ratio, cases were divided into three groups: reasonable estimation (65 cases), underestimation (32 cases), and overestimation (32 cases). Comparing the reasonable and underestimation groups, significant differences were detected in the extent of interstitial fibrosis and tubular atrophy (IFTA) and interstitial inflammation. Logistic regression analysis demonstrated that IFTA and interstitial inflammation were significantly associated with the underestimation. Moreover, the cortex length of FKB samples correlated with glomerular number in LM samples regardless of tubulointerstitial lesions.

36	Conclusions: Glomerular number determined during on-site evaluation can be a reference for the
37	actual number of glomeruli in LM samples. Since tubulointerstitial lesions make it difficult to
38	recognize glomeruli in FKB samples, the possibility of underestimation for cases with possibly
39	severe tubulointerstitial lesions should be considered. In such cases, evaluation of cortex length of
40	FKB samples may substitute for evaluating glomeruli on-site.
41	
42	Keywords: kidney biopsy, procedure, on-site evaluation, glomerular number, microscopy, tissue
43	analysis
44	

45 Introduction

46	Evaluation of the pathological findings of kidney biopsy specimens is important for the diagnosis of
47	and decisions on the management of kidney diseases [1]. Biopsied kidney tissue should contain the
48	kidney cortex and an appropriate number of glomeruli. Kidney biopsy tissue is divided into three
49	portions, for light microscopy (LM), immunofluorescence (IF), and electron microscopy (EM)
50	analyses, and each portion should contain glomeruli [2]. Therefore, on-site evaluation at the time of
51	kidney biopsy is useful for acquiring adequate specimens [1, 3–7]. However, renal pathological
52	specimens may contain glomeruli even when glomeruli are not detected by on-site evaluation [8],
53	and there have been cases with poor correlation between glomerular number in fresh kidney biopsy
54	(FKB) samples and LM samples. In such cases, there is concern that the kidney needle pass number
55	will unnecessarily increase, or inadequate number of glomeruli will be obtained because of
56	underestimation or overestimation of results. Consequently, the following issues should be resolved:
57	1) the adequacy of the assessment of glomerular number in FKB samples and 2) the possible
58	associated factors that affect the evaluation of glomerular number in FKB samples. Herein, we
59	addressed these points to facilitate obtaining an adequate glomerular number from kidney biopsy.
60	

61 Materials and Methods

62 Study Design

63	This was a single-center cross-sectional observational study. All cases ($n = 151$) who underwent
64	ultrasonography-guided kidney biopsy at the Department of Nephrology, Shinshu University
65	Hospital (Matsumoto, Japan) between November 2018 and May 2020 were enrolled. Patients who
66	were younger than 20 years (6 cases) were excluded. Patients who received a 1-h biopsy after kidney
67	transplantation (9 cases) were also excluded since this kidney biopsy procedure was different from
68	that performed for other cases. Similarly, cases with insufficient data (7 cases) were excluded.
69	Finally, 129 kidney samples from 122 patients were analyzed (Figure 1). In cases of multiple kidney
70	biopsies of the same patient, each biopsy was treated as an independent kidney biopsy case. Five
71	patients underwent kidney biopsy twice, and one patient underwent kidney biopsy three times. All
72	procedures involving human participants were performed in accordance with the ethical standards of
73	the Institutional Review Board of the Ethical Committee at Shinshu University School of Medicine
74	(approval number: 4431) and with the 1964 Declaration of Helsinki and its later amendments or
75	comparable ethical standards. The requirement of written informed consent was waived because of
76	the retrospective nature of the study.
77	Patient background data [age, sex, height, body weight, body mass index (BMI), and medical history
78	of diseases, such as hypertension, diabetes mellitus, and dyslipidemia] and laboratory data [serum

79	albumin, blood urea nitrogen, and creatinine levels; estimated glomerular filtration rate (eGFR) by
80	creatinine; [9] eGFR by cystatin C; [10] β 2-microglobulin, hemoglobin, and platelet counts;
81	hemoglobin A1c (HbA1c) levels; and urinary findings, such as protein, β 2-microglobulin, and N-
82	acetyl- β -D-glucosaminidase levels] recorded at the time of kidney biopsy were obtained from
83	medical records. History of smoking was also obtained. Hypertension was defined as the use of
84	blood-pressure-lowering drugs and/or blood pressure \geq 140/90 mmHg. Diabetes mellitus was defined
85	as the use of insulin or anti-diabetic drugs or HbA1c level ≥6.5%. Dyslipidemia was defined as the
86	use of statins and/or low-density lipoprotein cholesterol levels ≥140 mg/dl. Kidney biopsy
87	information included needle pass number, core number, total core length, glomerular number, cortex
88	percentage, cortex length, total division length for IF and EM, percentage of total division length to
89	total core length, experience of the clinical physician who performed the on-site evaluation, and
90	serious complications. The glomerular number and cortex percentage in FKB samples were
91	evaluated prior to the division of sample for IF and EM. The cortex length of FKB samples was
92	calculated by multiplying the cortex percentage by the total core length. Serious complications were
93	defined as conditions that required unplanned treatment.
94	
95	Kidney Biopsy Procedure
96	Kidney biopsy was performed in accordance with the methods described in previous reports [1, 3, 4]

97	and in a Japanese guidebook [11]. One nephrologist performed a percutaneous kidney biopsy with an
98	automatic biopsy needle with ultrasound guidance. HI VISION Preirus (Hitachi Medical
99	Corporation, Tokyo, Japan) was used as the ultrasonic device, and a BARD MONOPTY (C.R. Bard,
100	Inc., New Jersey, USA) instrument with a gauge size of 16 and a needle length of 160 mm was used
101	as the automatic biopsy needle. The collected FKB samples were placed on a glass slide and
102	prevented from drying out by briefly immersing in a small amount of normal saline. Another
103	nephrologist performed an on-site evaluation of the FKB samples as quickly as possible. The
104	evaluation was performed with a standard light microscope adjusted to appropriate magnification
105	and light source. The core length was measured by placing the glass slide with the core on a graph
106	paper (Supplemental Figure 1). A representative picture of FKB samples visualized with a standard
107	light microscope is presented in Figure 2. Glomeruli were recognized as circular structures with a
108	color tone different from that of the surroundings (Figure 2a). The nephrologist performing the on-
109	site evaluation apportioned the FKB samples for IF and EM according to the glomerular and cortex
110	localization. Each length for the IF or EM portion was 1–2 mm. Both nephrologists came to a
111	comprehensive decision on when to discontinue the needle passes based on the evaluation of FKB
112	samples and the clinical situation.
113	
114	Pathological Analysis of Kidney Biopsy Specimens

115	Total core length, glomerular number, cortex percentage, cortex length, glomerular sclerosis
116	percentage, crescent formation percentage, presence of glomerular hypertrophy, extent of interstitial
117	fibrosis and tubular atrophy (IFTA), extent of interstitial inflammation, presence of tubulitis,
118	presence of arteriolar hyalinosis, and presence of arterial intimal fibrosis were evaluated by LM,
119	with reference to previous reports [12, 13]. In addition, the presence of glomeruli in the IF and EM
120	specimens was evaluated. The cortex length of LM samples was calculated by multiplying the cortex
121	percentage by the total core length. Glomerular sclerosis percentage was defined as the total
122	percentage of global sclerosis and segmental sclerosis of the glomeruli. Glomerular hypertrophy was
123	defined as a glomerular diameter \ge 250 µm. The extent of IFTA and interstitial inflammation was
124	evaluated separately. These lesions were represented by the percentage of the lesion area in relation
125	to all the cortical area, and these areas were measured using ImageJ [14]. The extent of interstitial
126	inflammation was evaluated as ti (total inflammation) scores rather than i (inflammation) scores,
127	which was indicated by the Banff classification [15]. Each extent was also classified into four
128	categories as follows: none < 5%, 5% \leq mild < 25%, 25% \leq moderate < 50%, and 50% \leq severe.
129	Glomerular and vascular lesions were mainly evaluated by periodic acid-Schiff staining and periodic
130	acid-methenamine silver staining; tubulointerstitial lesions were evaluated by hematoxylin and eosin
131	staining and Masson trichrome staining. Besides the main renal pathologist, another renal pathologist
132	evaluated the renal pathological findings.

133	
134	Statistical Analysis
135	Continuous variables are presented as the median and interquartile range, and categorical variables
136	are presented as numbers (n) and percentages (%). Continuous variables were compared using
137	Mann-Whitney U-test, and categorical variables were compared using Fisher's exact test.
138	Correlations were evaluated using Spearman's rank correlation coefficient.
139	Based on the interquartile range of the glomerular number ratio (LM samples/FKB samples), all
140	cases were divided into three groups: reasonable estimation group, i.e., cases within the interquartile
141	range; underestimation group, i.e., cases within the third quartile or higher; and overestimation
142	group, i.e., cases within the first quartile or lower. Although $P < 0.05$ was generally considered to
143	indicate statistical significance, in situations involving multiple comparisons (comparison of the
144	underestimation and reasonable estimation groups and of the overestimation and reasonable
145	estimation groups), $P < 0.025$ was the significance threshold. Associated factors hindering the
146	evaluation of glomerular number were examined by univariate and multivariate logistic regression
147	analyses adjusted for age and sex. All analyses were performed using IBM SPSS Statistics software
148	package version 26 for Windows (IBM Co., Ltd., New York, NY, USA).
149	
150	

Results

152	Patient's background, laboratory data and a part of renal pathological findings are presented in
153	Supplemental Table 1. Of the 129 kidney biopsy cases, 29 (22.5%) underwent kidney allograft
154	biopsies. Sixty-seven (51.9%) patients were male, and the median age of the patients was 49 years.
155	The most common pathological diagnosis was IgA nephropathy (22.5%). Information of FKB
156	samples and LM samples is shown in Table 1. The median needle pass number, core number, total
157	core length, glomerular number, cortex percentage and cortex length in FKB samples were 2, 2, 25
158	mm, 29, 90%, and 21 mm, respectively. The median total division length for IF and EM was 2.0 mm
159	and the median percentage of total division length to total core length was 8.7%. Serious
160	complications occurred in two patients (1.6%), with both requiring blood transfusion. Pathological
161	findings evaluated by LM showed that the median glomerular number was 22. Glomeruli were
162	observed in the IF and EM specimens in almost all cases (98.4%). The median ratio of the
163	glomerular number in LM samples/FKB samples was 0.74 (0.48–0.97). The glomerular number in
164	FKB and in LM samples showed a significant positive correlation ($r = 0.398$, $P < 0.001$) (Figure 3).
165	Based on the interquartile range of the glomerular number ratio, 65 cases were assigned to the
166	reasonable estimation group, 32 cases to the underestimation group, and 32 cases to the
167	overestimation group (Table 1). Comparison of the reasonable estimation and underestimation
168	groups revealed significant differences in the extent of IFTA (15% vs. 30%, respectively, $P = 0.003$)

169	and interstitial inflammation (10% vs. 20%, respectively, $P = 0.001$). This suggested that the IFTA
170	and/or interstitial inflammation area were more pronounced in the underestimation group than those
171	in the reasonable estimation group. The number of needle passes in the underestimation group
172	tended to be higher than that in the reasonable estimation group ($P = 0.03$). Comparison of the
173	reasonable estimation group with the overestimation group revealed significant differences in the
174	cortex length of LM samples (16 mm vs. 12 mm, respectively, $P = 0.015$) (Table 1). Logistic
175	regression analysis demonstrated that the extent of IFTA and interstitial inflammation was
176	significantly associated with the underestimation of glomerular number (odds ratio, 1.031, $P =$
177	0.002, and odds ratio, 1.043, $P = 0.002$, respectively), while no factors were significantly associated
178	with the overestimation of glomerular number (Table 2 and Supplemental Table 2). Multivariate
179	logistic regression analysis adjusted for age and sex demonstrated that the extent of IFTA and
180	interstitial inflammation was significantly associated with the underestimation of glomerular number
181	(odds ratio, 1.035, $P = 0.001$, and odds ratio, 1.044, $P = 0.001$, respectively) (Table 3).
182	The cases were divided into two groups based on the extent of IFTA or interstitial inflammation: the
183	none and mild group (n = 75 and n = 96, respectively) and the moderate and severe group (n = 54
184	and $n = 33$, respectively). As shown in Figure <u>4</u> a, there was a significant positive correlation
185	between the glomerular number in FKB and that in LM samples ($r = 0.608$, $P < 0.001$) when the
186	extent of IFTA was <25% (none and mild group). No correlation was observed when the extent of

187	IFTA was $\geq 25\%$ (moderate and severe group) (Figure <u>4</u> b). Similarly, a significant positive
188	correlation, with a correlation coefficient of 0.556 ($P < 0.001$), was observed when the extent of
189	interstitial inflammation was <25%, but no correlation was observed when the extent of interstitial
190	inflammation was $\geq 25\%$ (Figure <u>4</u> c, <u>4</u> d).
191	In a previous study [5], the cortex length in LM samples was positively correlated with glomerular
192	number in LM samples. We reconfirmed this relationship (r = 0.576 , $P < 0.001$) and found a high
193	correlation between cortex length of LM and FKB samples (r = 0.865 , $P < 0.001$) (Supplemental
194	Figure 2); therefore, we examined the possibility of cortex length of FKB samples as an alternative
195	method for estimating the glomerular number in LM samples. Cortex length in FKB samples was
196	positively correlated to glomerular number in LM samples (r = 0.485, $P < 0.001$) (Figure <u>5</u> a), and
197	this correlation was not affected by the degree of tubulointerstitial lesions (Figure $5b$, $5c$, $5d$, $5e$).
198	
199	

200 Discussion

202 es	timation of glomerular number of LM samples, as well as the factors hindering this relationship.
203 Tł	ne findings clarify the usefulness and provide important points to note when on-site evaluation is
204 pe	erformed.
205 W	e detected a significant positive correlation between glomerular number in FKB samples and LM
206 sa	mples. Ferrer et al. [5] and Sekulic and Crary [7] reported that more adequate kidney tissue
207 sa	mples could be obtained with on-site microscopic evaluation at the time of kidney biopsy than
208 wi	ithout it. However, the authors did not assess this finding or the specifics of the evaluation in FKB
209 sa	mples. Here, based on the comparison of glomerular number in FKB samples and LM samples, the
210 rat	tionale for the efficacy of on-site microscopic evaluation at the time of kidney biopsy was
211 de	emonstrated. We report, for the first time, that the glomerular number determined in FKB samples
212 is	greater than that determined in LM samples. This finding is reasonable because the FKB sample is
213 cu	tt for IF and EM analyses and sliced during preparation of LM samples. Furthermore, we are the
214 fir	rst to show that the median ratio of the glomerular number in LM samples/FKB samples was 0.74.
215 W	Tith the multiplication of the glomerular number in FKB samples and this ratio, it is possible to
216 es	timate the glomerular number in LM samples, when kidney biopsy is performed with the
217 pr	ocedure similar to that in this study. This information can be useful for obtaining the targeted

218	number of glomeruli in LM samples. Conversely, this ratio can be used to estimate the target number
219	of glomeruli in FKB samples for obtaining desired number of glomeruli in LM samples. The target
220	number of glomeruli in FKB samples is estimated to be 1.35 (1/0.74)-times the target number of
221	glomeruli in LM samples. For observing 20 glomeruli under LM, observation of over 27 glomeruli
222	in FKB samples would be recommended. However, we should note that this conversion ratio would
223	be strongly affected by the tubulointerstitial situation.
224	Although the relationship between glomerular number in the FKB samples and LM samples was
225	significant, the correlation coefficient was not very high. Some associated factors resulting in the
226	underestimation or overestimation of the glomerular number impacted the value of the correlation
227	coefficient. Factors associated with the underestimated value, namely, the extent of IFTA and
228	interstitial inflammation, were statistically detected here for the first time. The light source of the
229	light microscope makes FKB samples translucent and facilitates visual recognition of glomeruli [8].
230	We speculate that tubulointerstitial lesions may impair the translucency of FKB samples. According
231	to a previous study, decreased glomerular blood flow makes it difficult to visually recognize the
232	glomeruli in FKB samples [8]. However, a significant difference in glomerular blood flow-related
233	factors, including glomerular disease type, glomerular sclerosis percentage, glomerular hypertrophy,
234	arteriolar hyalinosis, and arterial intimal fibrosis, was not apparent. The current findings suggest that
235	tubulointerstitial lesions, such as IFTA and/or interstitial inflammation, are the major factors

236	hindering the recognition of glomeruli in FKB samples. Since IFTA and interstitial inflammation
237	lesions overlapped in most of the cases, we could hardly determine the major factor causing
238	underestimation. There was only one case of tubulointerstitial nephritis in which interstitial
239	inflammation was clearly predominant (the extent of interstitial inflammation being 80% and that of
240	IFTA being 40%). This case had a low glomerular number ratio (LM samples/FKB samples) of 0.31
241	and belonged to the overestimation group, suggesting that a significant underestimation factor might
242	be IFTA rather than interstitial inflammation.
243	A major clinical problem resulting from the underestimation results is an increase in unnecessary
244	kidney biopsy needle passes. In fact, the number of needle passes in the underestimation group
245	tended to be higher than that in the reasonable estimation group. When kidney biopsies are
246	conducted in cases where tubulointerstitial lesions are strongly expected, we should consider the
247	possibility that glomeruli may be present even if they are not confirmed in FKB samples, and avoid
248	excessive unnecessary kidney biopsy needle passes.
249	Assessment prior to kidney biopsy for possibility of the underestimation would be useful for clinical
250	physician. We demonstrate that tubulointerstitial lesions strongly influence the glomerular number
251	estimate. Previous studies have indicated that tubulointerstitial lesions deteriorate upon eGFR
252	decline and proteinuria [16, 17]. Therefore, serum and/or urinary markers reflecting kidney
253	dysfunction and/or tubulointerstitial injuries may predict the underestimation. However, individual

serum or urinary markers, including serum creatinine levels, eGFR, proteinuria, urinary β^2 -microglobulin, or urinary N-acetyl- β -D-glucosaminidase, were not significantly associated with the underestimation. The possibility of severe tubulointerstitial lesions may need to be evaluated by total assessment, keeping in mind the clinical course and various laboratory data. The current study also demonstrates a significant positive correlation between the cortex length in FKB samples and glomerular number in LM samples (r = 0.485, P < 0.001), which was not affected by the degree of tubulointerstitial lesions (Figure 5a). Ferrer et al. [5] reported that the cortex length in LM samples is positively correlated with glomerular number as shown in the current study (r = 0.576, P < 0.001) (Supplemental Figure 2a); however, they did not report the correlation between the cortex length of FKB samples and glomerular number in LM samples. We suggest that the cortex length of FKB samples could be used as an alternative method for estimating the glomerular number in LM samples, and this result appear to be useful when severe tubulointerstitial lesions are predicted before kidney biopsy, or when glomeruli are difficult to recognize in the cortical region of FKB samples. In the cases in which tubulointerstitial lesions were not severe, the cortex length of FKB samples weaker correlated to glomerular number in LM samples, compared to glomerular number in FKB samples, suggesting more clinical importance of on-site evaluation of glomerular number in FKB samples. The logistic regression analyses detected no factors significantly associated with the overestimation

272	results; however, Table 1 indicates that the cortex length of LM samples in overestimation group was
273	significantly shorter compared with that in reasonable estimation group. The cortex length of LM
274	samples is thought to be affected by the cortex length of FKB samples, the total division length for
275	IF and EM, and the percentage of total division length with respect to the total core length. These
276	factors did not differ significantly among the estimation groups; however, the cortex length of FKB
277	samples tended to be short and same length of division was performed in the overestimation group,
278	which might result in the shorter cortex length of LM samples and lower glomerular number. These
279	findings suggest that overestimation group consists of the cases with a shorter cortex in LM samples
280	via the loss of large cortex area due to division for IF and EM.
281	We used a standard light microscope that is routinely used at the authors' institution. Currently, there
282	is no consensus whether on-site evaluation microscope should be a standard light microscope or a
283	dissecting microscope. Previous studies involved the use of a standard light microscope only [6], a
284	dissecting microscope only [4, 7], or either [1, 3]. It is generally considered that these microscopes
285	do not significantly affect the on-site evaluation because they are the same type of light microscope
286	using visible light and lens system. Although it was reported that a standard light microscope can be
287	used for a more facile and rapid visualization of glomeruli than a dissecting microscope [8], not
288	enough evidence is available to support this notion. The efficacy of using a standard light
289	microscope and that of a dissecting microscope should be compared to resolve this.

290	The current study has several limitations. First, the number of needle passes was determined not only
291	by the need to obtain glomeruli, but also by the clinical situation, such as bleeding. It was, therefore,
292	difficult to determine if the underestimation group tended to have more needle passes due to
293	underestimation results. Second, this study was a single-center study; therefore, verification of the
294	results, and their generalization, in other facilities is needed. Since the kidney biopsy procedure has
295	been standardized according to previous reports and Japanese guidebooks, the results of the current
296	study may be applicable to any facility performing kidney biopsy [1, 3, 4, 11]. Third, the sample size
297	was small, and it is possible that the confounding factors were not fully adjusted for multivariate
298	analysis. Fourth, the interobserver reproducibility of the on-site evaluation and the influence of the
299	experience of the on-site evaluation physician were not evaluated in any of the cases in the current
300	study. However, the data for eight cases in which two nephrologists performed on-site evaluation
301	suggested that the results of on-site evaluation did not differ significantly between evaluation
302	physicians and no particular tendency was observed depending on their experience (Supplementary
303	Table 3). To reduce the possible effect of the evaluation physician's experience, the on-site
304	evaluation in the current study was performed by different physicians with various years of
305	experience. As a result, we did not detect a major influence of the evaluation physician's experience
306	on underestimation or overestimation results.
307	In conclusion, a significant positive correlation between the glomerular number in FKB samples and

LM samples was detected. The glomerular number determined by on-site microscopic evaluation at the time of kidney biopsy can be used to estimate the actual glomerular number in LM samples, suggesting the clinical benefit of on-site microscopic evaluation. However, tubulointerstitial lesions, such as IFTA and/or interstitial inflammation, may make it difficult to recognize glomeruli in FKB samples. In cases with severe potential tubulointerstitial lesions, the possibility of glomerular number underestimation should be considered, and the appropriate timing of the discontinuation of kidney biopsy should be decided by other information. In such cases, evaluation of cortex length of FKB samples may substitute for evaluating glomeruli on-site.

⊥ 2	
2	
л Л	
- 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
3U 21	
33	
32 32	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
Э4 55	
55 56	
57	
57 58	
59	
60	
61	
~ ~	
62	
62 63	
62 63 64	

316 Acknowledgements

317 We would like to thank everyone who was involved in this study.

318

319 **Disclosure**

320 All the authors have declared no competing interest.

321

322 Author contribution

323 KS and MH designed the study. KS, DA, AY, YH, and YY collected the data. KS and YY performed

324 statistical analyses. KS and MH drafted the manuscript. KH and YK revised the manuscript. All

325 authors have approved the final version of the manuscript.

326 References

327 1. Hogan JJ, Mocanu M, Berns JS. The native kidney biopsy: update and evidence for best practice.

328 Clin J Am Soc Nephrol. 2016; 11(2):354–362.

329 2. Luciano RL, Moeckel GW. Update on the native kidney biopsy: core curriculum 2019. Am J

330 Kidney Dis. 2019; 73(3):404–415.

331 3. Walker PD, Cavallo T, Bonsib SM. Ad Hoc Committee on Renal Biopsy Guidelines of the Renal

332 Pathology Society. Practice guidelines for the renal biopsy. Mod Pathol. 2004; 17(12):1555–1563.

4. Walker PD. The renal biopsy. Arch Pathol Lab Med. 2009; 133(2):181–188.

334 5. Ferrer G, Andeen NK, Lockridge J, et al. Kidney biopsy adequacy: A metric-based study. Am J

335 Surg Pathol. 2019; 43(1):84–92.

6. Amann K, Haas CS. What you should know about the work-up of a renal biopsy. Nephrol Dial

337 Transplant. 2006; 21(5):1157–1161.

338 7. Sekulic M, Crary GS. Kidney biopsy yield: an examination of influencing factors. Am J Surg

339 Pathol. 2017; 41(7):961–972.

340 8. Hefter LG, Brennan GG. Transillumination of renal biopsy specimens for rapid identification of

341 glomeruli. Kidney Int. 1981; 20(3):411–415.

342 9. Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in

343 Japan. Am J Kidney Dis. 2009; 53(6):982–992.

344	10. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S, Collaborators Developing the Japanese
345	Equation for Estimated GFR. GFR estimation using standardized serum cystatin C in Japan. Am J
346	Kidney Dis. 2013; 61:197–203.
347	11. Ubara Y, Tsuruya K, Katsuno T, eds. Jinseiken Guide Book. Tokyo, Japan: Tokyo Igakusha;
348	2020.
349	12. Chang A, Gibson IW, Cohen AH, et al. A position paper on standardizing the nonneoplastic
350	kidney biopsy report. Hum Pathol. 2012; 43(8):1192–1196.
351	13. Sethi S, Haas M, Markowitz GS, et al. Mayo Clinic/Renal Pathology Society consensus report on
352	pathologic classification, diagnosis, and reporting of GN. J Am Soc Nephrol. 2016; 27(5):1278-
353	1287.
354	14. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat
355	Methods. 2012; 9(7):671–675.
356	15. Roufosse C, Simmonds N, Clahsen-van GM, et al. A 2018 Reference Guide to the Banff
357	Classification of Renal Allograft Pathology. Transplantation. 2018; 102(11):1795–1814.
358	<u>16</u> . Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;
359	389(10075):1238–1252.
360	17. Mariani LH, Martini S, Barisoni L, et al. Interstitial fibrosis scored on whole-slide digital
361	imaging of kidney biopsies is a predictor of outcome in proteinuric glomerulopathies. Nephrol Dial

1 2		
3 4	362	Transplant. 2018; 33(2):310-318.
5		
7 8	363	
9 10		
11 12		
13 14		
15 16		
17 18		
19 20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37		
39 40		
41 42		
43 44 45		
45 46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60 61		
62 63		
64		

364	Figure Legends
365	Fig. 1 Flow diagram of the inclusion and exclusion criteria in the current study
366	
367	Fig. 2 Fresh kidney biopsy (FKB) samples as seen with a standard light microscope.
368	(a) Kidney cortex containing the glomeruli which are circular structures with a different color tone
369	from the surroundings. The arrows indicate representative glomeruli among structures evaluated as
370	glomeruli. (b) Kidney medulla showing reddish vasculature but no glomeruli.
371	
372	Fig. <u>3</u> Relationship between glomerular number in fresh kidney biopsy (FKB) samples and light
373	microscopy (LM) samples. The Spearman's rank correlation coefficient is 0.398 ($P < 0.001$). The
374	gray circles indicate cases in the reasonable estimation group, the blue inverted triangles represent
375	the underestimation group, and the red triangles represent the overestimation group. The solid lines
376	represent the regression line. The dashed line indicates the same values on the X- and Y-axes
377	
378	Fig. <u>4</u> Relationship between glomerular number in FKB samples and LM samples stratified by
379	tubulointerstitial damage lesions. (a) Cases with the extent of interstitial fibrosis and tubular atrophy
380	(IFTA) of less than 25%. The Spearman's rank correlation coefficient is 0.608 ($P < 0.001$). (b) Cases
381	with the extent of IFTA of 25% or more. The Spearman's rank correlation coefficient is $0.159 (P =$

382	0.25). (c) Cases with the extent of interstitial inflammation of less than 25%. The Spearman's rank
383	correlation coefficient is 0.556 ($P < 0.001$). (d) Cases with the extent of interstitial inflammation of
384	25% or more. The Spearman's rank correlation coefficient is 0.008 ($P = 0.97$). The gray circles
385	indicate cases in the reasonable estimation group; the blue inverted triangles represent the
386	underestimation group; and the red triangles represent the overestimation group. The solid lines
387	represent the regression line
388	
389	Fig. <u>5</u> Relationship between cortex length of FKB samples and glomerular number in LM samples.
390	(a) All cases. The Spearman's rank correlation coefficient is 0.485 ($P < 0.001$). (b) Cases with the
391	extent of interstitial fibrosis and tubular atrophy (IFTA) of less than 25%. The Spearman's rank
392	correlation coefficient is 0.474 ($P < 0.001$). (c) Cases with the extent of IFTA of 25% or more. The
393	Spearman's rank correlation coefficient is 0.462 ($P < 0.001$). (d) Cases with the extent of interstitial
394	inflammation of less than 25%. The Spearman's rank correlation coefficient is 0.486 ($P < 0.001$). (e)
395	Cases with the extent of interstitial inflammation of 25% or more. The Spearman's rank correlation
396	coefficient is 0.435 ($P = 0.011$). The gray circles indicate cases in the reasonable estimation group,
397	the blue inverted triangles represent the underestimation group, and the red triangles represent the
398	overestimation group. The solid line represents the regression line
399	

400 Supplemental Figure Legends

Supplemental Fig. 1 Fresh kidney biopsy (FKB) samples on a glass slide placed on a graph paper.

Supplemental Fig. 2 Analyses concerning cortex length of light microscopy (LM) samples.

404 (a) Relationship between cortex length of LM samples and glomerular number in LM samples. The

405 Spearman's rank correlation coefficient is 0.576 (P < 0.001). (b) Relationship between cortex length

406 in fresh kidney biopsy (FKB) samples and that in LM samples. The Spearman's rank correlation

407 coefficient is 0.865 (P < 0.001). The gray circles indicate cases in the reasonable estimation group,

408 the blue inverted triangles represent the underestimation group, and the red triangles represent the

409 overestimation group. The solid line represents the regression line.

Table 1. Information of FKB samples and LM samples classified by the ratio of the glomerular

411 number in LM samples to that in FKB samples, and comparison between the reasonable estimation

	All	All Reasonable		Underestimation			Overestimation			
	(n = 12	29)	estimation group		group		P^1	group		P^2
			(n = 65	5)	(n = 32)		(n = 32)		2)	
Ratio of the glomerular number in LM samples to that in FKB samples	0.74	(0.48–0.97)	0.74	(0.59–0.83)	1.28	(1.05–1.70)		0.37	(0.31–0.42)	
Information of FKB samples										
Needle pass number	2	(2–2)	2	(2–2)	2	(2–3)	0.03	2	(2–2)	0.08
Core number	2	(2–2)	2	(2–2)	2	(2–2)	0.67	2	(2–2)	0.09
Total core length (mm)	25	(20–30)	25	(20–30)	25	(21–30)	1.00	24	(21–28)	0.45
Glomerular number	29	(22–38)	31	(23–41)	23	(17–30)	0.003*	31	(25–41)	0.72
Cortex percentage (%)	90	(70–100)	90	(70–100)	90	(80–100)	0.34	85	(70–100)	0.65
Cortex length (mm)	21	(17–25)	21	(17–26)	22	(18–29)	0.21	19	(16–24)	0.16
Total division length for IF and EM (mm)	2.0	(2.0–2.0)	2.0	(2.0–2.0)	2.0	(2.0–2.0)	0.93	2.0	(2.0–3.0)	0.12
Percentage of total division length to total core length (%)	8.7	(6.9–11.1)	8.3	(6.9–10.7)	9.1	(7.3–10.5)	0.74	8.7	(7.3–13.4)	0.22
Experience of on-site evaluation physician (years)	7	(3–10)	9	(3–10)	7	(4–12)	0.74	5	(3–10)	0.13
Serious complication	2	(1.6)	1	(1.5)	1	(3.1)	1.00	0	(0)	1.00
nformation of LM samples										
Total core length (mm)	22	(13–31)	23	(12–34)	23	(13–33)	0.88	22	(13–31)	0.25
Glomerular number	22	(14–31)	23	(16–30)	34	(24-41)	< 0.001*	11	(8–16)	< 0.001*
Cortex percentage (%)	80	(60–100)	80	(65–100)	90	(75–100)	0.08	70	(50–100)	0.10
Cortex length (mm)	17	(13–22)	16	(14–22)	19	(16–25)	0.03	12	(9–21)	0.015*
Glomerular sclerosis percentage (%)	16.0	(4.6–35.0)	13.3	(6.3–33.3)	25.3	(5.6–38.1)	0.13	14.7	(0–33.3)	0.82
Crescent formation percentage (%)	0	(0–0)	0	(0–0)	0	(0–0)	0.86	0	(0–0)	0.11
Presence of glomerular hypertrophy	32	(24.8)	17	(26.2)	7	(21.9)	0.80	8	(22.9)	1.00
Extent of IFTA (%)	15	(5–35)	15	(5–30)	30	(10-60)	0.003*	10	(5–30)	0.45
Extent of interstitial inflammation (%)	10	(5–25)	10	(5–20)	20	(10-40)	0.001*	10	(5–20)	0.58

412 group and other groups

Presence of tubulitis	18	(14.0)	6	(9.2)	4	(12.5)	0.73	8	(22.9)	0.06
Presence of arteriolar hyalinosis	44	(34.1)	19	(29.2)	14	(43.8)	0.18	11	(34.3)	0.65
Presence of arterial intimal fibrosis	96	(74.4)	47	(72.3)	25	(78.1)	0.63	24	(75.0)	1.00
Experience of renal pathologist (years)	9	(7–10)	9	(7–10)	9	(7–10)	0.87	9	(7–10)	1.00

413 Continuous variables are presented as medians (interquartile range), and categorical variables are

- 414 presented as numbers (percentages).
- 415 FKB, fresh kidney biopsy; LM, light microscopy; IFTA, interstitial fibrosis and tubular atrophy.

416 * P < 0.025; ¹, *P*-value for comparison between the reasonable estimation group and underestimation

417 group; ², *P*-value for comparison between the reasonable estimation group and overestimation group.

Table 2. Analysis of the association between wrong estimation of the glomerular number in LM

419 samples and background clinical factors

	Underestima	tion		Overestima	tion	
	Odds ratio	95% CI	Р	Odds ratio	95% CI	Р
Background						
Age (years)	1.000	0.975-1.024	0.97	0.999	0.973-1.024	0.91
Male	0.856	0.367-1.997	0.72	1.417	0.602-3.339	0.43
nformation of FKB samples						
Needle pass number	1.939	0.957-3.929	0.07	0.346	0.098-1.229	0.10
Core number	1.290	0.488-3.410	0.61	0.315	0.080-1.249	0.10
Total core length (mm)	1.004	0.950-1.062	0.88	0.982	0.929-1.039	0.52
Glomerular number	0.936	0.895-0.979	0.004*	1.001	0.969-1.035	0.94
Cortex percentage (%)	1.020	0.990-1.050	0.19	0.997	0.972-1.022	0.79
Cortex length (mm)	1.045	0.975-1.119	0.21	0.968	0.903-1.039	0.37
Total division length for IF and EM (mm)	1.059	0.393-2.850	0.91	1.908	0.829-4.390	0.13
Percentage of total division length to total core length (%)	0.983	0.874–1.105	0.77	1.077	0.981-1.183	0.12
Experience of on-site evaluation physician (years)	1.011	0.918-1.113	0.82	0.906	0.810-1.013	0.08
nformation of LM samples						
Total core length (mm)	1.004	0.950-1.062	0.88	0.980	0.927-1.036	0.48
Glomerular number	1.107	1.053-1.163	< 0.001*	0.789	0.711-0.874	< 0.001*
Cortex percentage (%)	1.025	1.000-1.051	0.05	0.982	0.963-1.001	0.07
Cortex length (mm)	1.070	0.993-1.153	0.08	0.926	0.860-0.997	0.04
Glomerular sclerosis percentage (%)	0.018	0.998-1.039	0.07	0.999	0.978-1.021	0.95
Crescent formation percentage (%)	0.996	0.948-1.046	0.87	1.002	0.966-1.039	0.93
Presence of glomerular hypertrophy	0.791	0.290-2.158	0.65	0.941	0.356-2.490	0.90
Extent of IFTA (%)	1.031	1.011-1.052	0.002*	0.987	0.962-1.012	0.29
Extent of interstitial inflammation (%)	1.043	1.016-1.070	0.002*	1.002	0.973-1.032	0.88
Presence of tubulitis	1.405	0.367-5.379	0.62	3.278	1.028-10.456	0.05
Presence of arteriolar hyalinosis	1.883	0.781–4.537	0.16	1.268	0.513-3.133	0.61
Presence of arterial intimal fibrosis	1.231	0.816-1.856	0.32	1.064	0.709-1.596	0.77
Experience of renal pathologist (years)	0.944	0.753-1.184	0.62	1.026	0.832-1.266	0.81

420 Univariate logistic regression analysis was performed.

421 LM, light microscopy; CI, confidence interval; FKB, fresh kidney biopsy; IFTA, interstitial fibrosis

422 and tubular atrophy; IF, immunofluorescence; EM, electron microscopy. * P < 0.025.

423 Table 3. Multivariate analysis of the association of IFTA or interstitial inflammation with the

424 underestimation of overestimation result	424	underestimation of	r overestimation result
--	-----	--------------------	-------------------------

		Underestima	tion		Overestimation		
Model		Odds ratio	95% CI	Р	Odds ratio	95% CI	Р
1	Extent of IFTA (%)	1.031	1.011-1.052	0.002*	0.987	0.962-1.012	0.29
2	Extent of IFTA (%)	1.035	1.013-1.056	0.001*	0.983	0.957-1.010	0.23
3	Extent of interstitial inflammation (%)	1.043	1.016-1.070	0.002*	1.002	0.973-1.032	0.88
4	Extent of interstitial inflammation (%)	1.044	1.017-1.073	0.001*	1.002	0.972-1.032	0.92

425 Multivariate logistic regression analysis was performed. Model 1,3 is an unadjusted model. Model

426 2,4 is adjusted for age and sex.

427 CI, confidence interval; IFTA, interstitial fibrosis and tubular atrophy. * P < 0.025.

Prerequisites for Publication

Authorship: The Editors of *Clinical and Experimental Nephrology* adhere to recommendations of the International Committee of Medical Journal Editors [http://www.icmje.org] regarding criteria for authorship.

Accordingly, each person listed as an author or coauthor for a submitted report must meet all three criteria. An author or coauthor shall have:

1. Conceived, planned, and performed the work leading to the report, or interpreted the evidence presented, or both;

2. Written the report or reviewed successive versions and participated in their revision;

3. Approved the final version.

Meeting these criteria should provide each author with sufficient knowledge of and participation in the work to allow him or her to accept public responsibility for the report.

Certification: This Certification Form should be signed and submitted with the manuscript. The senior or corresponding author is requested to certify that all listed individuals qualify for authorship according to the above three criteria. The author (s) should also certify that: no part of the work described has been published before; that the work is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the author(s) agree to automatic transfer of the copyright to the society and that the manuscript, or its parts, will not be published elsewhere subsequently in any language without the consent of the copyright holders. The Certification Form must be uploaded as a scanned file (PDF, TIFF, or JPEG) on the online system, Editorial Manager.

Animal and human research: Research involving humans must be carried out in accordance with the ethical standards of the responsible committee (institutional or regional) or with the Helsinki Declaration of 1964 and all subsequent revisions. Studies involving animal experimentation must include a statement of compliance with the guidelines as recommended by the Science Council of Japan or the National Research Council's criteria (NIH No. 86-23).

Certification Form - To be submitted with manuscript to Clinical and Experimental Nephrology

Manuscript title: Glomerular Number Assessment in Fresh Renal Tissue and Pathological Specimens

I/We hereby certify that the work submitted is in full accordance with the statement of "Prerequisites for Publication" for *Clinical and Experimental Nephrology.*

Corresponding Author's name (please print)

Corresponding Author's signature

Date

Yuji Kamijo

Juji Romijo

2021/07/15

Japanese Society of Nephrology:

Self-Reported Potential Conflict of Interest Disclosure Statement

Authors' Name:

Kosuke Sonoda

Manuscript Title: Glomerular Number Assessment in Fresh Renal Tissue and Pathological Specimens

(All authors are required to disclose any COI within a period of three full calendar years (36 months) ending December 31st of the year prior to the year in which, at any time of that year and up to the time of submission, a manuscript was submitted, when any company, entity, or organization has an interest in the subject matter of that manuscript.)

Area		If Yes, list the name(s) of author(s) and commercial entity(ies) e.g. Taro Nihon, Atlantic Ocean Pharmaceuticals Takashi Fujiyama, ABC Pharmaceuticals
1. Employment/Leadership position/Advisory role 1,000,000 yen or more annually from one commercial entity	∏YES ✔NO	
2. Stock ownership or options Profit of 1,000,000 yen or more annually from the stock of one company/ownership of 5% or more of total shares of one company	☐YES ✔NO	
3. Patent royalties/licensing fees 1,000,000 yen or more per one royalty/licensing fee annually	☐ YES ✔ NO	

2A

4. Honoraria (e.g. lecture fees) 500,000 yen or more annually from one commercial entity	∏YES √ NO	
5. Manuscript fees 500,000 yen or more annually from one commercial entity	∏YES ✔NO	
6. Research funding 1,000,000 yen or more annually for research work (collaborative study, consignment study, or clinical trial) which the author is substantially authorized to use	☐ YES ✔ NO	
7. Subsidies or Donations 1,000,000 yen or more annually to departments (departments, fields,, or laboratories) from the same commercial entity, which the author is substantially authorized to use	☐ YES ✔ NO	
8. Endowed departments by commercial entities 1,000,000 yen or more annually, which the author is substantially authorized to use	☐ YES ✔ NO	
9. Travel fees, gifts, and others 50,000 yen or more annually from one commercial entity	VES	

This statement will be kept for 2 years after the publication of the manuscript.

Date of Completion (YYYY / MM / DD) _______

Corresponding Author's Signature

Yuji Kamijo

Author's Signature Kosuke Loroda
Author's Signature Matto Harada
Author's Signature Darks Commany
Author's Signature Yuuta Hara
Author's Signature Yosuke Yamada
Author's Signature <u>Akinori Tamaguchi</u>
Author's Signature Kop Harli mile
Author's Signature
Author's Signature

Please use an additional sheet if there are more than 10 authors. Ideally, this statement should be signed by all authors. If doing so would be extremely difficult, the corresponding author should sign as a representative, and provide an explanation of the reason below.

Reason:

Supplementary Material (Electric Supplementary Table 1)

Click here to access/download **Supplementary Material (Electric Supplementary Material)** Supplemental_Table_1.docx Supplementary Material (Electric Supplementary Table2)

Click here to access/download **Supplementary Material (Electric Supplementary Material)** Supplemental_Table_2.docx Supplementary Material (Electric Supplementary Table3)

Click here to access/download **Supplementary Material (Electric Supplementary Material)** Supplemental_Table_3.docx Supplementary Material (Electric Supplementary Fig1)

Click here to access/download Supplementary Material (Electric Supplementary Material) Supplemental_Fig1.pptx Supplementary Material (Electric Supplementary Material)

Click here to access/download Supplementary Material (Electric Supplementary Material) Supplemental_Fig2.pptx