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Abstract: The short-term association between ambient particulate matter ≤2.5 microns in diameter
(PM2.5) and hospital admissions is not fully understood. Studies of this association with hospital
admission costs are also scarce, especially in entire hospitalized populations. We examined the
association between ambient PM2.5 and all-cause hospital admissions, the corresponding total
charges, and the total charges per patient by analyzing the hospital admission data of 2 years from
628 hospitals in 12 cities in Japan. We used generalized additive models with quasi-Poisson regression
for hospital admissions and generalized additive models with log-linear regression for total charges
and total charges per patient. We first estimated city-specific results and the combined results by
random-effect models. A total of 2,017,750 hospital admissions were identified. A 10 µg/m3 increase
in the 2 day moving average was associated with a 0.56% (95% CI: 0.14–0.99%) increase in all-cause
hospital admissions and a 1.17% (95% CI: 0.44–1.90%) increase in total charges, and a 10 µg/m3

increase in the prior 2 days was associated with a 0.75% (95% CI: 0.34–1.16%) increase in total charges
per patient. Short-term exposure to ambient PM2.5 was associated with increased all-cause hospital
admissions, total charges, and total charges per patient.

Keywords: air pollution; particulate matter; environmental pollutants; short-term exposure; morbidity;
hospital admission; health care cost; economic cost; time series analysis; environmental epidemiology

1. Introduction

Exposure to ambient air pollution is associated with adverse health effects [1,2].
Among the many pollutants, exposure to ambient particulate matter with an aerodynamic
diameter of ≤2.5 µm (PM2.5) is a critical risk factor for mortality and morbidity. It was
estimated that 4.2 million deaths, approximately 7.6% of total deaths worldwide, are
attributable to ambient PM2.5 [3].

Several research groups have reported that exposure to ambient PM2.5 is associated
with the risk of hospital admission, but their studies focused on pulmonary or cardiovascu-
lar diseases [4–7]; more recent studies revealed that ambient PM2.5 exposure is associated
with a broader range of diseases [8,9]. Studies of the relationship between ambient PM2.5
exposure and all-cause hospital admissions are limited [6,10]. In addition, studies of the
association between hospital admissions costs and ambient PM2.5 exposure are scarce, and
the existing studies targeted specific disease groups [11–13]. It is necessary to conduct
studies that target entire hospitalized populations in order to clarify the economic burden
of ambient PM2.5.

In Japan, automated ambient PM2.5 measurement by standardized methods began
around 2012, enabling nationwide studies of the health effects of ambient PM2.5 expo-
sure [14,15]. In 2017, the Ministry of Health, Labour and Welfare of Japan (MHLW) started
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to provide Diagnosis Procedure Combination (DPC) [16,17] survey data in aggregated
form. In the survey, MHLW collected simplified medical records of each hospitalized
patient from most of the acute-care hospitals in Japan. These data were used to examine
the nationwide occurrence of cryptorchidism [18].

By combining these newly available data, we examined the association between short-
term exposure to ambient PM2.5 and all-cause hospital admissions and the corresponding
total charges [19]. We also examined the total charges per patient to investigate whether
ambient PM2.5 exposure before the hospital admission event was associated with the
subsequent total charge from the admission. We conducted the present study in Japan,
where the PM2.5 level is one of the lowest in Asia [20].

2. Materials and Methods
2.1. Study Area and Period

This study included the 12 cities in Japan (Supplementary Figure S1) for which the
total population was >1 million as of the 2015 national census [21]. The 12 cities are located
throughout the length of Japan. All of the cities have more than one ambient air pollution
monitoring station with automated PM2.5 measurement. Table 1 provides the population
and size of the 12 cities. In all of the cities, the study period was from 1 April 2015 to
31 March 2017.

Table 1. Descriptive statistics on the population, total all-cause hospital admissions, number of included hospitals, and
number of air pollution monitoring stations in 12 cities in Japan.

Region City Population,
Millions

No. of
Hospitals

No. of Hospital Admissions Per Day a No. of
StationsMean SD

West Japan

Sapporo 2.0 77 210.8 61.4 3
Sendai 1.1 24 104.2 27.3 2

Saitama 1.3 13 70.9 19.5 2
Tokyo’s 23 wards 9.3 160 834.3 180.6 10

Yokohama 3.7 53 303.3 66.0 17
Kawasaki 1.5 18 105.5 24.8 8

East Japan

Nagoya 2.3 42 235.2 58.0 4
Kyoto 1.5 37 163.5 36.5 3
Osaka 2.7 72 314.3 75.6 6
Kobe 1.5 49 163.1 43.8 2

Hiroshima 1.2 31 103.7 28.6 4
Fukuoka 1.5 52 151.4 38.3 2

- Combined 29.5 628 2760.3 208.7 63
a Admitted patients who were not transferred or planned admissions for a non-accidental cause (ICD-10: A00 to R99) from 1 April 2015 to
31 March 2017 from the DPC survey data specifically extracted for our study. SD: standard deviation; ICD-10: the 10th edition of the
International Classification of Disease; DPC: Diagnosis Procedure Combination.

2.2. Health Data

The DPC is a classification method developed in Japan for inpatients in the acute
phase [16,17]. The diagnostic procedure combination/per-diem payment system (DPC/PDPS)
is a reimbursement system based on the DPC for acute inpatient care. As of 2015, this
payment system was adopted in 1580 hospitals in Japan. These hospitals are called DPC
hospitals and cover most acute inpatients [17].

To evaluate and update the DPC/PDPS, the MHLW distributed the DPC survey
every year among hospitals that had already adopted the DPC/PDPS and those that were
preparing to adopt the DPC/PDPS. In the survey, MHLW collected simplified medical
records of all of the discharged patients from the hospitals in the calendar year. The
collected data include age, sex, place of residence, the primary diagnosis coded in the
10th edition of the International Classification of Disease (ICD-10), the medical procedures
performed, and the drugs administered.
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We applied to the MHLW and obtained the DPC survey data in the aggregated form.
The provided data included the number of hospital admissions and corresponding total
charges stratified by patient age (<65 and ≥65), sex, date of admission, and city. To prevent
the identification of individual patients, the MHLW applied an anonymization process
before they provided the data to us. Specifically, if the number of patients in a cell was
<10, the cell’s value was censored. However, all of the cells in our health data were from
>10 patients, and thus the data were free from the anonymization process.

In addition, as such restrictions existed, we could not handle any relatively small
population as an independent group. For example, children are known to be susceptible to
pollutants and should be handled independently [22], but the number of children in the
DPC survey data was too small to pass the anonymization process.

We used the following conditions for the aggregation of the individual data. For
patients, we included patients admitted due to a non-accidental cause (ICD-10: A00 to R99)
by their primary diagnosis in order to exclude patients admitted for an injury. We included
patients regardless of their DPC codes and included those who were not in the DPC
codes. We excluded patients who were transferred from another hospital or who were on a
planned admission. We also excluded patients who were admitted to hospitals outside their
city of residence in order to reduce exposure misclassification. Supplementary Figure S2
is the patient selection flow chart. For hospitals, we included hospitals that participated
in the DPC survey in 2015, 2016, and 2017. We included the year 2017 since the data of
late March 2016 were collected in the DPC survey in 2017. We excluded hospitals that only
partially participated during these 3 years. A final total of 628 hospitals was included.

From the DPC survey data, we obtained the number of hospital admissions on day
t (HAt) and the corresponding total charges billed during admission on day t (TCt) for
each city. Using these data, we calculated the daily mean total charges per patient on day t
(TCPPt) by the following formula and used the results in the subsequent analysis.

TCPPt = TCt/HAt (1)

2.3. Hospital Data

As the DPC survey data do not include all of the hospitals in each city, the data’s
exact representativeness is unclear. We defined the cover ratios as the percentage of the
hospitals, the hospital beds, and the patients included in this study to each city’s total
and estimated them by using data from another national survey. From 2018, the Japanese
government obligated hospitals with hospital beds to submit a yearly predefined report
called the Hospital Bed Function Report (HBFR). The report consists of statistics concerning
each hospital’s roles and functions, including the number of hospital beds and the number
of newly admitted patients in the previous year.

We obtained data from the hospitals’ HBFRs in 2018 from the MHLW. The data’s target
period was from 1 July 2015 to 30 June 2016, which was in the midst of our study period.
We estimated cover ratios of the following from the data: (1) hospitals, (2) DPC hospitals
and non-DPC hospitals, (3) hospital beds, and (4) newly admitted patients.

There are several points to consider regarding the data from the HBFRs. First, the
patients’ selection criteria in the HBFR differ from our health data and included more
patients. For example, the HBFRs include injury patients, but we excluded them. Second,
a few hospitals did not submit any HBFRs to the MHLW. Of the 628 included hospitals,
eight hospitals’ data were not present in the HBFR data.

2.4. Environmental Data

We obtained the hourly ambient air measurements of PM2.5, suspended particulate
matter (SPM), photochemical oxidants (Ox), nitrogen dioxide (NO2), and sulfur dioxide
(SO2) for each of the 12 cities from Japan’s National Institute for Environmental Studies.
All of the cities had more than one ambient air monitoring station that measured all of the
included air pollutants. These monitoring stations were placed at sites that represented the
ambient exposure of the community [14,23]. For each monitoring station, we calculated
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daily mean concentrations of each pollutant by averaging the hourly measurements if
>18 hourly measurements were available. We used the mean of all available results as a
proxy for the exposure value in each city. Since there have been no routine measurements of
ambient PM10 in Japan, we defined coarse particulate matter (coarse PM) as the difference
between SPM and PM2.5 [14].

We also obtained daily mean ambient temperature and relative humidity data from
the Japan Meteorological Agency. One city (Saitama) had no data for temperature, and two
cities (Saitama and Kawasaki) had no data for relative humidity. For these cities, we used
the data measured at the nearest city in the same prefecture.

2.5. Statistical Analysis

We used a two-stage approach to determine the associations between ambient PM2.5
and (1) hospital admissions, (2) the total charges, and (3) the daily mean total charges per
patient. In the first stage, we built city-specific models for each outcome of interest. We used
generalized additive models with quasi-Poisson regression for the hospital admissions
and a log-linear regression for the daily mean of total charges per patient. In the second
stage, we used a random-effects meta-analysis with the restricted maximum likelihood
estimation method to obtain the national average estimates from the first stage. We used
Cochran’s Q test and the I2 statistics to examine heterogeneity between cities [24].

We included the following confounders: (1) a natural cubic smooth function of cal-
endar time with seven degrees of freedom (df ) per year for long-term trends, including
infectious disease epidemics [10,25]; (2) a natural spline function of the 3 day moving aver-
age temperature (6 df ) and relative humidity (3 df ) to adjust for weather conditions [25,26];
and (3) indicator variables for the days of the week and public holidays.

For the exposure measurements, we used the single-day lags of the same day (lag 0)
and previous days (lag 1 and 2) and the 2 day moving average of the current and previ-
ous days (lag 01) [14,26]. For the subsequent analyses, we used the lag with the largest
t-statistics [27]. We also used distributed lag models (DLMs) to examine the temporal
associations [28]. We specified the lagged effect of PM2.5 with a second-degree polynomial
function [29] with an extension of the lag period for up to 6 days. We also used uncon-
strained DLMs, which give noisy but unbiased estimates [30]. We followed previous work
to obtain the national average for DLMs [31].

The final model for hospital admission is below:

ln[E(HAt)] = α + βs(pmt, . . . , pmt−L) + ns(time, d f = 7/year × 2years)
+DOWt + holidayt + ns(tempt, d f = 6) + ns(rht, d f = 3)

(2)

where E(HAt) is the expected number of hospital admissions on day t; α is the intercept; β
are parameters of interest; s(.) is a function that specifies the lag-response associations with
a maximum lag up to L days before; pmt is the PM2.5 concentration on day t; ns(.) is the
natural cubic spline function; time is the calendar time; DOWt is a categorical variable for
the day of the week; holidayt is an indicator variable of public holidays on day t; tempt is
the 3 day moving average temperature on day t; and rht is the mean relative humidity on
day t. For the cost analysis, we replaced the left-hand side of the equation with E[ln(TCt)]
or E[ln(TCPPt)], which represent the expected log-transformed total charges or expected
log-transformed daily mean total charges per patient on day t, respectively.

We performed stratification analyses by age (<65 or ≥65 years) and sex. We also
divided the cities into those in East Japan and West Japan at the longitude of 138◦. We used
z-tests for the differences between groups [32]. However, we considered a difference by a
factor of ≥2 as important regardless of the statistical significance [33].

We conducted the following sensitivity analyses: (1) two-pollutant models with
additional adjustment for coarse PM, Ox, NO2, and SO2, and (2) the use of alternative
df values. We present the estimated effects and 95% confidence interval (95% CI) as the
percent change (PC) per 10 µg/m3 increase in the PM2.5 concentration. A p-value < 0.05 was
considered significant. We performed all analyses using R (ver. 3.6.3) [34]. We used the
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“metafor” package to conduct the meta-analysis [24]. In the DLM analysis, we used the
“dlnm” package [35] and “mvmeta” package [31].

3. Results
3.1. Descriptive Analysis

A total of 2,017,750 hospital admissions in the 12 Japanese cities during the period
from 1 April 2015 to 31 March 2017 were included in this study. Tables 1 and 2 summarize
the characteristics of the 12 cities. The daily mean number of admissions ranged from
70.9 to 834.3. The mean of the daily ambient concentrations of PM2.5 ranged from 7.9 µg/m3

to 15.8 µg/m3.

Table 2. Descriptive statistics on daily mean environmental factors in 12 cities in Japan.

City

PM2.5,
µg/m3

Coarse PM,
µg/m3 Ox, ppb NO2, ppb SO2, ppb Temperature,

◦C
Relative

Humidity, %

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Sapporo 7.9 5.2 4.1 2.5 28.5 10.0 10.0 7.4 0.9 0.8 9.4 9.5 66.5 11.5
Sendai 11.3 6.4 2.5 3.4 30.8 10.5 10.3 5.2 0.5 0.4 13.6 8.2 68.0 13.7

Saitama 11.7 6.5 8.6 4.2 28.6 11.9 14.3 6.8 1.8 0.6 16.0 8.2 62.3 16.6
Tokyo’s 23 wards 13.7 7.4 4.9 4.7 26.8 11.6 18.7 8.1 2.0 1.0 16.4 7.7 67.9 16.6

Yokohama 12.4 6.4 8.5 4.9 27.6 12.2 16.0 7.3 2.3 0.8 16.8 7.4 69.0 16.0
Kawasaki 12.9 7.0 3.7 4.8 28.9 12.1 18.0 7.9 1.5 0.9 16.8 7.4 69.0 16.0
Nagoya 13.3 6.9 6.5 5.2 30.8 12.8 15.5 6.8 1.2 0.7 16.7 8.2 65.3 13.4
Kyoto 11.9 6.4 3.1 3.1 30.4 11.5 10.4 4.8 3.0 1.0 16.8 8.4 66.2 10.5
Osaka 15.5 7.4 5.4 3.7 27.0 11.7 19.9 8.1 3.8 1.8 17.5 8.0 65.4 11.2
Kobe 13.0 6.7 4.9 5.9 29.4 11.4 15.9 7.2 2.1 1.4 17.5 7.8 64.6 11.1

Hiroshima 13.8 7.0 9.2 6.2 28.4 11.6 11.3 4.6 1.5 0.8 16.9 8.0 64.8 11.2
Fukuoka 15.8 7.4 6.5 4.5 30.8 11.6 14.6 5.7 2.1 1.4 17.7 7.5 72.4 12.1

Combined 12.8 7.0 5.7 5.0 29.0 11.7 14.6 7.5 1.9 1.4 16.0 8.3 66.8 13.8

PM: particulate matter, Ox: photochemical oxidants, NO2: nitrogen dioxide, SO2: sulfur dioxide.

Supplementary Table S1 shows the city-specific estimates of cover ratios by data from
the HBFRs, and Table 3 shows the cover ratio in the entire included cities. The estimated
cover ratios were as follows: DPC hospitals, 99.2%; non-DPC hospitals, 22.8%; emergency
hospital beds, 79.6%; and emergency care (EC) patients, 88.0%.

Table 3. Cover ratios estimated by data from hospital bed function report (HBFR) in 2018.

Variable Total Included %

DPC hospitals a 374 371 99.2
Non-DPC hospitals 1094 249 22.8

Hospital beds 252,118 168,327 66.8
Emergency hospital beds 199,996 159,182 79.6

Patients b 4,731,059 4,110,501 86.9
EC patients c 1,642,797 1,445,426 88.0

a Hospitals that were under the DPC/PDPS. b Newly admitted patients from 1 July 2015 to 30 June 2016. c Newly
admitted EC patients who were not transferred or planned admissions from 1 July 2015 to 30 June 2016. DPC:
diagnosis procedure combination, DPC/PDPS: diagnostic procedure combination/per-diem payment system,
EC: emergency care.

3.2. Regression Analysis

Supplementary Tables S2–S4 provide the city-specific estimates of the associations
between the ambient PM2.5 concentrations and the hospital admissions, the total charges,
and the daily mean total charges per patient, and Table 4 provides the nationally averaged
results. We observed low-to-moderate between-city heterogeneity in all of the outcomes,
and all were insignificant. The largest t-statistic was observed at lag 01 for hospital
admissions and total charges and lag 2 for the daily mean total charges per patient. We
estimated an increase of 0.56% (95% CI: 0.14–0.99%) for hospital admissions and an increase
of 1.17% (95% CI: 0.44–1.90%) for total charges at lag 01. We estimated an increase of 0.75%
(95% CI: 0.34–1.16%) for the daily mean total charges per patient at lag 2.
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Table 4. National average percent change of all-cause hospital admissions, total charges, and daily mean total charges
per patient with a 10 µg/m3 increase in the ambient PM2.5 concentration estimated by the single-day or moving average
lag model.

Lag
Hospital Admissions Total Charges Daily Mean TCPP

PC a 95% CI I2 p PC a 95% CI I2 p PC a 95% CI I2 p

Lag 0 0.41 0.05–0.76 1.8 0.026 0.82 0.29–1.35 0.0 0.002 0.25 −0.20–0.70 28.1 0.272
Lag 1 0.41 0.05–0.77 1.2 0.026 0.86 0.23–1.48 22.3 0.007 0.43 −0.08–0.94 42.8 0.101
Lag 2 0.16 −0.20–0.51 0.0 0.385 0.68 0.15–1.22 0.0 0.011 0.75 0.34–1.16 13.9 <0.001
Lag 3 0.31 −0.04–0.66 0.5 0.087 0.34 −0.19–0.87 1.6 0.207 0.20 −0.16–0.55 0.0 0.283
Lag 01 0.56 0.14–0.99 4.1 0.010 1.17 0.44–1.90 23.1 0.002 0.44 −0.10–0.97 30.1 0.108

a Adjusted for calendar time, temperature, relative humidity, public holidays, and the day of the week. TCPP: total charges per patient, PC:
percent change.

Figure 1 presents the national average estimates of the associations by DLM con-
strained with a second-degree polynomial. We observed lagged effects of 1–3 days for the
daily mean total charges per patient. Supplementary Figure S3 presents the results of the
estimation by the unconstrained DLM. We observed similar temporal associations but with
wide confidence intervals.

Figure 1. National average percent change of all-cause hospital admissions, total charges, and daily mean total charges per
patient with a 10 µg/m3 increase in the PM2.5 concentration estimated by the distributed lag model constrained with a
second-degree polynomial. TCPP: total charges per patient.

3.3. Stratification and Sensitivity Analysis

Table 5 indicates the estimated effects modified by age, sex, and the location of
the cities. We observed stronger associations with hospital admissions among males
(0.74%, 95% CI: 0.18–1.30%) than females (0.36%, 95% CI: −0.13–0.85%) and in East Japan
(0.97%, 95% CI: 0.10–1.84%) than West Japan (0.29%, 95% CI: −0.27–0.86%). We observed
stronger associations with total charges among patients aged ≥65 years (1.53%, 95% CI:
0.74–2.32%) than patients aged <65 years (0.04%, 95% CI: −1.05–1.13%), and the difference
was statistically significant. We observed stronger associations with daily mean total
charges per patient among patients aged ≥65 years (0.90%, 95% CI: 0.43–1.37%) than
patients aged <65 years (0.27%, 95% CI: −0.36–0.91%) and in East Japan (1.21%, 95% CI:
0.51–1.92%) than in West Japan (0.40%, 95% CI: −0.11–0.92%).
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Table 5. National average percent change of all-cause hospital admissions, total charges, and daily mean total charges per
patient with a 10 µg/m3 increase in the ambient PM2.5 concentration stratified by age, sex, and city of residence (lag 01 for
hospital admission and total charges, and lag 2 for the daily mean total charges per patient).

Subgroups Hospital Admissions Total Charges Daily Mean TCPP

PC a 95% CI pb PC a 95% CI pb PC a 95% CI pb

Age 0.620 0.030 0.124
<65 yrs 0.45 −0.11–1.01 0.04 −1.05–1.13 0.27 −0.36–0.91
≥65 yrs 0.63 0.16–1.11 1.53 0.74–2.32 0.90 0.43–1.37

Sex 0.314 0.884 0.692
Male 0.74 0.18–1.30 1.18 0.34–2.04 0.66 0.02–1.29

Female 0.36 −0.13–0.85 1.09 0.17–2.02 0.83 0.25–1.42
Region 0.205 0.424 0.071

West Japan 0.29 −0.27–0.86 0.93 0.09–1.78 0.40 −0.11–0.92
East Japan 0.97 0.10–1.84 1.61 0.19–3.06 1.21 0.51–1.92

a Adjusted for calendar time, temperature, relative humidity, public holidays, and the day of the week. b The p-values were obtained from
z-tests between the subgroups. TCPP: total charges per patient, PC: percent change.

Supplementary Table S5 shows the estimates from the two-pollutant models. We
observed estimates that were similar to those in the single pollutant models. However,
the association with total charges was not significant after controlling for SO2. In Sup-
plementary Table S6, we provide the estimates when alternative df values were used;
similar estimates were obtained after changing the df values of calendar time, temperature,
and humidity.

4. Discussion

In this time-series study, we examined the associations between ambient PM2.5 con-
centrations and hospital admissions, total charges, and daily mean total charges per patient
in 12 cities in Japan. We observed significant positive associations in all of the outcomes.

We estimated that a 10 µg/m3 increase in the ambient PM2.5 concentration was
associated with a 0.56% (95% CI: 0.14–0.99%) increase in all-cause hospital admissions.
These results are generally consistent with findings in previous multi-city studies and
meta-analyses, although those data were limited to admissions due to cardiovascular
and respiratory diseases. A study of 213 counties in the U.S. estimated a 0.65% (95%
CI: 0.48–0.83%) increase in cardiovascular admissions and a 0.25% (95% CI: 0.01–0.48%)
increase in respiratory admissions due to ambient PM2.5 exposure [4]. A study of eight
European cities reported a 0.51% (95% CI: 0.12–0.90%) increase in cardiovascular admissions
and a 1.36% (95% CI: 0.23 to 2.49%) increase in respiratory admissions due to ambient PM2.5
exposure [5]. In addition, a meta-analysis of studies of Chinese populations estimated a
0.37% (95% CI: 0.17–0.56%) increase in cardiovascular admissions and a 0.51% (95% CI:
0.23–0.79%) increase in respiratory admissions due to ambient PM10 exposure [7].

Few studies have examined the relationship between ambient PM2.5 exposure and
all-cause hospital admissions [6,10], and the majority of the studies were based on single
cities [36–40] and are thus susceptible to publication bias [41]. The few existing multi-
city studies of the association between ambient PM2.5 exposure and all-cause hospital
admissions obtained estimated risks that tended to be similar to our present findings.
A recent study of 24 Canadian cities estimated a 0.29% (95% CI: 0.03–0.56%) increase
in all-cause hospital admissions due to ambient PM2.5 exposure [42]. A recent study of
200 Chinese cities estimated a 0.20% (95% CI: 0.08–0.31%) increase due to ambient PM2.5
exposure [10].

The association between ambient PM2.5 concentrations and hospital admission costs
in an entire hospitalized population has not been established. We observed a significant
positive association between the ambient PM2.5 concentration and total charges. In accord
with studies of specific disease groups [12,13], we also observed a significant positive
association between PM2.5 concentrations and the total charges per patient. Our results
imply that ambient PM2.5 exposure before a hospital admission event was associated with
the subsequent total charge of the admission. However, earlier investigations on costs often
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used fixed per-patient costs and implicitly did not consider the variation [8,9,43]. As their
results neglected an increase in per-patient costs, these studies might have underestimated
the associations between ambient PM2.5 concentrations and hospital admission costs.

We observed lagged effects for the association between ambient PM2.5 concentrations
and the daily mean total charges per patient. Previous studies have reported a latency
of several days for respiratory diseases, possibly due to systemic inflammation and/or
immune suppression [44,45]. The onset of respiratory diseases after admission or a decline
of the patient’s general condition by these mechanisms may have caused the observed
lagged effect. Further studies with individual-level data are needed to clarify this issue.

We also observed spatial heterogeneity in the association of ambient PM2.5 concen-
trations; for both hospital admissions and the daily mean total charges per patient, the
magnitude of the estimates in West Japan was more than twice that of East Japan. These
results are consistent with those of a study of mortality linked to ambient PM2.5 exposure
in 100 cities in Japan [14]. This tendency may be partly attributable to the variation in
chemical compositions of ambient PM2.5 [46]. However, the scarcity of data on chemical
compositions hampered further investigation.

There are several study limitations to note. First, our estimates from HBFR data
showed that our health data included 99.2% of the DPC hospitals, where most acute
inpatients were treated [17], and 88.0% of emergency care patients. These estimates justify
the use of our health data in the current study. However, we included only 22.8% of the
non-DPC hospitals in Japan. As such, our sample might not have fairly represented the
entire hospitalized population in Japan. Second, we did not consider most of the effects of
individual-level factors, since only anonymized aggregated data were available. Third, we
only considered part of the medical costs. We did not consider costs after hospital discharge
or indirect market costs. Not accounting for these costs might have biased our estimates
downwards. Fourth, we did not specifically examine the patients’ clinical courses after
their hospital admissions. We could not determine which components of medical costs
were associated with ambient PM2.5 exposure. In addition, ignoring in-hospital deaths
might have affected our estimates downwards since in-hospital deaths can reduce total
charges by artificially shortening the length of stay in hospitals [47]. Fifth, we used the
average of all monitoring stations in each city as a proxy for personal ambient exposure.
This exposure assessment may have caused an exposure measurement error and biased
our estimates downwards [48]. Lastly, this study included only populated urban cities,
and thus the generalizability of the results is limited [49].

5. Conclusions

We observed significant associations between ambient PM2.5 concentrations and
all-cause hospital admissions, the corresponding total charges, and the total charges
per patient.
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and total charges, and lag 2 for the daily mean total charges per patient), Suppl. Table S6: National
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per patient with a 10 µg/m3 increase in ambient PM2.5 concentrations with alternative df values (lag
01 for hospital admission and total charges, and lag 2 for the daily mean total charges per patient).
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