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A New Finite Automata Construction Using a Prefix and a Suffix of
Regular Expressions∗

Hiroaki YAMAMOTO†a), Member and Hiroshi FUJIWARA†b), Nonmember

SUMMARY This paper presents a new method to translate a regular
expression into a nondeterministic finite automaton (an NFA for short). Let
r be a regular expression and let M be a Thompson automaton for r. We
first introduce a labeled Thompson automaton defined by assigning two
types of expressions which denote prefixes and suffixes of words in L(r) to
each state of M. Then we give new ε-free NFAs constructed from a labeled
Thompson automaton. These NFAs are called a prefix equation automaton
and a suffix equation automaton. We show that a suffix equation automaton
is isomorphic to an equation automaton defined by Antimirov. Furthermore
we give an NFA called a unified equation automaton by joining two NFAs.
Thus the number of states of a unified equation automaton can be smaller
than that of an equation automaton.
key words: regular expression, nondeterministic finite automaton

1. Introduction

A regular expression (an RE for short) pattern matching
problem plays an important role in the field of computer
science, computational biology and so on. In general,
RE pattern matching algorithms are designed by translat-
ing an RE into a nondeterministic finite automaton (NFA
for short) or a deterministic finite automaton (DFA for
short) [2], [13], [14], [17]. For this reason, developing an
NFA or a DFA as compact as possible is important for de-
signing efficient RE pattern matching algorithms, and has
intensively been studied [1], [4]–[7], [9]–[11]. Furthermore
compact automata are desired in a technique using bit-
parallelism because this technique embeds an NFA or a DFA
in computer-words. Bit-parallelism is known as a technique
for developing faster matching algorithms. The aim of the
paper is to present a new construction to translate an RE into
a compact NFA.

Related works. A Thompson automaton (T-NFA for
short) [16] is widely known as an NFA obtained from an
RE, which is an NFA with ε-transitions and has at most 2m
states and 4m transitions. T-NFAs can recursively be con-
structed based on the inductive definition of REs in O(m)
time and O(m) space. A position automaton (PA for short,
also called a Glushkov automaton) is also an NFA obtained
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from an RE, which is an ε-free NFA (that is, an NFA with-
out any ε-transitions). A PA is constructed by focusing on
occurrences of alphabet symbols in an RE. A PA has ex-
actly m̃ + 1 states and at most m̃2 + m̃ transitions, and can
be constructed in O(m̃2) time and O(m̃2) space [4], [8]. Here
m is the total number of alphabet symbols and operators oc-
curring in a given RE r and m̃ is the number of alphabet
symbols occurring in r. Without loss of generality, we may
assume m = O(m̃) as mentioned in [5].

As a more compact NFA, Antimirov [1] gave an equa-
tion automaton (EA for short) by introducing a notion of
partial derivatives for an RE. An EA consists of at most
m̃ + 1 states and at most m̃2 + m̃ transitions. Antimirov gave
an algorithm generating an EA from an RE in O(m5) time.
Champarnaud and Ziadi [6], [7] showed that an EA is ob-
tained by merging equivalent states of an PA, and they gave
an O(m2) time algorithm generating an EA. Thus an EA is
a quotient of a PA. Khorsi, Ouardi and Ziadi [12] gave a
more efficient algorithm using a minimization technique of a
DFA. Their algorithm runs in O(m× State(EA)) time, where
State(EA) is the number of states of the resulting EA. Ilie
and Yu [11] gave another compact NFA called a follow au-
tomaton. A follow automaton is also a quotient of a PA and
consists of at most m̃+1 states and at most m̃2+m̃ transitions.
They showed that a follow automaton and an EA are incom-
parable. Broda et al. [3] deeply discusses finite automata
proposed until now and their dual version. Hromkovic̆ et
al. [10] presented a translation of an RE into an ε-free NFA
with at most 2m̃ states and O(m̃(log m̃)2) transitions. They
reduce the number of transitions by increasing the number
of states of a PA a little. Thus they improved the worst
case of O(m2) transitions for the previously known ε-free
NFA. In addition, they showed a lower boundΩ(m̃ log m̃) on
the number of transitions. We aim to reduce the number of
states because it is easy to use bit-parallelism for simulating
an NFA. In other words, if we can construct an NFA with
small number of states, then we can pack all states of the
NFA into a few computer words so that we can efficiently
simulate an NFA using bit-parallelism.

Contributions of this paper. We will present a new
technique to translate an RE into an NFA using an NFA
called a labeled Thompson automaton (a labeled T-NFA for
short). A labeled T-NFA is a T-NFA in which each state has
two labels called a prefix label and a suffix label. Then we
give new ε-free NFAs, a prefix equation automaton (PreEA)
and a suffix equation automaton (SufEA). We here make a
remark on terminology. Broda et al. [3] called a PreEA a
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prefix automaton and a SufEA a suffix automaton. However,
we will use terminologies a PreEA and a SufEA because a
suffix automaton has been used for an NFA constructed from
all suffixes of a string. Now let r be an RE. To construct a
labeled T-NFA, we introduce two labeling schemes, one is a
prefix-type labeling scheme and the other is a suffix-type la-
beling scheme. A prefix-type labeling scheme assigns an RE
denoting prefixes of words in L(r) to a state q of a T-NFA,
and a suffix-type labeling scheme assigns an RE denoting
suffixes of words in L(r), where L(r) is a language denoted
by r. One of the most significant advantages of a labeled
T-NFA is that it enables us to join states using both expres-
sions of prefixes and suffixes. We will show the following
results.

• We present new NFAs obtained from a labeled T-NFA
for any RE, that is a PreEA and a SufEA. Furthermore
we show that a SufEA is isomorphic to an EA. A PreEA
and a SufEA consist of at most m̃+1 states and at most
m̃2 + m̃ transitions.
• We give a more compact NFA called a unified equation

automaton (UniEA) using both prefix labels and suf-
fix labels. Since a SufEA is isomorphic to an EA, the
number of states of a UniEA is smaller than or equal to
that of an EA. Furthermore, by using an idea of a fol-
low automaton [11], we can further reduce the number
of states.

This paper is a revised version of [18], but the detail of
a construction algorithm is omitted. In this paper, we focus
on a construction method of a PreEA and a SufEA and give
a complete proof for the result that a SufEA is isomorphic
to an EA. In [18], an outline of the proof is only given. Fur-
thermore we discuss an idea of a follow automaton in order
to reduce the number of states. We can see the algorithm
translating an RE into a PreEA, a SufEA, and a UniEA in
O(m2) time and O(m2) space in [18].

The paper is organized as follows. In Sect. 2, we will
give basic definitions of REs. In Sect. 3, we will give an
outline of T-NFAs and EAs. In Sect. 4, we will introduce a
labeled T-NFA, and present a PreEA and a SufEA. In Sect. 5
we will give a UniEA, and in Sect. 6 we introduce an idea of
a follow automaton to reduce the number of states.

2. Regular Expressions and Some Notations

We here give some definitions for regular expressions.

Definition 1: Let Σ be an alphabet. The regular expres-
sions over Σ are defined as follows.

1. ∅, ε (the empty word) and a (∈ Σ) are REs that denote
the empty set, the set {ε} and the set {a}, respectively.

2. Let r1 and r2 be REs denoting the sets R1 and R2, re-
spectively. Then (r1 + r2), (r1r2) and (r∗1) are also REs
that denote the sets R1 ∪ R2 (union), R1R2 (concatena-
tion), and R∗1 (Kleene closure or star), respectively.

Usually unnecessary parentheses in an RE are elimi-
nated according to the following preference rules: Kleene

closure has the higher preference than concatenation and
union, and concatenation has the higher preference than
union. We let L(r) denote the language generated by an RE
r. In this paper, the length of an RE denotes the number of
alphabet symbols and operators (union, concatenation and
Kleene closure) occurring in r. Furthermore, when m de-
notes the length of r, we let m̃ denote the number of alphabet
symbols occurring in r. We will write r for rε and εr, and
∅ for r∅ and ∅r for any RE r because rε and εr denote a set
L(r), and ∅r and r∅ denote the empty set.

3. Thompson Automata and Equation Automata

3.1 Thompson Automata

A Thompson automaton (T-NFA) is recursively constructed
from an RE according to the translation rules given in Fig. 1
(note that we can also see a similar construction in [9]). In
Fig. 1, (a), (b) and (c) show the translations for ∅, ε and an
alphabet symbol a, respectively, and (d), (e) and (f) show the
translations for (r1 + r2), (r1r2) and (r∗1), respectively. Here
M1 and M2 denote NFAs for r1 and r2, respectively.

Let M = (Q,Σ, δ, p0, q0) be a T-NFA for an RE r of
length m, where Q is a set of states, Σ is an alphabet, δ is a
transition function, p0 is the initial state and q0 is the final
state. Note that a T-NFA has just one initial state and one
final state. In addition, M consists of at most 2m states and
4m transitions. Furthermore, for any state q ∈ Q, all incom-
ing transitions of q are caused either by the empty word ε or
by an alphabet symbol a ∈ Σ. If all incoming transitions of
q are caused by an alphabet symbol, then we call state q a
sym-state; otherwise an ε-state. The following proposition
holds for a T-NFA.

Proposition 1: For any RE r of length m, we can construct
the T-NFA with at most 2m states and 4m transitions in O(m)
time and O(m) space.

Example 1: Let us consider the RE r = (a∗b+a∗ba+a∗)∗b
over Σ = {a, b}. Figure 2 shows the T-NFA for r. The initial
state is 0 and the final state is 25. Furthermore sym-states
are states 5, 8, 11, 14, 16, 20 and 25.

Note that a position automaton is constructed from a

Fig. 1 Construction of a Thompson automaton: (a) ∅, (b) ε, (c) symbol
a ∈ Σ, (d) union, (e) concatenation, (f) Kleene closure.
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Fig. 2 Thompson automaton for r = (a∗b + a∗ba + a∗)∗b

T-NFA by eliminating ε transitions. In fact, a position au-
tomaton consists of the initial state and sym-states.

3.2 Equation Automata

We here show a definition of equation automata using par-
tial derivatives of an RE by Antimirov [1]. Note that partial
derivatives are also regular expressions. For any RE r and
any a ∈ Σ, let us define the set Da(r) of partial derivatives
according to the inductive definition of r below. In what
follows, we define Da(r1)r2 to be the set {α1r2, . . . , αtr2} for
Da(r1) = {α1, . . . , αt} and an RE r2.

1. Da(∅) = Da(ε) = ∅,
2. Da(a) = {ε} and Da(b) = ∅ (a , b, b ∈ Σ),
3. if r = r1 + r2 then Da(r) = Da(r1) ∪ Da(r2),
4. if r = r1r2 then

a. if ε < L(r1) then Da(r) = Da(r1)r2;
b. if ε ∈ L(r1) then Da(r) = Da(r1)r2 ∪ Da(r2),

5. if r = r∗1 then Da(r) = Da(r1)r∗1.

We extend the above definition to any word over an
alphabet Σ. Let R be a set of REs. For any a ∈ Σ, we define
Da(R) = ∪r∈RDa(r). Then

1. for the empty word ε, Dε(R) = R,
2. for any word w ∈ Σ∗ and any symbol a ∈ Σ, Daw(R) =

Dw(Da(R)).

Now, let PD(r) be the set {p | for some w ∈ Σ∗, p ∈
Dw(r) } of partial derivatives. Then an equation automaton
(EA for short) E = (Q,Σ, δ, p0, F) for r is defined as follows.

• Q = PD(r),
• for any p ∈ Q and symbol a ∈ Σ, δ(p, a) = Da(p),
• p0 = r, F = {p | ε ∈ L(p)}.

Example 2: We show partial derivatives and an equation
automaton for r = (a∗b + a∗ba + a∗)∗b. Let us compute
PD(r). Here, for simplicity, (a∗b+a∗ba+a∗)∗ is represented
by α. Hence r = αb. Then partial derivatives are computed
as follows:

Dε(r) = {αb}, Da(αb) = {a∗bαb, a∗baαb, a∗αb},
Db(αb) = {αb, aαb, ε},

Fig. 3 The equation automaton for r = (a∗b + a∗ba + a∗)∗b

Da(a∗bαb) = {a∗bαb}, Db(a∗bαb) = {αb},
Da(a∗baαb) = {a∗baαb}, Db(a∗baαb) = {aαb},
Da(a∗αb) = {a∗αb, a∗bαb, a∗baαb}, Db(a∗αb) =
{αb, aαb},
Da(aαb) = {αb}, Db(aαb) = ∅.

Hence we have PD(r) = {αb, a∗bαb, a∗baαb, a∗αb,
aαb, ε}. The equation automaton is given in Fig. 3. Here
p0 = αb (that is, r), p1 = a∗bαb, p2 = a∗baαb, p3 = a∗αb,
p4 = aαb and p5 = ε.

4. Prefix and Suffix Equation Automata

In this section, we give new automata called a prefix equa-
tion automaton (PreEA) and a suffix equation automaton
(SufEA). We first introduce a labeled T-NFA, and then show
that a PreEA and a SufEA are obtained from a labeled T-
NFA.

4.1 Labeled Thompson Automata

We introduce a labeled T-NFA M = (Q,Σ, δ, p0, q0, LP, LS ).
Here LP and LS are called a prefix labeling function and
a suffix labeling function, respectively, which assign an RE
to each state of Q. The functions LP and LS are defined
by a prefix-type labeling scheme and a suffix-type labeling
scheme given below. For each state q of M, LP(q) and LS (q)
are REs, and LP(q) denotes the set of all words leading from
the initial state to state q and LS (q) denotes the set of all
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words leading from state q to the final state of M. Let r
be an RE on Σ. Then a prefix-type labeling scheme and
a suffix-type labeling scheme are defined according to the
construction given in Fig. 1.

[Prefix-type labeling scheme]

1. Basic labeling rules. Let p0 be the initial state and q0

be the final state for a T-NFA obtained from ∅, ε and
a ∈ Σ:

a. if r = ∅, then LP(p0) = ε and LP(q0) = ∅,
b. if r = ε, then LP(p0) = ε and LP(q0) = ε,
c. if r = a (a ∈ Σ), LP(p0) = ε and LP(q0) = a.

2. Inductive labeling rules. Let r1 and r2 be REs, and
let M1 = (Q1,Σ, δ1, p1, q1, LP1, LS 1) and M2 =

(Q2,Σ, δ2, p2, q2, LP2, LS 2) be labeled T-NFAs for
r1 and r2, respectively. Furthermore let M =

(Q,Σ, δ, p0, q0, LP, LS ) be a labeled T-NFA obtained
from M1 and M2 according to the construction in Fig. 1.
Then LP is defined as follows.

a. if r = r1 + r2, then LP(p0) = ε and LP(q0) =
(LP1(q1) + LP2(q2)). For any other state q ∈ Q,
if q ∈ Q1 then LP(q) = LP1(q); if q ∈ Q2 then
LP(q) = LP2(q),

b. if r = r1r2, then for any state q ∈ Q,

i. if q ∈ Q1 then LP(q) = LP1(q);
ii. if q ∈ Q2 then LP(q) = (LP1(q1)LP2(q)),

c. if r = r∗1, then LP(p0) = ε, LP(q0) = (LP1(q1))∗,
and for all other states q ∈ Q, LP(q) =

(LP1(q1))∗LP1(q).

[Suffix-type labeling scheme]

1. Basic labeling rules. Let p0 be the initial state and q0

be the final state for a T-NFA obtained from ∅, ε and
a ∈ Σ:

a. if r = ∅, then LS (p0) = ∅ and LS (q0) = ε,
b. if r = ε, then LS (p0) = ε and LS (q0) = ε,
c. if r = a (a ∈ Σ), LS (p0) = a and LS (q0) = ε.

2. Inductive labeling rules. Let r1 and r2 be REs, and
let M1 = (Q1,Σ, δ1, p1, q1, LP1, LS 1) and M2 =

(Q2,Σ, δ2, p2, q2, LP2, LS 2) be labeled T-NFAs for
r1 and r2, respectively. Furthermore let M =

(Q,Σ, δ, p0, q0, LP, LS ) be a labeled T-NFA obtained
from M1 and M2 according to the construction in Fig. 1.
Then LS is defined as follows.

a. if r = r1 + r2, then LS (p0) = (LS 1(p1) + LS 2(p2))
and LS (q0) = ε. For any other state q ∈ Q, if
q ∈ Q1 then LS (q) = LS 1(q); if q ∈ Q2 then
LS (q) = LS 2(q),

b. if r = r1r2, then for any state q ∈ Q,

i. if q ∈ Q2 then LS (q) = LS 2(q);
ii. if q ∈ Q1 then LS (q) = (LS 1(q)LS 2(p2)),

c. if r = r∗1, then LS (q0) = ε, LS (p0) = (LS 1(p1))∗,

and for all other states q ∈ Q, LS (q) =

LS 1(q)(LS 1(p1))∗.

Remark 1: Let M = (Q,Σ, δ, p0, q0, LP, LS ) be a labeled
T-NFA for an RE r and M̄ = (Q,Σ, δ̄, q0, p0, L̄P, L̄S ) for
the reversal of r. Since a T-NFA has a symmetric structure,
we have LP(q) = L̄S (q) and LS (q) = L̄P(q). According to
the labeling schemes, we can make labels LP(q) and LS (q)
while constructing a T-NFA.

We simply call LP(q) a prefix label and LS (q) a suffix
label for each state q. We have the following lemma for
LP(q) and LS (q).

Lemma 1: Let M be the labeled T-NFA for a given RE r.
Then, for any state q of M, LP(q) is an RE which describes
the set of words leading from the initial state of M to q, and
LS (q) is an RE which describes the set of words leading
from q to the final state of M.

Proof : Let us prove the case LP(q). The case LS (q) can be
proved similarly. The proof is by induction on an RE r. The
base cases r = ∅, ε and a ∈ Σ are obvious. Assuming that the
proposition holds for any REs r1 and r2, we will prove the
cases r1+ r2, r1r2 and r∗1. The cases r1+ r2 and r1r2 are obvi-
ous from the definition of LP(q). Let us consider the case r∗1.
Since the initial state of M is labeled ε, the lemma holds for
the initial state. The final state of M is labeled (LP1(q1))∗.
This time, we note that LP1(q1) = r1. Hence the final state
satisfies the lemma. All other states q of M are just states
of M1, and are labeled (LP1(q1))∗LP1(q) = (r1)∗LP1(q).
LP1(q) expresses an RE denoting the language consisting
of words leading from the initial state to the state q of M1.
This implies that we can reach the state q by reading a word
in L(LP1(q)) after reading a word in L(r∗1) any number of
times. Hence the lemma holds.

Example 3: We give an example of a labeled T-NFA. Let
us consider the RE r = (a∗b+ a∗ba+ a∗)∗b over {a, b}. Then
the T-NFA M for r is given in Fig. 2 and Table 1 describes
the prefix label LP(q) and the suffix label LS (q) of each state
q of M.

4.2 PreEAs and SufEAs

Let us define PreEAs and SufEAs as quotients of a labeled
T-NFA M = (Q,Σ, δ, p0, q0, LP, LS ). Let Q̃ be the set con-
sisting of all sym-states and the initial state p0 of M. We
define equivalence relations ≡pre and ≡suf over Q̃ as fol-
lows. For any state p, q ∈ Q̃, p ≡pre q (p ≡suf q, resp.)
if and only if LP(p) � LP(q) (LS (p) � LS (q), resp.),
where LP(p) � LP(q) means that two expressions LP(p)
and LP(q) are equal as a string in form without unneces-
sary parentheses. Furthermore, let Q̃≡pre (Q̃≡suf , resp.) be
the set which consists of all equivalence classes over Q̃
with respect to ≡pre (≡suf , resp.). Then we define a PreEA
PE = (QP,Σ, δP, [p0], FP) as follows. Here we denote by
[q] an equivalence class for a state q.
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Table 1 Labels of states of T-NFA given in Fig. 2. Note that α = (a∗b + a∗ba + a∗)∗ and unnecessary
parentheses are eliminated from labels.

state prefix label suffix label state prefix label suffix label
0 ε αb 13 αa∗ baαb
1 α (a∗b + a∗ba + a∗)αb 14 αa∗b aαb
2 α (a∗b + a∗ba)αb 15 αa∗b aαb
3 α a∗bαb 16 αa∗ba αb
4 αa∗ aa∗bαb 17 α(a∗b + a∗ba) αb
5 αa∗a a∗bαb 18 α a∗αb
6 αa∗ bαb 19 αa∗ aa∗αb
7 αa∗ bαb 20 αa∗a a∗αb
8 αa∗b αb 21 αa∗ αb
9 α a∗baαb 22 α(a∗b + a∗ba + a∗) αb
10 αa∗ aa∗baαb 23 α b
11 αa∗a a∗baαb 24 α b
12 αa∗ baαb 25 αb ε

• QP = Q̃≡pre ,
• for any [p], [q] ∈ QP and symbol a ∈ Σ, [q] ∈ δ([p], a)

if and only if there is a state p′ ∈ [p] and a state q′ ∈ [q]
such that q′ is reachable from p′ by a symbol a,
• [p0] is the initial state (note that p0 is the initial state of

M),
• FP is the set of final states and is defined as follows:

for any [p] ∈ QP, [p] ∈ FP if and only if there is a state
p′ ∈ [p] such that M can move from p′ to the final state
q0 using only ε-transitions.

Similarly a SufEA S E = (QS ,Σ, δS , [p0], FS ) is defined by
replacing QP by QS , Q̃≡pre by Q̃≡suf , δP by δS and FP by FS .

Example 4: We give examples of a PreEA and a SufEA.
As in Example 3, let us consider an RE r = (a∗b + a∗ba +
a∗)∗b over {a, b}. Then the T-NFA M for r is given in Fig. 2
and the labels of states of M are given in Table 1. The
PreEA and the SufEA for r are constructed by using only
sym-states and the initial state of M. Here the sym-states
consists of {5, 8, 11, 14, 16, 20, 25} and the initial state is 0.
Now let us show a PreEA obtained from M. As seen in pre-
fix label of Table 1, states 5, 11 and 20 are equivalent, 8 and
14 are also equivalent. Therefore we have the equivalence
classes {0}, {5, 11, 20}, {8, 14}, {16} and {25}. Thus we get
the PreEA given in Fig. 4. Similarly, using suffix label, we
get the equivalence classes {0, 8, 16}, {5}, {11}, {14}, {20} and
{25}. Hence we get the SufEA given in Fig. 5.

We have the following theorems. Theorem 1 follows
from Lemma 1.

Theorem 1: Let r be an RE of length m, and let PE and
SE be a PreEA and a SufEA obtained from r, respectively.
Then PE and SE consist of at most m̃+1 states and m̃(m̃+1)
transitions, and accept L(r).

Proof : It is clear to satisfy the size. Hence let us prove
that a PreEA accepts L(r). Let M = (Q,Σ, δ, p0, q0, LP, LS )
be the labeled T-NFA for r and PE = (QP,Σ, δP, [p0], FP)
be the PreEA obtained from M. Let x ∈ Σ∗ be any word
accepted by M. Then there is a state pi ∈ Q̃ such that M can
reach pi from p0 by x and reach q0 from pi by ε-transitions.
From Lemma 1, we have x ∈ L(LP(pi)). Now let [pi] ∈ QP.

Fig. 4 The PreEA constructed from the T-NFA of Fig. 2.

Fig. 5 The SufEA constructed from the T-NFA of Fig. 2.

Then the state [pi] is reachable from [p0] by x because x ∈
L(LP(pi)). Furthermore [pi] ∈ FP because M can reach q0

from pi by ε-transitions. Hence PE accepts x. Therefore if
M accepts x then PE also accepts x. Similarly we can show
that if PE accepts x, then M accepts x. Thus PE accepts
L(r). It is proved that SE accepts L(r) in a similar way.

Let M1 = (Q1,Σ, δ1, p1, F1) and M2 = (Q2,Σ, δ2, p2, F2)
be NFAs. It is said that M1 is isomorphic to M2 if there is an
onto and one-to-one mapping f from Q1 to Q2 such that for
any a ∈ Σ and any p, q ∈ Q1, a transition q ∈ δ1(p, a) is de-
fined if and only if a transition f (q) ∈ δ2( f (p), a) is defined,
f (p1) = p2, and p ∈ F1 if and only f (p) ∈ F2. We obtain
the following theorem.

Theorem 2: Let r be an RE. Then, the SufEA is isomor-
phic to the EA for r.
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Proof : The proof is by induction on an RE r. Let M =

(Q,Σ, δ, p0, q0,LP,LS) be the labeled T-NFA obtained from
r. Let Q̃ be the set of sym-states of M. We define Suf (r) and
Suf +(r) as follows:

• Suf (r) = {LS(q) | q ∈ Q̃ and LS(q) , ∅},
• Suf +(r) = Suf (r) − {LS(p0)}.

Furthermore we define PD+(r) = {α | ∃w ∈ Σ+, α ∈
Dw(r)}. From the definitions of a SufEA and an EA, Suf (r)
denotes the set of REs corresponding to states of a SufEA,
and PD(r) denotes the set of states of an EA. Then the fol-
lowing claim holds. It follows from this claim that a SufEA
is isomorphic to an EA. We consider an RE in which un-
necessary parentheses are eliminated for PD(r) and Suf (r).
Hence, for regular expressions r1 and r2, r1 = r2 means that
r1 and r2 have the same form.

Claim : Let E be the EA and let N be the SufEA obtained
from an RE r. Then there is an onto and one-to-one mapping
f from PD(r) to Suf (r) such that

(1) for any α ∈ PD(r), α = f (α), and
(2) for any a ∈ Σ and any α1, α2 ∈ PD(r), there is a transi-

tion of E from α1 to α2 by a if and only if a transition
of N from f (α1) to f (α2) by a.

We can prove the claim according to the inductive con-
struction of an RE. Clearly if there is an onto and one-to-
one mapping from PD(r) to Suf (r) then there is an onto and
one-to-one mapping from PD+(r) to Suf +(r) satisfying the
conditions of the claim.

Basic case. r = ∅, ε, or a ∈ Σ.
We have Suf (∅) = PD(∅) = ∅, Suf (ε) = PD(ε) = {ε}, and
Suf (a) = PD(a) = {a, ε}. It is obvious that we can define an
onto and one-to-one mapping between Suf (a) and PD(a).
Thus the claim holds.

Assume that the claim holds for REs with k or less op-
erators. Let r be an RE with k + 1 operators. Then we will
prove three cases, (1) r = r1r2, (2) r = r∗1, and (3) r = r1+r2.

Case 1. r = r1r2.
We first compute PD(r1r2) according to the definition of par-
tial derivatives. Suppose that r1 , ∅ and r2 , ∅. By the def-
inition of partial derivatives, we have PD(r1r2) = {γ | ∃w ∈
Σ∗, γ ∈ Dw(r1r2)}. That is, PD(r1r2) = ∪w∈Σ∗Dw(r1r2).
Hence we investigate REs constructing Dw(r1r2) for any
word w ∈ Σ∗.
• w = ε: By the definition, Dε(r1r2) = {r1r2}.
• w = a1 · · · al (l ≥ 1): In this case, if ε < L(r1) then

Da1···al (r1r2) = Da2···al (Da1 (r1r2)) = Da2···al (Da1 (r1)r2);
if ε ∈ L(r1) then Da1···al (r1r2) = Da2···al (Da1 (r1)r2 ∪
Da1 (r2)) = Da2···al (Da1 (r1)r2) ∪ Da2···al (Da1 (r2)). Let
us compute iteratively Da2···al (Da1 (r1)r2) according
to the definition. Then we have Dw2 (Dw1 (r1)r2) ⊆
Da2···al (Da1 (r1)r2) for any w1, w2 such that w = w1w2.
Here we note that if w′ ∈ L(r1) for any w′ ∈ Σ∗,
then there is an RE α ∈ Dw′ (r1) such that ε ∈
L(α). Let us consider any w = w1w2 such that
w1 ∈ L(r1). Then Dw1w2 (r1r2) includes Dw2 (Dw1 (r1)r2).

Since w1 ∈ L(r1), there exists α ∈ Dw1 (r1) such that
ε ∈ L(α). Hence Dw2 (r2) ⊆ Dw2 (Dw1 (r1)r2) because
Dw2 (αr2) includes Dw2 (r2). Thus, computing Dw(r1r2)
for all words w over Σ+, we have ∪w∈Σ+Dw(r1r2)
= {∪w∈Σ+Dw(r1)r2}

∪{∪w∈Σ+Dw(r2)} = PD+(r1)r2 ∪
PD+(r2).

From the above discussion, we have PD(r1r2) =
PD+(r1)r2 ∪ PD+(r2) ∪ {r1r2} = PD(r1)r2 ∪ PD+(r2). Next
we evaluate Suf (r). Let M1 = (Q1,Σ, δ1, p1, q1,LP1,LS1)
and M2 = (Q2,Σ, δ2, p2, q2, LP2,LS2) be labeled T-NFAs
for r1 and r2, respectively. Then Suf (r1r2) = {LS 1(q)r2 |
q ∈ Q̃1} ∪ {LS 2(p) | p ∈ Q̃2 − {p2}}. Hence Suf (r1r2) =
Suf (r1)r2 ∪ Suf +(r2). By the induction assumption, there
are onto and one-to-one mappings f1 from PD(r1) to Suf (r1)
and f2 from PD+(r2) to Suf +(r2). Let us define a mapping
f to be one such that for any α ∈ PD(r), if α ∈ PD(r1)r2

then f (α) = f1(α1)r2, where α = α1r2; if α ∈ PD+(r2) then
f (α) = f2(α). The mapping f is onto and one-to-one.

Let us show that f satisfies conditions (1) and (2) of the
claim. Let E be the EA and N be the a SufEA for r1r2. Note
that PD(r1r2) is the set of states of E and Suf (r1r2) is the set
of states of N. It is obvious that (1) holds because f1 and f2
satisfy the claim. Since PD(r1r2) = PD(r1)r2 ∪ PD+(r2), if
there a transition between α1 and α2 in PD(r1), then there
a transition between α1r2 and α2r2 in PD(r1)r2 and vice
versa. Similarly, this fact holds for PD+(r2). Let us con-
sider a transition of E from PD(r1)r2 to PD+(r2). Here we
note that there is no transitions from PD+(r2) to PD(r1)r2.
For any α ∈ PD(r1)r2 and any symbol a ∈ Σ, assume
that there is a transition by a from α to β ∈ PD+(r2).
Then we have β ∈ Da(α) and can write α = α1r2 where
α1 ∈ PD(r1). Defining E1 to be an EA for r1, we have α1

as a state of E1. Since there is a transition from α1r2 to β,
α1 becomes a final state of E1. Hence ε ∈ L(α1) and then
Da(α1r2) = Da(α1)r2 ∪ Da(r2). Therefore β ∈ Da(r2). Such
an RE β is a label of a sym-state of M2 reachable from the
initial state by a. Thus N has a transition from α to β. Con-
versely there is a transition in E corresponding to that of N.
Thus the mapping f satisfies the claim.

Case 2. r = r∗1.
This case can be also proved in a similar way to that of r1r2

as follows.

• w = ε: It follows from the definition that Dε(r∗1) = {r∗1}.
• w = a1 · · · al (l ≥ 1). We have that Da1···al (r

∗
1) =

Da2···al (Da1 (r∗1)) = Da2···al (Da1 (r1)r∗1). Here Da1 (r1)r∗1
consists of REs αr∗1 for any α ∈ Da1 (r1). By the def-
inition of concatenation, if ε ∈ L(α) then Da(αr∗1) =
Da(α)r∗1 ∪ Da(r∗1) and if ε < L(α) then Da(αr∗1) =
Da(α)r∗1. Let w = w1w2 with |w1| ≥ 1. Then Dw(r∗1) has
only partial derivatives of r∗1 obtained from Dw2 (αr∗1)
(some α ∈ Dw1 (r1)) and Dw1 (r∗1). Since w is any
string over Σ+, ∪w∈Σ+Dw(r∗1) = ∪w∈Σ+Dw(r1)r∗1. Thus
PD+(r∗1) = ∪w∈Σ+Dw(r∗1) = ∪w∈Σ+Dw(r1)r∗1 = PD+(r1)r∗1.

From the above discussion, PD(r∗1) = ∪w∈Σ∗Dw(r∗1)
= PD+(r1)r∗1 ∪ {r∗1}. Next we compute Suf (r∗1). Let M1 =
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(Q1,Σ, δ1, p1, q1, LP1,LS1) be a labeled T-NFA for r1. Then
Suf (r∗1) = {LS 1(q)r∗1 | q ∈ Q̃1}. Hence since the initial state
of M has a label r∗1, Suf (r∗1) = Suf +(r1)r∗1 ∪ {r∗1}. By the
induction assumption, there is an onto and one-to-one map-
ping f1 from PD+(r1) to Suf +(r1). Let us define a mapping
f to be one such that for any α ∈ PD(r), if α ∈ PD+(r1)r∗1
then f (r) = f1(α1)r∗1; if α = r∗1 then f (α) = r∗1. In a similar
way to concatenation, we have that f satisfies the claim.

Case 3. r = r1 + r2.
By the definition of Dw(r), we have PD(r1+r2) = PD+(r1)∪
PD+(r2) ∪ {r1 + r2}. On the other hand, Suf (r1 + r2) =
Suf +(r1)∪Suf +(r2)∪{r1+ r2}. By the induction assumption,
there are onto and one-to-one mappings f1 from PD+(r1)
to Suf +(r1) and f2 from PD+(r2) to Suf +(r2). Let us de-
fine a mapping f to be one such that for any α ∈ PD(r),
if α ∈ PD+(r1) then f (α) = f1(α); if α ∈ PD+(r2) then
f (α) = f2(α); if α = r1 + r2 then f (α) = r1 + r2. This time,
f satisfies the claim.

Thus the claim holds and then the theorem has been
proved.

We can see that the SufEA in Fig. 5 is isomorphic to
the EA in Fig. 3.

5. Unified Equation Automata

We give an algorithm to construct a unified equation au-
tomaton using a PreEA or a SufEA.

Step 1: We construct a labeled T-NFA M = (Q,Σ, δ,
p0, q0, LP, LS ) for a given RE, and compute two sets
Q̃≡pre and Q̃≡suf of equivalence classes. If the number
of classes of Q̃≡pre is smaller than that of Q̃≡suf , then we
construct a PreEA; otherwise a SufEA.

Step 2: Suppose that a PreEA M′ was constructed in Step
1. Let Q̃≡pre be the set of states of M′. We call an equiv-
alence class consisting of just one state a simple state
for Q̃≡pre . Then we get a UniEA by joining equivalent
simple states of M′ with respect to ≡su f .

Step 3: If a SufEA M′ was constructed in Step 1, then we
get a UniEA by joining equivalent simple states of M′

with respect to ≡pre.

Since we choose a smaller set of Q̃≡pre and Q̃≡suf in Step
1, the number of states of a UniEA is always smaller than
or equal to that of an EA. Assume that we chose Q̃≡pre in
Step 1. We join simple states with respect to ≡su f in Step
2. Since a simple state is an equivalence class consisting of
exactly one state, if suffix labels for two simple states are
equal, we can join these simple states because the sets of
words leading to final states from two states are same. This
discussion does not hold for a non-simple state as follows.
Suppose that s1 = {q1, q2} is a non-simple state and s2 = {q3}
is a simple state after Step 1. That is, LP(q1) = LP(q2) and
LP(q1) , LP(q3). This time, if LS(q1) = LS(q2) = LS(q3),
then we can join s1 and s2. However if LS(q1) , LS(q2),
then we cannot always join s1 and s2. Therefore, we join
only a simple state. We have the next theorem.

Fig. 6 The unified equation automaton obtained from Fig. 2.

Theorem 3: For any RE r of length m, let U be the UniEA
obtained from r. Then U accepts L(r). Furthermore the
number of states of U is smaller than or equal to that of the
EA obtained from r.

Let us give an example of a UniEA in Fig. 6. As you
see in Fig. 4 and Fig. 5, the number of states of the PreEA is
smaller than that of the SufEA. Hence we first construct the
PreEA of Fig. 4. In the PreEA, states 0, 16 and 25 are sim-
ple. Since states 0 and 6 have the same suffix label, we can
join these states. Finally we get the UniEA in Fig. 6. The
following theorem is obtained from Theorem 1 and Theo-
rem 2.

6. Further Reducing the Number of States

Using an idea of a follow automaton [11], we can reduce the
number of states of a UniEA. A follow automaton is con-
structed from a position automaton by joining states with
the same follow set. Since a position automaton is an NFA
such that all the incoming transitions have the same symbol
for any state, we define an equivalence relation by a fol-
low set. Although a UniEA does not have such a property,
we can introduce a similar equivalence relation as follows.
Note that if follow sets are same for a position automaton,
then the property (2) of Definition 2 holds. Therefore the
equivalence relation by follow sets for a position is same as
that of Definition 2. Nicaud [15] called a similar definition
strongly equivalent for a DFA.

Definition 2: Let U be a UniEA. Then for any states p and
q, p and q are equivalent if and only if the following two
conditions holds: (1) both p and q or none are final, (2) for
any a ∈ Σ, δ(p, a) = δ(q, a).

If p and q are equivalent, then we can join two states
p and q into one state. Hence it is clear that the following
theorem holds.

Theorem 4: For any RE r of length m, let M be the NFA
obtained from a UniEA by joining equivalent states. Then
M accepts L(r).

As an example of Theorem 4, Fig. 7 shows an NFA ob-
tained from the UniEA of Fig. 6. First states A and B are
joined and then states (A, B) and C are joined.
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Fig. 7 Reducing the number of states of the unified equation automaton
given in Fig. 6.

Remark 2: For any a regular language L, an NFA for the
reverse of L is obtained from an NFA accepting L by revers-
ing the transitions, and swapping the role of the initial and
final states. Therefore we can apply Definition 2 to the re-
verse of a UniEA and then reverse the NFA again in order
to obtain an NFA accepting the original language.

7. Concluding Remarks

We have shown a new method to construct an NFA from an
RE. One of further researches is to design a more efficient
algorithm than an algorithm given in [18].
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