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Bounds for the Multislope Ski-Rental Problem∗∗∗
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SUMMARY The multislope ski-rental problem is an online optimiza-
tion problem that generalizes the classical ski-rental problem. The player is
offered not only a buy and a rent options but also other options that charge
both initial and per-time fees. The competitive ratio of the classical ski-
rental problem is known to be 2. In contrast, the best known so far on the
competitive ratio of the multislope ski-rental problem is an upper bound of
4 and a lower bound of 3.62. In this paper we consider a parametric version
of the multislope ski-rental problem, regarding the number of options as a
parameter. We prove an upper bound for the parametric problem which is
strictly less than 4. Moreover, we give a simple recurrence relation that
yields an equation having a lower bound value as its root.
key words: online algorithm, competitive analysis, online optimization,
ski-rental problems

1. Introduction

Online optimization problems ask us to determine an output
which optimizes some objective function, under the setting
that an input arrives gradually [1]–[3]. The classical ski-
rental problem [4] is often picked up as an example of an
online optimization problem. Suppose that a player can buy
a set of ski gear for $500 and rent one for $50. The task of
the problem is to decide when to buy a set of ski gear after
renting one some times, under the setting that the player is
not sure how many times he/she is going skiing in the future.
The objective is to minimize the total cost. It is known that
the optimal strategy is to buy a set of ski gear at our 10th ski
trip.

The multislope ski-rental problem [5] is a generaliza-
tion of the classical ski-rental problem. In the multislope
ski-rental problem, a player is offered multiple options,
called slopes, for using a set of ski gear. Each slope is char-
acterized by its initial fee and its per-time fee. The player
can use a set of ski gear by paying the initial fee at the begin-
ning, and then by paying the per-time fee every time he/she
goes skiing. In a sense, to pay both the initial and per-time
fees can be thought as to lease a set of ski gear.

The standard performance measure of strategies for on-
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line optimization problems is the competitive ratio [2], de-
fined here as the maximum ratio of the total cost incurred
by a strategy to the minimum total cost with the number of
times of skiing known in advance. It is an interesting re-
search target to bound or, if possible, to identify the value of
the competitive ratio of the optimal strategy for a problem,
which is called simply the competitive ratio of the problem.
The competitive ratio of the classical ski-rental problem was
already identified as 2 [4]. (The strategy that appeared at the
beginning indeed achieves this.)

In contrast, the exact value of the competitive ratio of
the multiple ski-rental problem has not been known yet.
What is known so far is an upper bound of 4 [6] and a lower
bound of 3.62 [7]. In this paper, although we do not tighten
the gap, we improve the upper bound for the case where the
number of slopes is fixed.

1.1 Our Contribution

Our results are summarized as follows:
(I) We consider a parametric version of the multislope

ski-rental problem with the number of slopes being a param-
eter (k+1), and evaluate the performance of Bejerano et al.’s
algorithm [6] that generates a strategy, with a slight modifi-
cation. As a result, we establish an upper bound strictly less
than 4 for the parametric problem. For example, 3.83 for
k = 4, 3.93 for k = 5, and 3.97 for k = 6 (see Table 1 and
Fig. 1). For each k, our upper bound value is smaller than
4 − 2−k+1.

(II) Fujiwara et al. showed lower bounds for the para-
metric multislope ski-rental problem [9]. To obtain a lower
bound value involves solving a recurrence relation with an
unknown and then finding a root of an equation. In this pa-
per we simplify the recurrence relation by eliminating frac-
tional terms. In the paper [9], it is conjectured that the lower
bound value coincides with the competitive ratio of the para-
metric multislope ski-rental problem. If this is true, our
simple recurrence relation will help for identification of the
competitive ratio of the multislope ski-rental problem.

1.2 Related Work

The classical ski-rental problem [4] is a famous toy problem
of online optimization problems [1]–[3]. According to the
book [2], Rudolph picked up the classical ski-rental prob-
lem in his lecture in 1986. Karlin et al.’s paper [4] on snoopy
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Fig. 1 Lower and upper bounds on the competitive ratio of the (k + 1)-slope ski-rental problem. The
dashed lines are at lower and upper bounds on the competitive ratio of the multislope ski-rental problem,
in which the number of slopes is arbitrary.

Table 1 Lower and upper bounds on the competitive ratio of the (k + 1)-slope ski-rental problem.
Bold font indicates new bounds established in this paper.

# slopes (= k + 1) 2 3 4 5 6 7 8 9 10 arbitrary

Upper bound 2 [4] 2.47 [8] 2.75 [8] 3.83 3.93 3.97 3.98 3.99 4.00 4 [6]
Lower bound 2 [4] 2.47 [8] 2.75 [8] 2.95 [9] 3.08 [9] 3.18 [9] 3.25 [9] 3.31 [9] 3.36 [9] 3.62 [7]

caching can be understood in the context of ski rental: The
paper identifies the competitive ratio of the classical ski-
rental problem as 2 (see Table 1 and Fig. 1). An easy in-
troduction to the classical ski-rental problem can be found
in Chapter 37 in the book [10]. The paper by Karlin [11]
discusses various practical applications.

The multislope ski-rental problem [5] was first studied
as Dynamic Power Management [12], [13], which we shall
mention in Sect. 2.3. Augustine et al. [13] designed an algo-
rithm that for a given instance of the multislope ski-rental
problem, outputs the best possible strategy and its compet-
itive ratio. The best bounds known so far on the competi-
tive ratio of the multislope ski-rental problem are an upper

bound of 4 [6] and a lower bound of 5+
√

5
2 ≈ 3.62 [7] (see

Table 1 and Fig. 1). Although these two works aimed for
other problems, the bounds straightforwardly apply to the
multislope ski-rental problem.

Previous results on the parametric version that the num-
ber of slopes is k + 1 are as follows (see Table 1 and Fig. 1):
The competitive ratio of the problem each for k = 2 and
k = 3 was identified by [8]: 2.47 for k = 2 and 2.75 for
k = 3. Fujiwara et al. [9] derived a lower bound for each
value of k, though the lower bound value was not given in
an explicit form.

The results we introduced above are all on a determin-
istic model, as well as our work throughout this paper, where
every strategy makes decisions with a probability of one.
For a randomized model, refer to, for example, [5], [14]–
[16].

1.3 Note on Rounding

Throughout this paper numerical rounding is all done to the
nearest value, differently from a convention that a lower
bound is rounded down while an upper bound is rounded
up. We nevertheless round to the nearest because for some

cases, the competitive ratio of the problem was already iden-
tified and we would like to display it as a single value
(see Table 1). For example, a more accurate value for
(# slopes) = 3 is 2.46557. If we followed the conventional
way, the upper and lower bounds would be displayed as 2.47
and 2.46, respectively, which do not look identical.

The upper bound of 4.00 for (# slopes) = 10 in Table 1
is a result of rounding; its precise value is indeed strictly
less than 4. We also mention that all numerical values in
this paper can be calculated with an arbitrary precision.

2. Problem Statement

2.1 Instance of the (k + 1)-Slope Ski-Rental Problem

For an integer k ≥ 1, we refer to the multislope ski-rental
problem having slopes 0, 1, . . . , k as the (k + 1)-slope ski-
rental problem. As long as the player continues to go ski-
ing, the player has to stay some slope while paying per-time
fees, or transition to another slope. (An option is called a
slope because the total cost increases along the slope of the
per-time fee.) The player is assumed to start from slope 0.
We also assume that the number of times of skiing, denoted
by t, is a nonnegative real number. Our notation basically
follows [9].

An instance of the (k + 1)-slope ski-rental problem is
a pair of vectors (r, b), where r has k + 1 entries and b has
k(k + 1)/2 entries. For 0 ≤ i < j ≤ k, the entry ri denotes
the per-time fee of slope i, and the entry bi, j denotes the
transition fee from slope i to slope j. (The transition fee
is what we called the initial fee in Sect. 1.) We impose the
following constraints:

r0 = 1, rk = 0, b0,k = 1, (1)

ri > r j for 0 ≤ i < j ≤ k, (2)

bl, j − bl,i ≤ bi, j ≤ bl, j for 0 ≤ l < i < j ≤ k. (3)
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The constraints normalize so that the per-time and transition
fees are all scaled down to between zero and one, without
loss of generality. To apply a practical price system, mul-
tiply r by the rental fee and multiply b by the price of a
set of ski gear. The constraint (1) fixes slope 0 to be a rent
option and slope k to be a buy option with no per-time fee.
Thus, k indicates the number of slopes other than the buy
option, and the case of k = 1 is equivalent to the classical
ski-rental problem. (This is why we set the number of slopes
as k + 1.) The constraint (2) says that a slope with a greater
index is associated with a cheaper per-time fee. From this,
we can assume that the player always transitions only to a
slope with a greater index; the player cannot save cost by
a backward transition. The left inequality in (3) is the tri-
angular inequality: A direct transition from slope l to j is
equal to or cheaper than a transition via another slope i. The
right inequality in (3) says that a transition from slope i to j
should be no cheaper than a transition from slope l < i.

2.2 Strategy and Competitiveness

At each occasion, the player at slope i either keeps stay-
ing at the same slope or transitions to a different slope j
by paying bi, j. This behavior can be described as a deter-
ministic strategy of the player using a vector x with k + 1
entries. (Throughout this paper, we deal with only deter-
ministic strategies.) Each entry xi indicates the number of
times of skiing the player has gone when the player transi-
tions from slope i− 1 to slope i. The sequence of the entries
is assumed to be non-decreasing by the constraint (2). Since
the player always starts from slope 0, we fix x0 = 0. (Please
do not confuse the notation of a strategy with the unknown x
without a subscript that will appear in equations in Sects. 3
and 4.)

Note that the player may skip a slope, not just transi-
tioning to the next slope. If the player transitions from slope
i directly to j by skipping the slopes between, we define
xi+1 = · · · = x j−1 = x j. In order to describe which slopes are
used, we define a relation of i ≺ j if the player transitions
from slope i to j.

Let the number of times of skiing t be such that xi ≤ t <
xi+1. By repeatedly staying and transitioning over slopes, the
player according to strategy x will have paid a cost of

ON(x, t) :=
∑

0≤l≺m≤i

{rl(xm − xl) + bl,m} + ri(t − xi)

For the sake of evaluating performance of strategies,
we consider an optimal offline player who behaves opti-
mally with the value of t known. Due to the constraint
(3), the optimal offline player will choose the best slope for
him/her at the beginning and then keep staying there. The
cost is written as

OPT (t) := min
0≤ j≤k

OFF j(t),

where OFF j(t) := b0, j + r j · t represents the transition fee to
slope j plus the cost of staying at slope j.

The standard performance measure of strategies for on-
line optimization problems is the competitive ratio [2]. We
say that the competitive ratio of strategy x is c, if

ON(x, t) ≤ c · OPT (t)

holds for all t ≥ 0.
Next, we define the competitive ratio of the multislope

ski-rental problem. Let strategy x̄ be an optimal strategy for
the multislope ski-rental problem. That is to say, the com-
petitive ratio c̄ of strategy x̄ is the minimum over all strate-
gies. Then, the competitive ratio of the multislope ski-rental
problem is c̄. Note that these terminologies, the competitive
ratio of a strategy and the competitive ratio of the problem,
have different meanings in this way.

Please be careful also with the words strategy and al-
gorithm: A strategy is, as we defined above, a schedule of
when to transition to a new slope. On the other hand, algo-
rithms in this paper are those which output a strategy based
on an instance received as an input.

2.3 An Example and Applications

Consider an instance of the 3-slope ski-rental problem:
(r0, r1, r2) = (1, 0.3, 0) and (b0,1, b0,2, b1,2) = (0.4, 1, 0.7).
As we introduced in Sect. 2.1, slope 0 is a rent option and
slope 2 is a buy option. Slope 1 is a lease option in that the
player has to both the initial and the per-time fees. Applying
Augustine et al.’s algorithm [13], we get an optimal strategy
of (x̄0, x̄1, x̄2) ≈ (0, 0.41, 2) with 0 ≺ 1 ≺ 2 (i.e., it does not
skip any slope).

We below illustrate applications of the multislope ski-
rental problem using this numerical example.

(A) Partial purchase of a set of ski gear: In Sect. 2.1
we say that the player chooses an option to use the entire
ski gear. This can be understood as a different setting: A
set of gear consists of multiple components. The player is
allowed to use his/her own components while renting the
rest. A slope stands for what the player has already bought
and therefore what should be rented. (Although the subject
needs not to be ski rental any longer, we keep it for a while.)

Suppose that a set of ski gear consists of a ski wear
and a pair of skis. Scaling the above example so that the
entire ski gear costs $500 and the rental fee of the entire ski
gear is $50 per time, we multiply r by 50, multiply b by 500,
and then obtain (r′0, r

′
1, r
′
2) = (50, 15, 0) and (b′0,1, b

′
0,2, b

′
1,2) =

(200, 500, 350). This scaled instance can be understood as
follows: After the player has bought a ski wear for $200, the
player can go skiing by renting only a pair of skis for $30
per time. Furthermore, the player may buy a pair of skis for
$350. Note that if the player buys the entire ski gear at once,
he/she saves 200 + 350 − 500 = 50 dollars.

The optimal strategy is scaled to (x̄′0, x̄
′
1, x̄
′
2) ≈ (0, 4.1,

20), which recommends the player: Start by renting every-
thing. Buy a ski wear at 4th ski trip. Then, buy a pair of skis
at 20th ski trip.

(B) Dynamic Power Management: Suppose that a
mobile device has a energy-saving mode, say Sleep, and
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we can set a strategy that specifies automatic transitions be-
tween modes according to the length of an idle period so
far. Then, the multislope ski-rental problem is equivalent
to minimization of the energy consumption during an idle
period plus that for resuming the device [12]. Although the
details are omitted here, the above example of an instance
represents a specification of a device:

• Power for staying On: 1 (= r0),
• Power for staying Sleep: 0.3 (= r1),
• Power for staying Off: 0 (= r2),
• Energy for turning from On to Sleep and then to On:

0.4 (= b0,1),
• Energy for turning from On to Sleep, then to Off, and

then to On: 1.1 (= b0,1 + b1,2),
• Energy for turning from On to Off and then to On: 1

(= b0,2).

If we interpret the time unit as hours, the optimal strategy
says that: When an idle period has lasted 24 minutes, then
turn from On to Sleep. When an idle period has reached 2
hours in total, turn from Sleep to Off.

3. Upper Bounds

3.1 Algorithm

We study upper bounds of the competitive ratio of the (k+1)-
slope ski-rental problem. The basis of our analysis is Bejer-
ano et al.’s algorithm [6], which achieves a competitive ratio
of 4. Applying this to the (k + 1)-slope ski-rental problem,
one can immediately have an upper bound of 4. In this sec-
tion we focus on the performance of the algorithm for the
(k + 1)-slope case, with a little modification, and reveal that
its competitive ratio is in fact strictly lower than 4.

Bejerano et al.’s algorithm is based on the so-called
doubling technique (see [17] for example). Whenever the
algorithm transitions to a new slope, it transitions so that
the transition cost does not exceed a constant factor times
the cost of the optimal offline player so far. Our algorithm
DBL, defined below, inherits this property.

For describing our algorithm, we employ an additional
notation of {ti}i=1,2,.... For each integer i ≥ 0, denote by ti the
value of t that satisfies OFFi(t) = OFFi+1(t). It is observed
that if the number of times of skiing t satisfies ti−1 ≤ t ≤ ti,
then OPT (t) = OFFi(t) holds. In other words, for such a
case, the optimal offline player will choose slope i and keep
staying there.

Definition 1. Algorithm DBL receives an instance of the
(k + 1)-slope ski-rental problem with k ≥ 1, and a real con-
stant α > 1. The algorithm successively determines a se-
quence of s0, s1, s2, . . . which the player stays (i.e., s0 ≺ s1 ≺
s2 ≺ · · · ) and a sequence of xs0 , xs1 , xs2 , . . . as follows: Set
s0 = 0 and xs0 = 0. For each integer j ≥ 0, while s j < k,
set s j+1 = max{i | bsj,i ≤ α · OPT (ts j ), i ≤ k} and xsj+1 = ts j ,
as well as xs j+1 = xs j+2 = · · · = xs j+1−1 = ts j for skipping the
slopes in-between.

We give a numerical example for the instance that
we used in Sect. 2.3. Take α = 2 for example. We get
s1 = 2 and then the iteration is over. Consequently, we have
(x0, x1, x2) ≈ (0, 0.57, 0.57) with 0 ≺ 2 (i.e., it skips slope
1).

The rule of determining s j+1 was originally s j+1 =

max{i | b0,i ≤ α · OPT (ts j ), i ≤ k} in Bejerano et al.’s al-
gorithm. This is because Bejerano et al.’s algorithm was an
algorithm for a so-called investment instance which satisfies
b j,i = b0,i for 0 < j < i ≤ k (see [8] for example). In contrast,
a general instance admits b j,i ≤ b0,i. So, we have naturally
replaced b0,i with bsj,i. This change affects the strategy in
such a way that it transitions to a slopes with a larger in-
dex earlier, which saves the cost of the player. Nevertheless,
from the viewpoint of competitiveness, this change does not
contribute in improvement. Indeed, the following arguments
still hold true for the original algorithm.

3.2 Analysis

The following several lemmas tell us the performance of the
algorithm DBL. The flow of the arguments is the same as
Sect. 3 of the paper [6]. Lemmas 1, 2, and 3 correspond to
Lemmas 1 and 2, and Theorem 1 of that paper, respectively.

Lemma 1. For each integer j ≥ 1,

OPT (ts j ) > α · OPT (ts j−1 ).

Proof. For each integer j ≥ 1, the algorithm DBL sets s j =

max{i | bsj−1,i ≤ α · OPT (ts j−1 ), i ≤ k}, which implies that
bsj−1,s j ≤ α · OPT (ts j−1 ) and bsj−1,s j+1 > α · OPT (ts j−1 ). From
definition of ts j and instances, we derive

OPT (ts j ) = b0,s j + rs j · ts j

= b0,s j+1 + rs j+1 · ts j

≥ b0,s j+1

≥ bsj−1,s j+1

> α · OPT (ts j−1 ). �

The next lemma claims that the cost incurred for a
slope is at most the cost of the optimal offline player so far.
Here, the cost incurred for slope s j consists of the transition
cost from the previous slope s j−1 plus the sum of the per-
time cost for staying slope s j, which is the left-hand side of
the inequality of Lemma 2.

Lemma 2. For each integer j ≥ 1,

bs j−1,s j + rs j (ts j − ts j−1 ) ≤ OPT (ts j ).

Proof. By definition of instances, it is derived that

bsj−1,s j + rs j (ts j − ts j−1 ) ≤ bsj−1,s j + rs j · ts j

≤ b0,s j + rs j · ts j

= OPT (ts j ). �

The following lemma gives a parametric performance
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of the algorithm DBL. Unlike Theorem 1 of the paper [6],
we fix the number of slopes to be k + 1. Since a matching
bound is already given for each of the cases of k ≤ 3 by [4]
and [8], we consider only k ≥ 4 in the rest of this section.

Lemma 3. For each integer k ≥ 4, the competitive ratio of
the strategy generated by the algorithm DBL for the (k + 1)-
slope ski-rental problem is at most α

2−α−k+1

α−1 .

Proof. Choose arbitrarily an instance (r, b) of the (k + 1)-
slope ski-rental problem, and the number of times of skiing
τ ≥ 0. Suppose that when a player who obeys the strategy
generated by the algorithm DBL has gone skiing τ times,
the player is at slope sn+1 with n ≤ k − 1. (Recall that the
last slope is slope k.) We denote by DBL(τ) the cost paid by
the player and bound it from above. The derivation involves
several equalities and inequalities: It holds that rs0 · ts0 =

OPT (ts0 ) since s0 = 0. The cost paid before reaching slope
sn+1 is bounded by Lemma 2, as well as bsn,sn+1 ≤ b0,sn+1 ≤
α ·OPT (tsn ). By applying Lemma 1 repeatedly, we have for
any j ≥ 1, OPT (tsn ) > αn− j ·OPT (ts j ). Besides, by definition
of OPT , rs j (τ− tsn ) = OPT (τ)−OPT (tsn ) holds. Using these
equalities and inequalities, we evaluate

DBL(τ) = rs0 · ts0 +

n∑
j=1

{bsj−1,s j + rs j (ts j − ts j−1 )}

+ bsn,sn+1 + rsn+1 (τ − tsn )

≤ OPT (ts0 ) +
n∑

j=1

OPT (ts j ) + α · OPT (tsn )

+ (OPT (τ) − OPT (tsn ))

=

n∑
j=0

OPT (ts j ) + α · OPT (tsn )

+ (OPT (τ) − OPT (tsn ))

≤
n∑

j=0

1
αn− j

· OPT (tsn ) + α · OPT (tsn )

+ (OPT (τ) − OPT (tsn ))

=
α − α−n

α − 1
· OPT (tsn ) + α · OPT (tsn )

+ (OPT (τ) − OPT (tsn ))

=
α2 − α−n

α − 1
· OPT (tsn )

+ (OPT (τ) − OPT (tsn ))

<
α2 − α−n

α − 1
· OPT (tsn )

+
α2 − α−n

α − 1
· (OPT (τ) − OPT (tsn ))

=
α2 − α−n

α − 1
· OPT (τ)

≤ α
2 − α−k+1

α − 1
· OPT (τ),

which means that the competitive ratio of the strategy is at

Table 2 Behavior of the functions h′, h, H, and f .

x 1 2k
k+2 β̄ ᾱ 2

h′(x) − − 0 + + + + + + +

h(x) 0 ↘ − ↗ 0 ↗ + ↗ 2k+1 + k ↗
H(x) 0 ↘ − ↘ − ↗ 0 ↗ k + 1 ↗
f (x) ↘ ↘ ↘ ᾱ2−ᾱ−k+1

ᾱ−1 ↗ 4 − 2−k+1 ↗

most α
2−α−k+1

α−1 . �

We then bound the value of α
2−α−k+1

α−1 from above. In
other words, we investigate how much the algorithm DBL
improves by choosing a good value for α.

Lemma 4. Let k be an integer ≥ 4, and ᾱ be a root of the
equation xk+2 − 2xk+1 + kx − k + 1 = 0 which is greater
than one. The function f (x) = x2−x−k+1

x−1 on the interval (1,∞)
achieves its minimum at x = ᾱ.

Proof. We first prepare some functions. Differentiating f (x)
we obtain

f ′(x) =
xk+2 − 2xk+1 + kx − k + 1

xk(x − 1)2
.

We denote xk(x − 1)2 f ′(x) by H(x):

H(x) = xk+2 − 2xk+1 + kx − k + 1.

Let h(x) be the derivative of H(x):

h(x) = (k + 2)xk+1 − 2(k + 1)xk + k.

Moreover, differentiating h(x) we get

h′(x) = (k + 2)(k + 1)xk − 2k(k + 1)xk−1

= (k + 2)(k + 1)xk−1

(
x − 2k

k + 2

)
. (4)

Although the function f is not defined at x = 1, we consider
H, h, and h′ with their domains including x = 1. Table 2
indicates the behavior of these functions, whose analysis is
given below.

We begin by showing the following two facts: (A) The
equation h(x) = 0 has a unique root β̄ which is greater than
one, and the root lies in the interval ( 2k

k+2 , 2). (B) h(x) is
negative for 1 < x < β̄ and positive for β̄ < x.

Proof of (A): The following three properties suffice to
prove (A): (i) The function h increases monotonically on
the interval ( 2k

k+2 , 2), since h′(x) > 0 for x > 2k
k+2 by (4). (ii)

It follows that h( 2k
k+2 ) < 0, since the function h decreases

monotonically on the interval 1 < x < 2k
k+2 , which is derived

by (4), and h(1) = (k + 2) − 2(k + 1) + k = 0. (iii) h(2) =
2k+1 + k > 0.

Proof of (B): We have seen that the function h(x) is
monotonically decreasing for 1 < x < 2k

k+2 and monotoni-
cally increasing for 2k

k+2 < x. Together with the uniqueness
of the root of h(x) = 0 and the fact (A), we conclude that
h(x) < 0 for 1 < x < β̄ and h(x) > 0 for β̄ < x.
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We then prove another fact: (C) The equation H(x) = 0
has a unique root ᾱ which is greater than one, and the root
lies in the interval (β̄, 2).

Proof of (C): The fact (B) says that the function H(x)
decreases monotonically for 1 < x < β̄ and increases mono-
tonically for β̄ < x. Since H(1) = 0, H(β̄) < 0 should
hold. We also have H(2) = k + 1 > 0. Hence, the equation
H(x) = 0 has a unique root in the interval (β̄, 2).

We are finally ready to prove the lemma. The fact (C)
with H(1) = 0 says that H(x) < 0 for 1 < x < ᾱ and
H(x) > 0 for ᾱ < x. By definition of H, the signs of H(x)
and f ′(x) coincide for x > 1. We then know that the function
f (x) decreases monotonically for 1 < x < ᾱ and increases
monotonically for ᾱ < x. Thus, the function f (x) on the
interval (1,∞) achieves its minimum at x = ᾱ. �

Lemmas 3 and 4 prove our main theorem on upper
bounds.

Theorem 1. For each integer k ≥ 4, the competitive ratio
of the (k + 1)-slope ski-rental problem is at most f (ᾱ) =
ᾱ2−ᾱ−k+1

ᾱ−1 , where ᾱ be a root of the equation xk+2 − 2xk+1 +

kx − k + 1 = 0 which is greater than one.

See Table 1 for numerical values. For example, our up-
per bound is 3.83 for the 5-slope ski-rental problem and is
3.93 for the 6-slope ski-rental problem, each of which im-
proves 4. We conclude this section by adding that for any k,
our upper bound is strictly less than 4.

Lemma 5. Let f and ᾱ be as defined in Lemma 4 and The-
orem 1. It holds that f (ᾱ) < 4 − 2−k+1.

Proof. The proof of Lemma 4 says that the function f (x)
increases monotonically for ᾱ < x. Thus, we have f (ᾱ) <
f (2) = 4 − 2−k+1. �

Corollary 1. For each integer k ≥ 4, the competitive ratio
of the (k + 1)-slope ski-rental problem is at most 4 − 2−k+1.

4. The Equations Related to Lower Bounds

In this section we consider equations with a root that is a
lower bound for the (k + 1)-slope ski-rental problem, not
improving lower bounds themselves. We present a simpler
construction of a sequence of equations.

Fujiwara et al. [9] gave lower bounds on the competi-
tive ratio of the (k + 1)-slope ski-rental problem, extending
the analysis by Damaschke [7]. For example, the maximum
real root (≈ 2.47) of the equation x3 − 4x2 + 5x − 3 = 0
is a lower bound for the 3-slope ski-rental problem, and the
maximum real root (≈ 2.75) of the equation x3 − 5x2 + 8x −
5 = 0 is a lower bound for the 4-slope ski-rental problem.
The following theorem states their claim in a general form.

Theorem 2. ([9]) For each integer k ≥ 2, the competitive
ratio of the (k + 1)-slope ski-rental problem is at least the
maximum of real roots of the equation qk(x) − x = 0 which

lie between 2 and 5+
√

5
2 , where {qi(x)}i=1,2,... is defined as

q1(x) =
x

x − 1
(5)

and

qi+1(x) =
x3 − x2 + x · qi(x)

x3 − x2 − (x − 1)2 · qi(x)
(6)

for i ≥ 1.

Table 1 gives numerical values of lower bounds. The
procedure in the paper [9] describes how to obtain an in-
stance of the (k + 1)-slope ski-rental problem for which any
strategy has a competitive ratio which is at least the lower
bound value. In this paper we omit the construction of in-
stances and concentrate on equations that have the lower
bound values as roots.

It is known that the lower bound values for k = 2 and
k = 3 coincide with the competitive ratios of the (k+1)-slope
ski-rental problem, respectively [8]. In other words, these
lower bounds match upper bounds. Observing this fact, the
paper [9] conjectures as follows:

Conjecture 1. ([9]) For each integer k ≥ 2, the competitive
ratio of the (k + 1)-slope ski-rental problem is equal to the
maximum of real roots of the equation qk(x) − x = 0 which

lie between 2 and 5+
√

5
2 .

The equation qk(x) − x = 0 itself is not an equation
that leads us immediately to the value of a lower bound.
In general, the equation includes irrelevant factors, also in
its denominator. To get a lower bound value, we first have
to cancel such irrelevant factors. (The two equations that
appeared at the beginning of this section are presented after
simplification.)

We investigate the recurrence relation in Theorem 2
and consequently find a simpler recurrence relation on equa-
tions that directly yield the same lower bound values as
roots.

Definition 2. Define {yi(x)}i=0,1,... by

y0(x) = x − 1,

y1(x) = x − 2,

y2(x) = x3 − 4x2 + 5x − 3,

y3(x) = x3 − 5x2 + 8x − 5,

and for k ≥ 2,

yk+2(x) = (x2 − 3x + 3) · yk(x) − (x − 1)2 · yk−2(x). (7)

Obviously, yi(x) never becomes fractional. We next
state that solving yk(x) = 0 is sufficient to obtain a lower
bound value, instead of solving qk(x) − x = 0.

Lemma 6. For each integer k ≥ 2, if yk−2(x) = 0 and x > 1,
then yk(x) � 0.

Proof. We show the lemma by induction on k. It is easy to
prove the cases of k = 2 and k = 3: Indeed, x = 1 is a unique
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root of y0(x) = 0, but y2(1) = −1. x = 2 is a unique root of
y1(x) = 0, but y3(2) = 1.

Assume that for an integer i ≥ 2 and a real x such that
yi−2(x) = 0 and x > 1, yi(x) � 0 holds. Let x̄ be a real
number that satisfies yi(x̄) = 0 and x̄ > 1. Applying (7), we
have

yi+2(x̄) = (x̄2 − 3x̄ + 3) · yi(x̄) − (x̄ − 1)2 · yi−2(x̄)

= −(x̄ − 1)2 · yi−2(x̄).

We know that yi−2(x̄) � 0 should hold true. Otherwise, it is
a contradiction to the assumption. Moreover, since x̄ > 1,
(x̄ − 1)2 is positive. Hence, yi+2(x̄) � 0 holds. The lemma is
thus proved by induction. �

Lemma 7. For each integer k ≥ 2,

(x − 1)2(qk(x) − x) · yk−2(x) = −x · yk(x). (8)

Proof. Again we show the lemma by induction on k. We
first see the lemma holds for k = 2. Using (5) and (6) with
i = 1, we get

q2(x) − x = − x(x3 − 4x2 + 5x − 3)
(x − 1)3

= − x · y2(x)
(x − 1)3

.

Together with y0(x) = x − 1, we derive

(x − 1)2(q2(x) − x) · y0(x) = − x · y2(x)
(x − 1)

· (x − 1)

= −x · y2(x),

which shows the lemma for k = 2.
Similarly, we see that the lemma holds for k = 3 from

q3(x) − x = − x(x3 − 5x2 + 8x − 5)
(x − 1)2(x − 2)

= − x · y3(x)
(x − 1)2(x − 2)

and

(x − 1)2(q3(x) − x) · y1(x) = − x · y3(x)
(x − 2)

· (x − 2)

= −x · y3(x).

Assume that for an integer i ≥ 2,

(x − 1)2(qi(x) − x) · yi−2(x) = −x · yi(x). (9)

Incrementing the indices of (6), we obtain

qi+2(x) − x =
x3 − x2 + x · qi+1(x)

x3 − x2 − (x − 1)2 · qi+1(x)
.

Plugging (6) into the right-hand side again,

qi+2(x) − x = − x
(x − 1)2

·
{

(x2 − 3x + 3) +
x

qi(x) − x

}
.

Multiplying the both sides by (x − 1)2 · yi(x), we get

(x − 1)2(qi+2(x) − x) · yi(x)

= −x ·
{

(x2 − 3x + 3) · yi(x) +
x · yi(x)

qi(x) − x

}
.

The factor qi(x) − x in the right-hand side can be canceled
by using (9) as:

(x − 1)2(qi+2(x) − x) · yi(x)

= −x ·
{
(x2 − 3x + 3) · yi(x) − (x − 1)2 · yi−2(x)

}
.

Finally, applying the recurrence relation (7), we have

(x − 1)2(qi+2(x) − x) · yi(x) = −x · yi+2(x),

which is the statement of the lemma for k = i+2. The lemma
is thus proved by induction. �

Lemma 8. For each integer k ≥ 2 and any real x > 1,
qk(x) − x = 0 if and only if yk(x) = 0.

Proof. Lemma 6 says that yk−2(x) = 0 and yk(x) = 0 do
not hold true for the same x. To apply this fact to (8) of
Lemma 7 implies the lemma. �

Our main theorem on lower bounds follows from
Lemma 8.

Theorem 3. For each integer k ≥ 2, the competitive ratio of
the (k + 1)-slope ski-rental problem is at least the maximum
of real roots of the equation yk(x) = 0 which lie between 2
and 5+

√
5

2 .

Conjecture 1, together with Theorem 3, says that the
competitive ratio of the (k + 1)-slope ski-rental problem is
equal to the root of the equation yk(x) = 0. It this is true,
the equation yk(x) = 0 should be related to some intrinsic
characteristics behind the problem.

We make some observations on {yi(x)}i=1,2,..., though
we are not sure that they are helpful. One is that the con-
stant term of yi(x), with its sign flipped, forms the Fibonacci
sequence (see [18] for example). This can be shown by
the recurrence relation (7). Another observation is that
{yi(x)}i=1,2,... does not consist of only irreducible polynomi-
als over the field of rationals. In fact, a counterexample is
y7(x) = x7−11x6+51x5−132x4+210x3−209x2+123x−34 =
(x − 2)(x6 − 9x5 + 33x4 − 66x3 + 78x2 − 53x + 17).

5. Concluding Remarks

As far as we observe results of some computational exper-
iments implementing the algorithm DBL, the value of the
competitive ratio of the (k+1)-slope ski-rental problem does
not seem close to the upper bound. That is to say, our anal-
ysis is loose. There is room for improvement of the upper
bound by a more detailed analysis.

For any k, the equation yk(x) = 0 can be easily obtained
by our recurrence relation. It is interesting to investigate
the relation between roots for different k from an algebraic
viewpoint.
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