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Abstract In the one-way trading problem, we are asked to convert dollars into yen only by unidirectional
conversions, while watching the exchange rate that fluctuates along time. The goal is to maximize the
amount of yen we finally get, under the assumption that we are not informed of when the game ends.
For this problem, an optimal algorithm was proposed by El-Yaniv et al. In this paper we formulate this
problem into a linear optimization problem (linear program) and reduce derivation of an optimal algorithm
to solving the linear optimization problem. This reveals that the optimality of the algorithm follows from
the duality theorem. Our analysis demonstrates how infinite-dimensional linear optimization helps to design
algorithms.
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1. Introduction

Suppose that now you have 10,000 dollars. By converting them into yen referring to the
exchange rate every day, how many yen can you get at last? Set a rule that you are not
allowed to convert yen back into dollars. It is obvious that your algorithm of conversion
affects the final result. Let us assume in addition that the yen/dollar rate takes values either
1, 1.25, 1.5, 1.75, or 2.0. The result of Section 3 leads us to an optimal algorithm as follows:
Wait for the yen/dollar exchange rate to reach 1.25. When the rate reaches 1.25, convert
1,096 dollars. When the rate reaches 1.5, convert 4,109 dollars. When the rate reaches 1.75,
convert 2,740 dollars. And, when the rate reaches 2.0, convert the remaining 2,055 dollars.

The reader will wonder what the optimality criterion here is. In such a situation, it would
be usual that, assuming some probability distribution for the fluctuation of the exchange
rate, one tries to maximize the expectation of the final amount of yen. On the contrary, our
optimization framework, called online optimization, is done without using any probability
distribution.

The optimality of the above algorithm was already proved by El-Yaniv et al [6]. What we
do in this paper is just to reconsider this one-way trading problem as a linear optimization
problem (linear program). The purpose of this paper consists of two aims. One is to
reveal that the optimality of an algorithm is endorsed by an optimal solution to a linear
optimization problem, which is not clear from the original problem-specific proof. The
other is to demonstrate a good application of infinite-dimensional linear optimization where
functional optimization works well as a powerful tool.

1.1. Our contribution

Before introducing our work, we state the one-way trading problem a bit more in details.
At the beginning a player is given some dollars. On each occasion of conversion, the player
is informed of the yen/dollar exchange rate. The player can convert arbitrary amount of
dollars into yen but is not allowed to convert yen back into dollars. It is assumed that
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the value of the exchange rate is always between a lower and an upper bound. The game
ends suddenly without any notice in advance. Then, the player is obliged to convert the
remaining dollars into yen at the possible minimum rate. The goal is to maximize the
amount of yen that the player finally owns. Our results are summarized as follows:

(I) In Section 3 we investigate the case where the value of the exchange rate takes
any of the values that are distributed at even intervals along the range from the lower
bound to the upper bound. (The example at the outset applies to this.) We formulate
this setting into a finite-dimensional linear optimization problem and obtain an analytical
optimal solution that characterizes an optimal algorithm. The optimality comes from the
weak duality theorem. More specifically, the proof is done by constructing a primal and
a dual feasible solution such that their objective function values coincide. Although we
restrict the candidate of algorithms for formulating the problem, the resulting algorithm is
guaranteed to be optimal over general algorithms; this additional proof is done separately
outside the formulation.

(II) In Section 4 we consider the case where the value of the exchange rate can take
arbitrary values between the lower bound to the upper bound, which is referred to as
Variant 2 of the one-way trading game in the paper [6]. We formulate the problem into an
infinite-dimensional linear optimization problem and get an analytical optimal solution that
yields an optimal algorithm. The optimality comes from the weak duality theorem as well.
However, the dual problem we formulate does not have an optimal solution. Instead, we
establish the optimality of a primal solution by offering a family of dual feasible solutions
whose objective function values are arbitrarily close to the primal optimal objective function
value. We show the resulting algorithm is optimal over general algorithms by giving another
proof outside the formulation, similarly to the finite-dimensional case.

The key to formulating linear optimization problems for (I) and (II) is quite simple: Just
set the inverse of the competitive ratio, which is a performance measure of an algorithm, as
a variable. Then, all the rules are described in a linear form. Once a problem is formulated,
a standard method leads us to an optimal solution. It may seem redundant to analyze (II)
after (I) is done. We insist on this way since an optimal solution for the finite-dimensional
case helps to guess one for the infinite-dimensional case. Another reason is that we want
to demonstrate that formulation of an infinite-dimensional linear optimization problem can
be done quite analogously to that of a finite-dimensional linear optimization problem; the
former is not so familiar in the literature.

From the viewpoint of optimization, what we achieve in this paper is merely to solve
a special class of instances of linear optimization. However, it should be noted that we
present analytic solutions to (I) and (II) in a closed form, not numeric ones computed by
a solver. Although a “magic number” ᾱ which cannot be presented explicitly is needed to
describe the optimal solution to (I), that number is also uniquely determined according to
the bounds of the exchange rate.

1.2. Related work

The one-way trading problem is a primitive problem closely related to operations research,
computational finance, and decision-making theory. El-Yaniv et al. [6] gave a comprehensive
investigation of that problem, proposing optimal algorithms for some cases. They classified
the problem by (a) whether the player knows the total number of occasions of currency
conversion and (b) whether the player knows both the lower and upper bounds on the
exchange rate, or only the ratio between them. In Section 4 of this paper, we provide
another proof of optimality of an online algorithm for the case where the player does not
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know the total number of occasions of conversion and he/she knows both the lower and
upper bounds on the exchange rate, which is called Variant 2 in [6]. In Section 3 we study
this Variant 2 with an additional restriction on the exchange rate value. Recently, Wang
et al. [9] analyzed the problem by using a competitive difference as the optimality criterion.
Chin et al. studied in [2] the case where the exchange rate is unbounded, which is out of
the classification above.

In the two-way trading problem, the player can both get dollars by selling yen and get yen
by selling dollars. Other settings are the same as the one-way trading problem. El-Yaniv
et al. [6] gave also an algorithm for the two-way trading problem. Dannoura and Sakurai [4]
designed an improved algorithm for the problem. Refer to the book by Dochow [5] for a
survey on a more general framework, called portfolio selection problems.

2. The One-Way Trading Problem

2.1. Exchange rate sequence and algorithm

In the one-way trading problem that we discuss in this paper, a player has one dollar at
the beginning. This normalization does not lose generality; we admit a trade of any small
fraction of the initial asset. On day k (k = 1, 2, . . .), the player is informed of the yen/dollar
exchange rate rk. The fluctuation is bounded by m ≤ rk ≤ M for each k. We assume that
the player knows the bounds m and M in advance. The goal for the player is to earn as
many yen as possible under the rules below.

On each day k, the player can convert arbitrary amount of dollars into yen, without
paying any charge for exchange. At this moment, the player has known only the exchange
rate sequence so far (r1, r2, . . . , rk). The task on day k is to determine how many dollars
the player exchanges based on that sequence, with no information about the future. It is
not allowed to exchange the yen that the player has got back to dollar.

The game ends suddenly, without any previous notice. In other words, any day may
be the last chance for exchange. The player cannot know that today is the last day before
exchanging dollars on that day. After the game is over, the remaining dollars of the player
are compulsorily converted into yen at the possible minimum rate m. Thus, the difficulty
of the problem is that the player has to do trades without knowing whether that day is
the last chance or not. The setting we mentioned so far is equivalent to Variant 2 of the
one-way trading game in the paper by El-Yaniv et al [6]. (Although the rule of compulsory
conversion at the end of the game is additional, this setting is equivalent to Variant 2 as
far as algorithms are evaluated by the competitive ratio, defined soon.)

We introduce the notion of a deterministic algorithm that determines how many dollars
to exchange. We mentioned that the amount of dollars to exchange on day k is determined
by the player referring to the exchange rate sequence so far (r1, r2, . . . , rk). Thus, we identify
a deterministic algorithm with a sequence of functions (fk)

∞
k=1 with fk : [m,M ]k → [0, 1]

in such a way that fk((r1, r2, . . . , rk)) stands for the exchange amount on day k. Note that
any adaptive algorithm can be represented in this way. The domain of fk is [m,M ]k, which
means that each exchange amount cannot depend on coming rates. We have to assume an
infinite sequence of functions since there is no restriction on how long the game lasts.

Let the exchange rate sequence be

σ = (r1, r2, . . . , rn).

We can look over the whole sequence and know from it that day n is the last chance.
However, as we already mentioned, the player notices this fact after the trade on day n. For
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this exchange rate sequence, consider an algorithm that converts dollars into yen according
to a sequence of functions (fk)

∞
k=1. Let ALG(σ) denote the resulting amount of yen. From

the rules above, we have

ALG(σ) =
n∑

k=1

rk · fk((r1, r2, . . . , rk)) +m

(
1−

n∑
k=1

fk((r1, r2, . . . , rk))

)
.

The former sum is the total amount of yen obtained by conversion on each day. The latter
sum is the amount of yen obtained by exchanging the remaining dollars at rate m when
the game is over. (Formally, it may be better to use a notation explicitly associated with
(fk)

∞
k=1, like ALG(fk)

∞
k=1

(σ). But, throughout this paper, there will be no confusion.)

2.2. Competitive ratio

In online optimization, the performance of an algorithm is usually analyzed without a proba-
bilistic assumption on the future input. The competitive ratio is often used for a performance
measure of an algorithm for the one-way trading problem (for example, see [1]). Before defin-
ing the competitive ratio for the problem, we need to assume an optimal offline algorithm
that, given the full information on the future, tells an optimal choice.

If the player knew the whole exchange rate sequence σ in advance, he/she would convert
exactly one dollar on the day when the rate is the highest. Let OPT (σ) denote the amount
of yen for such an ideal case. We have

OPT (σ) = max{r1, r2, . . . , rn}.

For the numerical example in Section 2.1, it holds that OPT (σ1) = 1.75. Recalling
ALG(σ1) = 1.275, we see that the player obtains around 73% of the ideal case.

We are ready to define the competitive ratio. We call

min{c | (∀n ∈ N)(∀σ ∈ [m,M ]n) c · ALG(σ) ≥ OPT (σ)}

the competitive ratio of the deterministic algorithm represented by (fk)
∞
k=1. It is easy to see

that M
m

is an upper bound and 1 is a lower bound.
We say again that the player got around 73% of the optimal offline profit in the numerical

example in Section 2.1. Roughly speaking, the competitive ratio is the maximum value of the
inverse of the percentage over all possible exchange rate sequences. A smaller competitive
ratio means a better performance of an algorithm. Throughout this paper our aim is to find
an algorithm that achieves a small competitive ratio.

3. Solving as a Finite-Dimensional Linear Optimization

In this section we study the one-way trading problem under the setting that the set of
values taken by the exchange rate is restricted to a finite subset of [m,M ]. We focus on a
narrowed set of algorithms and formulate a finite-dimensional linear optimization problem.
We give an optimal solution to the problem, that is to say, an optimal algorithm. Finally,
the algorithm is proved to be optimal also among general algorithms.

El-Yaniv et al [6] solved the original problem, that is, a problem without any restriction
on the exchange rate values, except that each rate should be in the interval [m,M ]. No
restriction like ours is discussed in their paper. To investigate a restricted case provides us
with plenty of helpful hints for considering the original problem as an infinite-dimensional
linear optimization problem in Section 4.
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In the original problem the exchange rate can take an arbitrary value in the interval
[m,M ]. In this section we assume that for a given integer N ≥ 2, the exchange rate is any
of

m,m+
M −m

N
,m+

M −m

N
· 2, . . . ,m+

M −m

N
· (N − 1), and M.

We write the j-th smallest value with 0 ≤ j ≤ N as

p(j) = m+
M −m

N
· j.

Numerical examples that appeared so far all satisfy this assumption. Furthermore, this
assumption may be acceptable to almost all application. Any rate value that we encounter
in the real world is rational. Choosing a sufficiently large N we restrict the set of possible
values as above.

The problem of minimizing the competitive ratio is formulated as follows:

Problem (OWT N)

Input: Real values m(> 0) and M(> m).

Output: A sequence of functions (fk)
∞
k=1 with fk : [m,M ]k → [0, 1] for each k.

Objective: Minimize the competitive ratio

min{c | (∀n ∈ N)(∀σ ∈ {p(j) | 0 ≤ j ≤ N}n) c · ALG(σ) ≥ OPT (σ)},

where for σ = (r1, r2, . . . , rn),

ALG(σ) =
n∑

k=1

rk · fk((r1, r2, . . . , rk)) +m

(
1−

n∑
k=1

fk((r1, r2, . . . , rk))

)

and
OPT (σ) = max{r1, r2, . . . , rn}.

As we saw in Section 2.1, a sequence of functions (fk)
∞
k=1 represents a deterministic

algorithm. It seems difficult to find an optimizer directly from general sequences of functions.
So, we are going to restrict the solution space to a narrowed class. We will be back to general
sequences of functions in Section 3.5.

3.1. Narrowed set of algorithms

From now until Section 3.4, we concentrate on algorithms that convert dollars only when
the exchange rate is the highest seen so far. (El-Yaniv et al. [6] called this rule Rule 1 of
the threat-based policy.) For each k, let

r̂k = max{r1, r2, . . . , rk},

that is, the highest exchange rate until day k. A sequence of functions (fk)
∞
k=1 that represents

such an algorithm must satisfy the following condition: For any exchange rate sequence
(r1, r2, . . . , rk), if rk > r̂k−1 then

fk((r1, r2, . . . , rk)) > 0,

otherwise
fk((r1, r2, . . . , rk)) = 0.
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In the paper by El-Yaniv et al. [6], they considered also the other rule of the threat-based
policy, Rule 2: Exchange the exact amount of dollars such that a target competitive ratio is
achieved if the game ends right now. Algorithms that obey both Rules 1 and 2 are designed
there. In contrast, we apply only Rule 1 to our formulation.

We now describe our narrowed set of algorithms more specifically. We characterize an
algorithm by a vector

(x0, x1, . . . , xN) ∈ [0, 1]N+1.

Then, the task of finding an optimal algorithm is done by finding an optimal vector. Given
a vector as above, we set the exchange amount on day 1, when the rate is r1,

f1((r1)) =

j1∑
j=0

xj, (3.1)

where j1 is an integer such that p(j1) = r1 holds. For k = 2, 3, . . ., we set

fk((r1, r2, . . . , rk)) =

{∑jk
j=jk−1+1 xj, if rk > r̂k−1;

0, if rk ≤ r̂k−1,
(3.2)

where jk−1 and jk are such that p(jk−1) = r̂k−1 and p(jk) = rk. Intuitively, xj is the amount
of dollars the player should convert when a rate of p(j) or higher is witnessed for the first
time. Since the player cannot convert more than the initial asset,

N∑
j=0

xj ≤ 1

must hold.
In this way, a vector (x0, x1, . . . , xN) yields a solution to problem (OWT N), which further

leads us to an algorithm for the one-way trading problem with the restricted set of exchange
rate values. The notation of ALG(·) is also defined accordingly. In the following arguments
we refer to the resulting algorithm simply as the algorithm determined by (x0, x1, . . . , xN).

3.2. Formulation as a linear optimization problem

We formulate a linear optimization problem (linear program) for deriving an optimal vector
(x̄0, x̄1, . . . , x̄N). Some lemmas are needed to be proved.

Lemma 3.1. The following (A) and (B) hold true for the algorithm determined by (x0, x1,
. . . , xN) ∈ [0, 1]N+1. (A) For any exchange rate sequence σ whose highest rate is p(i) with
0 ≤ i ≤ N , it holds that

ALG(σ) ≥
i∑

j=1

p(j) · xj +m

(
1−

i∑
j=1

xj

)
.

(B) For any i with 0 ≤ i ≤ N , there exists an exchange rate sequence σ such that its highest
rate is p(i) and

ALG(σ) =
i∑

j=1

p(j) · xj +m

(
1−

i∑
j=1

xj

)
.
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Proof. (A) Let k1 = 1. For exchange rate sequence σ = (r1, r2, . . . , rn), let k2, k3, . . . , kb be
k(≥ 2) such that rk > r̂k−1, indexed in an increasing order. Using this, we define j1, j2, . . . , jb
as p(j1) = rk1 , p(j2) = rk2 , . . . , p(jb) = rkb . From the hypothesis that the highest rate in σ
is p(i), we know rkb = p(i) and therefore jb = i.

For σ, the algorithm determined by (x0, x1, . . . , xN) converts

j1∑
j=0

xj +

j2∑
j=j1+1

xj + · · ·+
jb∑

j=jb−1+1

xj =
i∑

j=0

xj

dollars. The amount of yen that the algorithm gains is evaluated as

p(j1) ·
j1∑
j=0

xj + p(j2) ·
j2∑

j=j1+1

xj + · · ·+ p(jb) ·
jb∑

j=jb−1+1

xj

≥
j1∑
j=0

p(j) · xj +

j2∑
j=j1+1

p(j) · xj + · · ·+
jb∑

j=jb−1+1

p(j) · xj =
i∑

j=0

p(j) · xj.

Hence, together with the yen obtained by the exchange at the end of the game, we have

ALG(σ) ≥
i∑

j=0

p(j)·xj+m

(
1−

i∑
j=0

xj

)
=

i∑
j=1

p(j)·xj+m

(
1−

i∑
j=1

xj

)
+p(0)·x0−m·x0

=
i∑

j=1

p(j) · xj +m

(
1−

i∑
j=1

xj

)
.

(B) We show that for example, σ = (p(0), p(1), . . . , p(i)) is such a sequence with i + 1
entries. The algorithm determined by (x0, x1, . . . , xN) for this sequence converts

∑i
j=0 xj

dollars. The resulting amount of yen is

p(0) · x0 + p(1) · x1 + · · ·+ p(i) · xi =
i∑

j=0

p(j) · xj.

Therefore, eliminating x0 as we did in the last part of (A), we have

ALG(σ) =
i∑

j=1

p(j) · xj +m

(
1−

i∑
j=1

xj

)
.

Lemma 3.1 says that among exchange rate sequences with the highest rate being p(i),
σ = (p(0), p(1), . . . , p(i)) is one of those that minimize ALG(σ). Besides, please note that
x0 does not appear in the statement of Lemma 3.1. If we want to maximize the resulting
yen, we can fix x0 = 0. The intuition is that it is worthless to exchange dollars at the
minimum rate. In the rest of this section we write a vector that determines an algorithm
as (x1, . . . , xN), dropping the entry x0.
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Lemma 3.2. A necessary and sufficient condition for the competitive ratio of the algorithm
determined by (x1, . . . , xN) to be at most c is that: for all i with 1 ≤ i ≤ N ,

i∑
j=1

p(j) · xj +m

(
1−

i∑
j=1

xj

)
− 1

c
· p(i) ≥ 0 (3.3)

holds.

Proof. (Sufficiency) Let σ be any exchange rate sequence with the highest rate being p(i).
We know that OPT (σ) = p(i), since an optimal offline algorithm will convert the whole one
dollar at p(i). Applying Lemma 3.1 (A) to the condition, we obtain

ALG(σ) ≥
i∑

j=1

p(j) · xj +m

(
1−

i∑
j=1

xj

)
≥ 1

c
·OPT (σ).

Then, the definition of the competitive ratio tells us that the competitive ratio of the
algorithm is equal to or smaller than c.

(Necessity) Assume that for some c and i with 1 ≤ i ≤ N , the condition is not satisfied.
Lemma 3.1 (B) states the existence of σ′ such that for the fixed i, the highest rate in σ′ is
p(i) and

ALG(σ′) =
i∑

j=1

p(j) · xj +m

(
1−

i∑
j=1

xj

)
.

From the fact that OPT (σ′) = p(i) and the assumption, we derive

ALG(σ′)− 1

c
·OPT (σ′) =

i∑
j=1

p(j) · xj +m

(
1−

i∑
j=1

xj

)
− 1

c
· p(i) < 0,

which implies that the assumed c cannot be a candidate for the competitive ratio. Thus,
the necessity is proved.

We are now ready to formulate a linear optimization problem. The key is to handle
the inverse of the competitive ratio as a variable y1. By doing so, all the constraints are
expressed in a linear form. The reader may rather welcome this trick; the inverse of the
competitive ratio directly indicates the fraction compared to the optimal offline profit.

Applying Lemma 3.2 with the equality

i∑
j=1

p(j) · xj +m

(
1−

i∑
j=1

xj

)
− p(i) · y1 =

i∑
j=1

(p(j)−m)xj − p(i) · y1 +m,

we have a linear optimization problem.

(PN) maximize y1

subject to −
i∑

j=1

(p(j)−m)xj + p(i) · y1 ≤ m, 1 ≤ i ≤ N (3.4)

N∑
j=1

xj ≤ 1 (3.5)

xj ≥ 0, 1 ≤ j ≤ N

y1 ≥ 0
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3.3. Dual problem

Before finding a solution to the primal problem (PN), we formulate the dual problem of (PN).
The formulation of the dual problem can be done by a standard routine instructed in many
books, [3] for example. We here describe the details as a preparation to deal with an infinite-
dimensional linear optimization problem in Section 4. We believe that it is worth doing; the
infinite-dimensional version of the formulation of the dual problem may not be as familiar
as the finite-dimensional one.

The basic idea of the formulation of the dual problem is to obtain an upper bound
on the optimal value of the objective function. We construct a linear combination of the
constraints. The constraint (3.4) of (PN) consists of N inequalities, each indexed by i with
1 ≤ i ≤ N . Of course, one should not forget about (3.5).

Suppose that (x1, . . . , xN , y1) is a feasible solution to (PN). We introduce coefficients of
the linear combination, which will be seen as dual variables: λ1, . . . , λN corresponding to
the constraint (3.4) for each i with 1 ≤ i ≤ N , and µ1 corresponding to the constraint (3.5).
If λi ≥ 0 for all i = 1, . . . , N , and µ1 ≥ 0, then

N∑
i=1

λi ·

{
−

i∑
j=1

(p(j)−m)xj + p(i) · y1

}
+ µ1

N∑
j=1

xj ≤ m

N∑
i=1

λi + µ1 (3.6)

holds. Changing the order of summation in the left-hand side of (3.6), we have

N∑
i=1

i∑
j=1

λi · {−(p(j)−m)xj}+ µ1

N∑
j=1

xj +

(
N∑
i=1

p(i) · λi

)
· y1

=
N∑
j=1

N∑
i=j

λi · {−(p(j)−m)xj}+ µ1

N∑
j=1

xj +

(
N∑
i=1

p(i) · λi

)
· y1

=
N∑
j=1

{
−(p(j)−m)

N∑
i=j

λi + µ1

}
· xj +

(
N∑
i=1

p(i) · λi

)
· y1. (3.7)

Regard the right-hand side of (3.7) as a linear combination of x1, . . . , xN , and y1. When the
coefficients of x1, . . . , xN are all non-negative and the coefficient of y1 is equal to or greater
than one, the value of this linear combination is at least y1, which is the objective function
value for solution (x1, . . . , xN , y1). Then, the right-hand side of (3.6) is an upper bound on
the objective function value of (PN). The dual problem is a problem of finding values for
the dual variables such that the upper bound is minimized.

(DN) minimize m
N∑
i=1

λi + µ1

subject to −(p(j)−m)
N∑
i=j

λi + µ1 ≥ 0, 1 ≤ j ≤ N (3.8)

N∑
i=1

p(i) · λi ≥ 1 (3.9)

λi ≥ 0, 1 ≤ i ≤ N

µ1 ≥ 0
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The formulation of the dual problem (DN) immediately leads us to the following famous
property.

Lemma 3.3 (the weak duality theorem). Let (x1, . . . , xN , y1) and (λ1, . . . , λN , µ1) be feasi-
ble solutions to (PN) and (DN), respectively. Then, the objective function value of (PN) at
(x1, . . . , xN , y1) is equal to or less than the objective function value of (DN) at (λ1, . . . , λN , µ1).
That is to say, it holds that

y1 ≤ m
N∑
i=1

λi + µ1.

3.4. Optimal solution

In this section we give a primal and dual optimal solution to (PN) and (DN), respectively.
The optimality is established by the feasibility of the solutions and the coincidence of the
objective function values. We obtained the optimal solutions as follows: first, guess which
constraints are active from some computational experiments for numerical examples. Then,
solve the potentially active constraints as a system of equations with the condition that the
primal and dual objective function values are equal.

We introduce an important constant which appears in the primal and the dual optimal
solution. Let ᾱ be the minimum non-negative integer α such that

N∑
j=α+1

1

j
≤ p(α)

m
. (3.10)

(Let the left-hand side be zero when α = N .) It is going to turn out that: ᾱ is such a
constant that the algorithm determined by the optimal solution converts dollars only when
the exchange rate is at least p(ᾱ). In other words, the algorithm never converts at a rate
below p(ᾱ). (This fact seems almost impossible to be understood directly from the definition
above.) Lemma 3.4 tells the range of ᾱ.

Lemma 3.4. It follows that 1 ≤ ᾱ ≤ N .

Proof. For α = 0, the difference between the left-hand side and the right-hand side of (3.10)
is, noting that p(0) = m and N ≥ 2,

N∑
j=1

1

j
− m

m
≥

2∑
j=1

1

j
− 1 =

1

2
> 0.

Therefore, 1 ≤ ᾱ must hold. On the other hand, the difference for α = N is −M
m

< 0. Thus,
ᾱ ≤ N .

A primal and dual optimal solution is provided by the following Theorems 3.1 and 3.2,
which follow from Lemmas 3.3, 3.6, 3.8, and 3.9.

Theorem 3.1. The following (x̄1, . . . , x̄N , ȳ1) is optimal to (PN):

x̄j =


0, 1 ≤ j ≤ ᾱ− 1;
p(ᾱ)·ȳ1−m
p(ᾱ)−m

, j = ᾱ;
ȳ1
j
, ᾱ + 1 ≤ j ≤ N
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and

ȳ1 =

(
1 +

p(ᾱ)−m

p(ᾱ)
·

N∑
j=ᾱ+1

1

j

)−1

. (3.11)

Theorem 3.2. The following (λ̄1, . . . , λ̄N , µ̄1) is optimal to (DN):

λ̄i =


0, 1 ≤ i ≤ ᾱ− 1;

µ̄1 · N
M−m

· 1
i(i+1)

, ᾱ ≤ i ≤ N − 1;

µ̄1 · 1
M−m

, i = N

and

µ̄1 =

(
p(ᾱ)

p(ᾱ)−m
+

N∑
i=ᾱ+1

1

i

)−1

=
p(ᾱ)−m

p(ᾱ)
· ȳ1.

Lemma 3.5 is a helper lemma for showing the feasibility of the primal optimal solution.
It means that the competitive ratio 1

ȳ1
approximately equals to p(ᾱ)

m
.

Lemma 3.5. The following inequality holds true:

m

p(ᾱ)
≤ ȳ1 <

m

p(ᾱ− 1)
.

Proof. Since ᾱ is the minimum value that satisfies

N∑
j=ᾱ+1

1

j
≤ p(ᾱ)

m
(3.12)

and ᾱ ≥ 1 by Lemma 3.4, it holds that
∑N

j=ᾱ
1
j
> p(ᾱ−1)

m
. Subtracting 1

ᾱ
from both sides, we

get
N∑

j=ᾱ+1

1

j
>

p(ᾱ− 1)

m
− 1

ᾱ
. (3.13)

Using (3.12), we derive

ȳ1 =

(
1 +

p(ᾱ)−m

p(ᾱ)
·

N∑
j=ᾱ+1

1

j

)−1

≥
(
1 +

p(ᾱ)−m

p(ᾱ)
· p(ᾱ)

m

)−1

=

(
1 +

p(ᾱ)−m

m

)−1

=
m

p(ᾱ)
.

Similarly, from (3.13), we get

ȳ1 =

(
1 +

p(ᾱ)−m

p(ᾱ)
·

N∑
j=ᾱ+1

1

j

)−1

<

(
1 +

p(ᾱ)−m

p(ᾱ)
·
(
p(ᾱ− 1)

m
− 1

ᾱ

))−1

=
m

p(ᾱ− 1)
.

Lemma 3.6. (x̄1, . . . , x̄N , ȳ1) is feasible for (PN).
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Proof. Lemma 3.5 implies that

x̄ᾱ =
p(ᾱ) · ȳ1 −m

p(ᾱ)−m
≥ 0.

It is clear that the other entries of (x̄1, . . . , x̄N , ȳ1) are all non-negative. Thus, values of
the variables are all non-negative. We next confirm the constraint (3.4). For each i with
1 ≤ i ≤ ᾱ− 1, we have from Lemma 3.5 that

−
i∑

j=1

(p(j)−m)x̄j + p(i) · ȳ1 = p(i) · ȳ1 < p(ᾱ− 1) · m

p(ᾱ− 1)
= m.

For i = ᾱ, it simply holds that

−
i∑

j=1

(p(j)−m)x̄j + p(i) · ȳ1 = −(p(ᾱ)−m) · p(ᾱ) · ȳ1 −m

p(ᾱ)−m
+ p(ᾱ) · ȳ1 = m.

Employing this equality, we have for ᾱ + 1 ≤ i ≤ N that

−
i∑

j=1

(p(j)−m)x̄j + p(i) · ȳ1 = m−
i∑

j=ᾱ+1

(p(j)−m) · ȳ1
j
+ (p(i)− p(ᾱ)) · ȳ1

= m−
i∑

j=ᾱ+1

M −m

N
· j · ȳ1

j
+ (p(i)− p(ᾱ)) · ȳ1 = m.

Finally, applying (3.11), we see that the constraint (3.5) is fulfilled as

N∑
j=1

x̄j =
p(ᾱ) · ȳ1 −m

p(ᾱ)−m
+ ȳ1 ·

N∑
j=ᾱ+1

1

j
=

p(ᾱ)

p(ᾱ)−m
· ȳ1 −

m

p(ᾱ)−m
+ ȳ1 ·

N∑
j=ᾱ+1

1

j

=
p(ᾱ)

p(ᾱ)−m
·

(
1 +

p(ᾱ)−m

p(ᾱ)
·

N∑
j=ᾱ+1

1

j

)
· ȳ1 −

m

p(ᾱ)−m
=

p(ᾱ)−m

p(ᾱ)−m
= 1.

We state a family of equalities derived in the proof of Lemma 3.6 as a lemma, which is
referred from the proof of optimality over general algorithms.

Lemma 3.7. For every i with ᾱ ≤ i ≤ N , it holds true that

i∑
j=ᾱ

p(j) · x̄j +m

(
1−

i∑
j=ᾱ

x̄j

)
= ȳ1 · p(i).

Lemma 3.8. (λ̄1, . . . , λ̄N , µ̄1) is feasible for (DN).

Proof. It is easy to see that the entries of (λ̄1, . . . , λ̄N , µ̄1) are all non-negative. In the
following argument we sometimes employ the identity

1

i(i+ 1)
=

1

i
− 1

i+ 1
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for calculating the sum of a telescopic series. We examine the constraint (3.8). For each j
with 1 ≤ j ≤ ᾱ− 1,

− (p(j)−m)
N∑
i=j

λ̄i + µ̄1 = −(p(j)−m) · µ̄1 ·

{
N

M −m
·
N−1∑
i=ᾱ

1

i(i+ 1)
+

1

M −m

}
+ µ̄1

= −(p(j)−m) · µ̄1 ·
N

M −m
·
(
1

ᾱ
− 1

N
+

1

N

)
+ µ̄1 =

µ̄1

ᾱ
· (−j + ᾱ) > 0.

For ᾱ ≤ j ≤ N − 1,

− (p(j)−m)
N∑
i=j

λ̄i + µ̄1 = −(p(j)−m) · µ̄1 ·

{
N

M −m
·
N−1∑
i=j

1

i(i+ 1)
+

1

M −m

}
+ µ̄1

= −(p(j)−m) · µ̄1 ·
N

M −m
·
(
1

j
− 1

N
+

1

N

)
+ µ̄1 = −M −m

N
·j · µ̄1 ·

N

M −m
· 1
j
+ µ̄1 = 0.

The constraint (3.9) is shown to be satisfied by

N∑
i=1

p(i) · λi =
µ̄1

M −m
·

{
N ·

N−1∑
i=ᾱ

(
m+

M −m

N
· i
)
· 1

i(i+ 1)
+M

}

=
µ̄1

M −m
·

{
Nm ·

(
1

ᾱ
− 1

N

)
+ (M −m) ·

N∑
i=ᾱ+1

1

i
+M

}
= µ̄1·

{
p(ᾱ)

p(ᾱ)−m
+

N∑
i=ᾱ+1

1

i

}
= 1.

Lemma 3.9. The objective function value of (PN) at (x̄1, . . . , x̄N , ȳ1) equals to the objective
function value of (DN) at (λ̄1, . . . , λ̄N , µ̄1). That is to say, it holds that

ȳ1 = m
N∑
i=1

λ̄i + µ̄1.

Proof. Applying 1
i(i+1)

= 1
i
− 1

i+1
, we have

m
N∑
i=1

λ̄i = m · µ̄1 ·

{
N

M −m
·
N−1∑
i=ᾱ

1

i(i+ 1)
+

1

M −m

}

= m · µ̄1 ·
N

M −m
·
(
1

ᾱ
− 1

N
+

1

N

)
= m · µ̄1 ·

N

M −m
· 1
ᾱ

=
m

p(ᾱ)−m
· µ̄1.

Recalling µ̄1 =
p(ᾱ)−m
p(ᾱ)

· ȳ1, we conclude

m
N∑
i=1

λ̄i + µ̄1 =

(
m

p(ᾱ)−m
+ 1

)
· µ̄1 =

p(ᾱ)

p(ᾱ)−m
· µ̄1 =

p(ᾱ)

p(ᾱ)−m
· p(ᾱ)−m

p(ᾱ)
· ȳ1 = ȳ1.
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3.5. Optimality over general algorithms

One should note that what we have discussed so far is the optimality over the narrowed
set of algorithms. We now establish the optimality over general algorithms. The proof is
done outside the scope of linear optimization. However, the lemma that tells the active
constraints in (PN), Lemma 3.7, plays a significant role.

The idea of the proof of Theorem 3.3 is due to El-Yaniv et al [6], where an adversary
generates an exchange rate sequence, depending on the behavior of the player, so that the
player’s performance worsens. We believe that with assuming an adversary, one can more
intuitively understand the analysis on an exchange rate sequence that fools the player’s
algorithm. Refer to the book [1] for more on competitive analyses with an adversary.

Theorem 3.3. The algorithm determined by (x̄1, . . . , x̄N), that is, the sequence of func-
tions (fk)

∞
k=1 derived from (3.1) and (3.2) with (x̄1, . . . , x̄N), is optimal to (OWT N). Its

competitive ratio is 1
ȳ1
.

Proof. Fix a sequence of functions (fk)
∞
k=1, that is, an algorithm, arbitrarily. We are going

to prove that the competitive ratio of this algorithm is at least 1
ȳ1
. According to definition

of the competitive ratio, it is enough to claim the existence of σ such that

ALG(σ) ≤ ȳ1 ·OPT (σ).

In the following we show that some prefix of (p(ᾱ), p(ᾱ+1), . . . , p(N)) satisfies our purpose.
We write for ᾱ ≤ j ≤ N ,

sj = fj((p(ᾱ), p(ᾱ + 1), . . . , p(j))),

which is the amount of dollars which the algorithm exchanges when the rate is p(j). Let i0
be the minimum integer i such that ᾱ ≤ i ≤ N and

i∑
j=ᾱ

sj ≤
i∑

j=ᾱ

x̄j. (3.14)

Then, for all i with ᾱ ≤ i ≤ i0 − 1,
∑i

j=ᾱ sj >
∑i

j=ᾱ x̄j holds. Suppose that the adversary
chooses a prefix of length i0 − ᾱ + 1:

σi0 = (p(ᾱ), p(ᾱ + 1), . . . , p(i0))

and give it to the algorithms. (One can think that the adversary watches the behavior of
the algorithm and stops the game when the condition (3.14) is satisfied for the first time.)
We analyze the performance of the algorithm for each value of i0.

(i) Case i0 > ᾱ: The algorithm gets

ALG(σi0) =

i0∑
j=ᾱ

p(j) · sj +m

(
1−

i0∑
j=ᾱ

sj

)

yen for exchange rate sequence σi0 . By modifying the algorithm, this amount can be in-
creased, which will be proved below. Specifically, we construct a new sequence of functions
(f ′

k)
∞
k=1: For each j with ᾱ ≤ j ≤ i0 − 1,

f ′
j((p(ᾱ), . . . , p(j))) = x̄j,
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and

f ′
i0
((p(ᾱ), . . . , p(i0))) = si0 +

i0−1∑
j=ᾱ

(sj − x̄j). (3.15)

The value of (3.15) must be between zero and x̄i0 . The upper bound comes from

si0 +

i0−1∑
j=ᾱ

(sj − x̄j) =

i0∑
j=ᾱ

sj −
i0−1∑
j=ᾱ

x̄j ≤
i0∑

j=ᾱ

x̄j −
i0−1∑
j=ᾱ

x̄j = x̄i0 .

Note that this modification keeps the total amount of dollars that are exchanged.
We show the following inequality as a preparation:

p(i0) ·
i0−1∑
j=ᾱ

(sj − x̄j)−
i0−1∑
j=ᾱ

p(j) · (sj − x̄j) =

i0−1∑
j=ᾱ

(p(i0)− p(j))(sj − x̄j)

=
M −m

N
·
i0−1∑
j=ᾱ

i0−1∑
l=j

(sj − x̄j) =
M −m

N
·
i0−1∑
l=ᾱ

l∑
j=ᾱ

(sj − x̄j) > 0.

The following inequality shows that the amount of yen obtained by (f ′
k)

∞
k=1, denoted by

ALG′(σi0), is indeed more than that obtained by (fk)
∞
k=1.

ALG′(σi0) =

i0−1∑
j=ᾱ

p(j) · x̄j + p(i0) ·

{
si0 +

i0−1∑
j=ᾱ

(sj − x̄j)

}
+m

(
1−

i0∑
j=ᾱ

sj

)

>

i0−1∑
j=ᾱ

p(j) · x̄j + p(i0) · si0 +
i0−1∑
j=ᾱ

p(j) · (sj − x̄j) +m

(
1−

i0∑
j=ᾱ

sj

)
= ALG(σi0).

The proof for this case is concluded by bounding ALG′(σi0) from above. We have

ALG′(σi0) =

i0−1∑
j=ᾱ

p(j) · x̄j + p(i0) ·

{
si0 +

i0−1∑
j=ᾱ

(sj − x̄j)

}
+m

(
1−

i0∑
j=ᾱ

sj

)

=

i0−1∑
j=ᾱ

p(j) · x̄j +m

(
1−

i0−1∑
j=ᾱ

x̄j

)
+ (p(i0)−m) ·

{
si0 +

i0−1∑
j=ᾱ

(sj − x̄j)

}

≤
i0−1∑
j=ᾱ

p(j) · x̄j +m

(
1−

i0−1∑
j=ᾱ

x̄j

)
+ (p(i0)−m) · x̄i0

=

i0∑
j=ᾱ

p(j) · x̄j +m

(
1−

i0∑
j=ᾱ

x̄j

)
= ȳ1 · p(i0) = ȳ1 ·OPT (σi0)

The second last equal sign is due to Lemma 3.7. Consequently, we have ALG(σi0) <
ȳ1 ·OPT (σi0).

(ii) Case i0 = ᾱ: Since sᾱ ≤ x̄ᾱ holds, we obtain

ALG(σi0) = p(ᾱ) · sᾱ +m (1− sᾱ) = (p(ᾱ)−m) · sᾱ +m

≤ (p(ᾱ)−m) · x̄ᾱ +m = p(ᾱ) · x̄ᾱ +m (1− x̄ᾱ) = ȳ1 · p(i0) = ȳ1 ·OPT (σi0).

The second last equal sign is again implied by Lemma 3.7. We thus have ALG(σi0) ≤
ȳ1 ·OPT (σi0).
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4. Solving as an Infinite-Dimensional Linear Optimization

In this section we study the one-way trading problem under the setting that the exchange
rate can take arbitrary values in [m,M ]. This case was already researched by El-Yaniv
et al. [6] as Variant 2 of the one-way trading game. Their results are based on a problem-
specific analysis. We here show that in contrast, an optimal algorithm is derived from the
weak duality theorem on linear optimization in the same way as in Section 3.

We formulate an infinite-dimensional linear optimization problem, while we formulated
a finite-dimensional one in Section 3. It may seem redundant to describe both versions
individually. In fact, as we will see in Section 4.6, the finite-dimensional and the infinite-
dimensional problems lead to essentially the same optimal solution. A remarkable difference
is that the dual of our infinite-dimensional linear optimization problem does not have an
optimal solution in spite of its boundedness. The way of managing this difficulty will be
helpful for further application, which is one reason why we present both the discussions.

The outline of the analysis as an infinite-dimensional linear optimization problem is the
same as Section 3. Thus, we briefly mention only the difference that deserves attention. For
the convenience of comparison, we use the same letters to denote corresponding variables.
We begin with stating the problem to be solved. The difference from (OWT N) is only in
the set of exchange rate sequences in the definition of the competitive ratio.

Problem (OWT ∞)
Input: Real values m(> 0) and M(> m).
Output: A sequence of functions (fk)

∞
k=1 with fk : [m,M ]k → [0, 1] for each k.

Objective: Minimize the competitive ratio

min{c | (∀n ∈ N)(∀σ ∈ [m,M ]n) c · ALG(σ) ≥ OPT (σ)},

where for σ = (r1, r2, . . . , rn),

ALG(σ) =
n∑

k=1

rk · fk((r1, r2, . . . , rk)) +m

(
1−

n∑
k=1

fk((r1, r2, . . . , rk))

)

and
OPT (σ) = max{r1, r2, . . . , rn}.

4.1. Narrowed set of algorithms

From now until Section 4.4, we consider algorithms that convert dollars only when the
exchange rate is the highest seen so far. Such an algorithm can be represented by a function
defined on interval [m,M ]. (Recall that in Section 3.1, an algorithm was characterized by
a vector (x0, x1, . . . , xN). ) We formulate a linear optimization problem by regarding the
function as an element of an infinite-dimensional vector space.

We characterize an algorithm by a function x : [m,M ] → R≥0. Given a function x, we
set the exchange amount on day 1, when the rate is r1,

f1((r1)) =

∫ r1

m

x(q)dq. (4.1)

For k = 2, 3, . . ., we set

fk((r1, r2, . . . , rk)) =

{∫ rk
r̂k−1

x(q)dq, if rk > r̂k−1;

0, if rk ≤ r̂k−1.
(4.2)
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(Recall the notation r̂k = max{r1, r2, . . . , rk}.) Since the player cannot convert more than
the initial asset, ∫ M

m

x(q)dq ≤ 1

must hold.
We characterize a solution to problem (OWT ∞) by a function x in this way. We will

refer to the algorithm simply as the algorithm determined by x. The notation of ALG(·) is
also defined accordingly.

4.2. Formulation as a linear optimization problem

We show lemmas used to formulate an infinite-dimensional linear optimization problem.
Although Lemma 4.1 (B) looks different from the counterpart of the finite-dimensional
analysis, Lemma 3.1 (B), it plays a similar role.

Lemma 4.1. The following (A) and (B) hold true for the algorithm determined by x :
[m,M ] → R≥0. (A) For any exchange rate sequence σ whose highest rate is p with m ≤ p ≤
M , it holds that

ALG(σ) ≥
∫ p

m

qx(q)dq +m

(
1−

∫ p

m

x(q)dq

)
.

(B) For any ∆ > 0 and p with m ≤ p ≤ M , there exists an exchange rate sequence σ such
that its highest rate is p and

ALG(σ) <

∫ p

m

qx(q)dq +m

(
1−

∫ p

m

x(q)dq

)
+∆.

Proof. (A) Let k1 = 1. For exchange rate sequence σ = (r1, r2, . . . , rn), let k2, k3, . . . , kb be
k(≥ 2) such that rk > r̂k−1, indexed in an increasing order. From the hypothesis that the
highest rate in σ is p, we know rkb = p.

For σ, the algorithm determined by x converts∫ rk1

m

x(q)dq +

∫ rk2

rk1

x(q)dq +

∫ rk3

rk2

x(q)dq + · · ·+
∫ rkb

rkb−1

x(q)dq =

∫ p

m

x(q)dq

dollars. The amount of yen that the algorithm gains is evaluated as

rk1 ·
∫ rk1

m

x(q)dq + rk2 ·
∫ rk2

rk1

x(q)dq + rk3 ·
∫ rk3

rk2

x(q)dq + · · ·+ rkb ·
∫ rkb

rkb−1

x(q)dq

≥
∫ rk1

m

qx(q)dq +

∫ rk2

rk1

qx(q)dq +

∫ rk3

rk2

qx(q)dq + · · ·+
∫ rkb

rkb−1

qx(q)dq =

∫ p

m

qx(q)dq.

Hence, together with the yen obtained by the exchange at the end of the game, we have

ALG(σ) ≥
∫ p

m

qx(q)dq +m

(
1−

∫ p

m

x(q)dq

)
.

(B) For arbitrarily fixed ∆ > 0 and p, we construct a sequence of σ = (r1, r2, . . . , rn−1, rn)
in such a way that: r1 = m, rn = p, the sequence r1, r2, . . . , rn is monotonically increasing,
and each increment rj − rj−1 (2 ≤ j ≤ n) is less than ∆. That is to say, the length n is
determined depending on ∆ and p.
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For this σ, the algorithm determined by x converts
∫ p

m
x(q)dq dollars. We below use the

inequality rj < q +∆ for any q with rj−1 < q < rj. The amount of yen that the algorithm
gains is

r1 ·
∫ r1

m

x(q)dq + r2 ·
∫ r2

r1

x(q)dq + · · ·+ rn ·
∫ rn

rn−1

x(q)dq

<

∫ r1

m

(q +∆)x(q)dq +

∫ r2

r1

(q +∆)x(q)dq + · · ·+
∫ rn

rn−1

(q +∆)x(q)dq

=

∫ p

m

(q +∆)x(q)dq =

∫ p

m

qx(q)dq +∆ ·
∫ p

m

x(q)dq ≤
∫ p

m

qx(q)dq +∆.

The last inequality sign holds since
∫ p

m
x(q)dq ≤

∫M

m
x(q)dq ≤ 1. Consequently, we have

ALG(σ) <

∫ p

m

qx(q)dq +m

(
1−

∫ p

m

x(q)dq

)
+∆.

Lemma 4.2. A necessary and sufficient condition for the competitive ratio of the algorithm
determined by x : [m,M ] → R≥0 to be at most c is that: For all p with m ≤ p ≤ M ,∫ p

m

qx(q)dq +m

(
1−

∫ p

m

x(q)dq

)
− 1

c
· p ≥ 0 (4.3)

holds.

Proof. (Sufficiency) Let σ be any exchange rate sequence with the highest rate being p. We
know that OPT (σ) = p, since an optimal offline algorithm will convert the whole one dollar
at p. Applying Lemma 4.1 (A) to the condition, we obtain

ALG(σ) ≥
∫ p

m

qx(q)dq +m

(
1−

∫ p

m

x(q)dq

)
≥ 1

c
·OPT (σ).

Then, the definition of the competitive ratio tells us that the competitive ratio of the
algorithm is equal to or smaller than c.

(Necessity) Assume that for some c and p withm ≤ p ≤ M , the condition is not satisfied.
Choose ∆ so as to satisfy

0 < ∆ < −
{∫ p

m

qx(q)dq +m

(
1−

∫ p

m

x(q)dq

)
− 1

c
· p
}
.

Lemma 4.1 (B) states the existence of σ′ such that the highest rate in σ′ is p and

ALG(σ′)− 1

c
·OPT (σ′) <

∫ p

m

qx(q)dq +m

(
1−

∫ p

m

x(q)dq

)
− 1

c
·OPT (σ′) + ∆. (4.4)

We know that OPT (σ′) = p. Then, it is seen that due to the range of ∆, the right-hand
side of (4.4) is negative, which implies that the assumed c cannot be a candidate for the
competitive ratio. Thus, the necessity is proved.
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We formulate an infinite-dimensional linear optimization problem by setting the inverse
of the competitive ratio as a variable y.

(P∞) maximize y

subject to −
∫ p

m

(q −m)x(q)dq + py ≤ m, m ≤ p ≤ M (4.5)∫ M

m

x(q)dq ≤ 1 (4.6)

x(q) ≥ 0, m ≤ q ≤ M

y ≥ 0

4.3. Dual problem

The formulation of a dual problem we did in Section 3.3 is summarized as follows: A
linear combination of the constraints of the primal problem is taken for evaluating an upper
bound on the primal objective function value. The coefficients are dual variables. The upper
bound is the objective function of the dual problem. The constraints of the dual problem
are obtained as a condition that the upper bound is valid. We here do the same over an
infinite-dimensional vector space.

The constraint (4.5) means that there are an infinite number of inequalities, each for p
such that m ≤ p ≤ M . We construct a linear combination of these inequalities and (4.6).

Suppose that (x, y) is a feasible solution to (P∞). We introduce dual variables: λ :
[m,M ] → R for the constraint (4.5), each λ(p) corresponding to the inequality for p, and
µ ∈ R for the constraint (4.6). (The validity will be discussed in Section 4.7.) We take a
linear combination as: If λ(p) ≥ 0 for all m ≤ p ≤ M and µ ≥ 0,

∫ M

m

λ(p) ·
{
−
∫ p

m

(q −m)x(q)dq + py

}
dp+ µ

∫ M

m

x(q)dq ≤ m

∫ M

m

λ(p)dp+ µ (4.7)

holds. Changing the order of integrals in the left-hand side of (4.7), we have

∫ M

m

[∫ p

m

λ(p) · {−(q −m)x(q)} dq
]
dp+ µ

∫ M

m

x(q)dq +

(∫ M

m

pλ(p)dp

)
· y

=

∫ M

m

[∫ M

q

λ(p) · {−(q −m)x(q)} dp
]
dq + µ

∫ M

m

x(q)dq +

(∫ M

m

pλ(p)dp

)
· y

=

∫ M

m

{
−(q −m)

∫ M

q

λ(p)dp+ µ

}
· x(q)dq +

(∫ M

m

pλ(p)dp

)
· y (4.8)

Regard the right-hand side of (4.8) as a linear combination of x and y. When the coefficient
of x(q) each for m ≤ q ≤ M , which is the expression surrounded by curly brackets, is
non-negative and the coefficient of y is equal to or greater than one, the value of this linear
combination is at least y, which is the objective function value for solution (x, y). Then,
the right-hand side of (4.7) is an upper bound on the objective function value of (P∞). The
dual problem is a problem of finding values for the dual variables such that the upper bound
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is minimized.

(D∞) minimize m

∫ M

m

λ(p)dp+ µ

subject to −(q −m)

∫ M

q

λ(p)dp+ µ ≥ 0, m ≤ q ≤ M (4.9)∫ M

m

pλ(p)dp ≥ 1 (4.10)

λ(p) ≥ 0, m ≤ p ≤ M

µ ≥ 0

The weak duality theorem follows straightforwardly from the derivation of (D∞).

Lemma 4.3 (the weak duality theorem). Let (x, y) and (λ, µ) be feasible solutions to (P∞)
and (D∞), respectively. Then, the objective function value of (P∞) at (x, y) is equal to or
less than the objective function value of (D∞) at (λ, µ). That is to say, it holds that

y ≤ m

∫ M

m

λ(p)dp+ µ.

4.4. Optimal solution

We here give a primal optimal solution to (P∞) and a dual asymptotic optimal solution
to (D∞). Note that (D∞) does not have an optimal solution. (For more on this, see
Section 4.7.) As will be confirmed in Section 4.6, the primal optimal solution is essentially
the same as the finite-dimensional one. The optimality is established by the feasibility of
the solutions and the convergence of the objective function values.

The derivation of the solutions can be done as follows: Referring to the optimal solution
to (PN), guess that the inequality in the constraints is tight on a certain interval, and get
an integral equation. Note that the property that the optimal solution to (PN) is zero by
a certain index and positive elsewhere is helpful here. Then, solve the integral equation
together with the condition that the primal and dual objective function values converge.
The resulting algorithm coincides with that of El-Yaniv et al [6].

As a preparation, we define a constant c̄ as the unique root of the equation

c = ln
M −m

mc−m
.

Lemma 4.4. The root of the equation c = ln M−m
mc−m

uniquely exists in the interval (1, M
m
).

Proof. Consider the function h : c 7→ ln M−m
mc−m

− c. Obviously, h is continuous over (1, M
m
).

Moreover, h is monotonically decreasing since both the functions c 7→ ln M−m
mc−m

and c 7→ −c

are monotonically decreasing. The lemma holds by limc→1+0 h(c) = +∞ and h(M
m
) = −M

m
<

0.

Theorem 4.1 provides a primal optimal solution, which follows from Lemmas 4.5, 4.7,
and 4.8.



Trading Problems via Linear Optimization 21

Theorem 4.1. The following (x̄, ȳ) is optimal to (P∞):

x̄(q) =

{
0, m ≤ q < mc̄;

1
c̄(q−m)

, mc̄ ≤ q ≤ M

and

ȳ =
1

c̄
.

Lemma 4.5. (x̄, ȳ) is feasible for (P∞).

Proof. The feasibility is ensured simply by plugging (x̄, ȳ) into the constraints as below.
We first see 1 < c̄ < M

m
from Lemma 4.4. The constraint (4.5) holds true for each p with

m ≤ p < mc̄ as

−
∫ p

m

(q −m)x̄(q)dq + pȳ = p · 1
c̄
< mc̄ · 1

c̄
= m.

For mc̄ ≤ p ≤ M ,

−
∫ p

m

(q −m)x̄(q)dq + pȳ = −1

c̄

∫ p

mc̄

dq + p · 1
c̄
=

1

c̄
· (−p+mc̄+ p) = m.

The constraint (4.6) is confirmed as∫ M

m

x̄(q)dq =

∫ M

mc̄

dq

c̄(q −m)
=

1

c̄
· ln M −m

mc̄−m
= 1.

We have for mc̄ ≤ q ≤ M ,

x̄(q) =
1

c̄(q −m)
≥ 1

c̄(M −m)
> 0.

It is clear that ȳ is positive.

We pick up a family of equalities derived from the proof of Lemma 4.5 and state it as a
lemma for the later analysis.

Lemma 4.6. For every p with mc̄ ≤ p ≤ M , it holds true that∫ p

mc̄

qx̄(q)dq +m

(
1−

∫ p

mc̄

x̄(q)dq

)
= pȳ.

To prove the optimality of (x̄, ȳ), we employ a family of dual feasible solutions below,
parameterized by ε.

Lemma 4.7. For any 0 < ε < M −mc̄, the following (λ̄, µ̄) is feasible for (D∞):

λ̄(p) =


0, m ≤ p < mc̄;

µ̄
(p−m)2

, mc̄ ≤ p < M − ε;
µ̄

M−m
· 1
ε
, M − ε ≤ p ≤ M

and

µ̄ =

(
− m

M − ε−m
+

1

c̄− 1
+ ln

M − ε−m

mc̄−m
+

M

M −m
− 1

M −m
· ε
2

)−1

.



22 H. Fujiwara, N. Araki & H. Yamamoto

Proof. We first show that µ̄ is positive. Applying ε < M −mc̄, we derive

1

µ̄
= − m

M − ε−m
+

1

c̄− 1
+ ln

M − ε−m

mc̄−m
+

M

M −m
− 1

M −m
· ε
2

> − m

mc̄−m
+

1

c̄− 1
+

M

M −m
− M −mc̄

2(M −m)
=

M +mc̄

2(M −m)
> 0.

It is then immediate that λ̄ is non-negative on [m,M ]. The rest of the proof is done by
confirming the constraints (4.9) and (4.10). The constraint (4.9) needs to be checked with
respect to three intervals. We have for m ≤ q < mc̄,

−(q−m)

∫ M

q

λ̄(p)dp+µ̄ = −(q−m)

(∫ mc̄

q

0 dp+

∫ M−ε

mc̄

µ̄

(p−m)2
dp+

∫ M

M−ε

µ̄

M −m
· 1
ε
dp

)
+µ̄

= µ̄ ·
{
−(q −m)

(
− 1

M − ε−m
+

1

mc̄−m
+

1

M −m

)
+ 1

}
> µ̄ ·

{
−(mc̄−m)

(
− 1

M − ε−m
+

1

mc̄−m
+

1

M −m

)
+ 1

}
= µ̄ · (mc̄−m)

(
1

M − ε−m
− 1

M −m

)
> 0.

For mc̄ ≤ q < M − ε,

− (q −m)

∫ M

q

λ̄(p)dp+ µ̄ = −(q −m)

(∫ M−ε

q

µ̄

(p−m)2
dp+

∫ M

M−ε

µ̄

M −m
· 1
ε
dp

)
+ µ̄

= µ̄ ·
{
−(q −m)

(
− 1

M − ε−m
+

1

q −m
+

1

M −m

)
+ 1

}
= µ̄ · (q −m)

(
1

M − ε−m
− 1

M −m

)
> 0.

And for M − ε ≤ q ≤ M ,

− (q −m)

∫ M

q

λ̄(p)dp+ µ̄ = −(q −m)

(∫ M

q

µ̄

M −m
· 1
ε
dp

)
+ µ̄

= µ̄ ·
{
−(q −m) · 1

M −m
· 1
ε
· (M − q) + 1

}
> µ̄ ·

{
−(M −m) · 1

M −m
· 1
ε
· ε+ 1

}
= 0.

The constraint (4.10) holds true since we can calculate as∫ M

m

pλ̄(p)dp = µ̄ ·
{∫ M−ε

mc̄

p

(p−m)2
dp+

1

M −m
· 1
ε
·
∫ M

M−ε

pdp

}
= µ̄ ·

{
− m

M − ε−m
+

1

c̄− 1
+ ln

M − ε−m

mc̄−m
+

1

M −m
· 1
ε
·
(
1

2
M2 − 1

2
(M − ε)2

)}
= µ̄ ·

(
− m

M − ε−m
+

1

c̄− 1
+ ln

M − ε−m

mc̄−m
+

M

M −m
− 1

M −m
· ε
2

)
= 1.
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Lemma 4.8 states that the dual objective function value at (λ̄, µ̄) can be arbitrarily close
to the primal objective function value at (x̄, ȳ). Note that ε is a parameter that determines
(λ̄, µ̄).
Lemma 4.8. For all δ > 0, there exists ε with 0 < ε < M −mc̄ such that

ȳ ≤ m

∫ M

m

λ̄(p)dp+ µ̄ < ȳ + δ.

Proof. The part ȳ ≤ m
∫M

m
λ̄(p)dp+ µ̄ is an immediate consequence of Lemma 4.3. Now we

prove the other inequality. By substituting, we have

m

∫ M

m

λ̄(p)dp+ µ̄ =
− m

M−ε−m
+ 1

c̄−1
+ M

M−m

− m
M−ε−m

+ 1
c̄−1

+ ln M−ε−m
mc̄−m

+ M
M−m

− 1
M−m

· ε
2

. (4.11)

View the right-hand side of (4.11) as a function with respect to ε. It is obvious that the
function is continuous on interval [0,M −mc̄). (Note that the solution (λ̄, µ̄) is not defined
for ε = 0.) If we substitute zero for ε, we get

− m
M−m

+ 1
c̄−1

+ M
M−m

− m
M−m

+ 1
c̄−1

+ ln M−m
mc̄−m

+ M
M−m

=
1 + 1

c̄−1

1 + 1
c̄−1

+ ln M−m
mc̄−m

=
1 + 1

c̄−1

1 + 1
c̄−1

+ c̄
=

1

c̄
= ȳ.

The continuity of the function implies that for all δ > 0, there exists ε with 0 < ε < M−mc̄
such that ∣∣∣∣m∫ M

m

λ̄(p)dp+ µ̄− ȳ

∣∣∣∣ < δ.

The inequality of the lemma is thus obtained.

4.5. Optimality over general algorithms

We show the optimality of the obtained algorithm over general algorithms, similarly to
Section 3.5. A difference is that here one should care about an “error” that arises in finite-
time conversions. Lemma 4.9 helps to deal with the error.

Lemma 4.9. Fix y0 > 0 and a sequence of functions (fk)
∞
k=1, and consider the algorithm

that is determined by (fk)
∞
k=1. Suppose that for all ∆ > 0, there exists σ such that

ALG(σ) < y0 ·OPT (σ) + ∆.

Then, the competitive ratio of the algorithm is at least 1
y0
.

Proof. Suppose that the hypothesis is true. Fix y > y0 arbitrarily. Set ∆ = (y − y0) · m.
Then, we have ALG(σ) < y0 · OPT (σ) + (y − y0) ·m. Since OPT (σ) ≥ m holds for any σ,
we derive

ALG(σ) < y0 ·OPT (σ) + (y − y0) ·OPT (σ) = y ·OPT (σ). (4.12)

By definition of the competitive ratio, (4.12) implies that the competitive ratio of the algo-
rithm is greater than 1

y
.

We prove Theorem 4.2 in almost the same way Theorem 3.3. Again, the idea of the
proof is due to El-Yaniv et al [6].
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Theorem 4.2. The algorithm determined by x̄, that is, the sequence of functions (fk)
∞
k=1

derived from (4.1) and (4.2) with x̄, is optimal to (OWT ∞). Its competitive ratio is 1
ȳ
.

Proof. Fix a sequence of functions (fk)
∞
k=1, that is, an algorithm, arbitrarily. We are going to

prove that the competitive ratio of this algorithm is at least 1
ȳ
, using Lemma 4.9. That is to

say, our goal is to show that for all ∆ > 0, there exists σ such that ALG(σ) < ȳ·OPT (σ)+∆.
Choose an integer N ≥ 2. Set ∆̂ = M−mc̄

N
, which can be arbitrarily small according to

the choice of N . Let

pj = mc̄+ j · ∆̂

for 0 ≤ j ≤ N . See that p0 = mc̄ and pN = mc̄+N · ∆̂ = M . (Note that pj is different from
p(j) in Section 3.) In the following we show that some prefix of (p1, p2, . . . , pN) satisfies our
purpose.

For simplicity of notation, we write

x̂j =

∫ pj

pj−1

x̄(q)dq

for 1 ≤ j ≤ N . We also write for 1 ≤ j ≤ N , sj = fj((p1, p2, . . . , pj)), which is the amount
of dollars which the algorithm exchanges when the rate is pj. Let i0 be the minimum integer
i such that 1 ≤ i ≤ N and

i∑
j=1

sj ≤
i∑

j=1

x̂j. (4.13)

Note that if such i0 does not exist, then
∑N

j=1 sj >
∑N

j=1 x̂j =
∫M

mc̄
x̄(q)dq = 1, which is a

contradiction. Then, for all i with 1 ≤ i ≤ i0 − 1,
∑i

j=1 sj >
∑i

j=1 x̂j holds. Suppose that
the adversary chooses a prefix of length i0:

σi0 = (p1, p2, . . . , pi0)

and give it to the algorithms. We analyze the performance of the algorithm for each value
of i0.

(i) Case i0 ≥ 2: The algorithm gains ALG(σi0) =
∑i0

j=1 pj · sj + m
(
1−

∑i0
j=1 sj

)
yen

for exchange rate sequence σi0 . We consider a modified algorithm which can earn more.
Specifically, we construct a new sequence of functions (f ′

k)
∞
k=1: For each j with 1 ≤ j ≤ i0−1,

f ′
j((p1, . . . , pj)) = x̂j,

and

f ′
i0
((p1, . . . , pi0)) = si0 +

i0−1∑
j=1

(sj − x̂j). (4.14)

The value of (4.14) must be between zero and x̂i0 . The upper bound comes from

si0 +

i0−1∑
j=1

(sj − x̂j) =

i0∑
j=1

sj −
i0−1∑
j=1

x̂j ≤
i0∑
j=1

x̂j −
i0−1∑
j=1

x̂j = x̂i0 .

Note that this modification keeps the total amount of dollars that are exchanged.
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We show an inequality which will be needed soon.

pi0 ·
i0−1∑
j=1

(sj − x̂j)−
i0−1∑
j=1

pj · (sj − x̂j) =

i0−1∑
j=1

(pi0 − pj)(sj − x̂j)

=
M −mc̄

N
·
i0−1∑
j=1

i0−1∑
l=j

(sj − x̂j) =
M −mc̄

N
·
i0−1∑
l=1

l∑
j=1

(sj − x̂j) > 0. (4.15)

The following inequality shows that the amount of yen obtained by (f ′
k)

∞
k=1, denoted by

ALG′(σi0), is more than that obtained by (fk)
∞
k=1.

ALG′(σi0) =

i0−1∑
j=1

pj · x̂j + pi0 ·

{
si0 +

i0−1∑
j=1

(sj − x̂j)

}
+m

(
1−

i0∑
j=1

sj

)

>

i0−1∑
j=1

pj · x̂j + pi0 · si0 +
i0−1∑
j=1

pj · (sj − x̂j) +m

(
1−

i0∑
j=1

sj

)
= ALG(σi0).

We bound ALG′(σi0) from above as

ALG′(σi0) =

i0−1∑
j=1

pj · x̂j + pi0 ·

{
si0 +

i0−1∑
j=1

(sj − x̂j)

}
+m

(
1−

i0∑
j=1

sj

)

=

i0−1∑
j=1

pj · x̂j +m

(
1−

i0−1∑
j=1

x̂j

)
+ (pi0 −m) ·

{
si0 +

i0−1∑
j=1

(sj − x̂j)

}

≤
i0−1∑
j=1

pj · x̂j +m

(
1−

i0−1∑
j=1

x̂j

)
+ (pi0 −m) · x̂i0

=

i0∑
j=1

pj · x̂j +m

(
1−

i0∑
j=1

x̂j

)

=

i0∑
j=1

pj ·
∫ pj

pj−1

x̄(q)dq +m

(
1−

∫ pi0

mc̄

x̄(q)dq

)
.

We see that the inequality pj < q+∆̂ holds for any q with pj−1 < q < pj, since pj−pj−1 = ∆̂.
Similarly to the proof of Lemma 4.1 (B), we have

i0∑
j=1

pj ·
∫ pj

pj−1

x̄(q)dq <

i0∑
j=1

∫ pj

pj−1

(q + ∆̂)x̄(q)dq =

∫ pi0

mc̄

(q + ∆̂)x̄(q)dq ≤
∫ pi0

mc̄

qx̄(q)dq + ∆̂.

By Lemma 4.6, it is derived that

ALG(σi0) < ALG′(σi0) <

∫ pi0

mc̄

qx̄(q)dq +m

(
1−

∫ pi0

mc̄

x̄(q)dq

)
+ ∆̂

= pi0 ȳ + ∆̂ = ȳ ·OPT (σi0) + ∆̂.

Applying Lemma 4.9, we know that the competitive ratio of the algorithm determined by
(fk)

∞
k=1 is at least 1

ȳ
.
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(ii) Case i0 = 1: From the fact that s1 ≤ x̂1, we obtain

ALG(σi0) = (p1 −m) · s1 +m ≤ (p1 −m) · x̂1 +m = p1 ·
∫ p1

p0

x̄(q)dq+m

(
1−

∫ p1

p0

x̄(q)dq

)
.

Similarly to the proof of Lemma 4.1 (B), using the inequality p1 < q + ∆̂ for any q with
p0 < q < p1, we have

p1 ·
∫ p1

p0

x̄(q)dq <

∫ p1

p0

(q + ∆̂)x̄(q)dq =

∫ p1

p0

qx̄(q)dq + ∆̂ ·
∫ p1

p0

x̄(q)dq ≤
∫ p1

p0

qx̄(q)dq + ∆̂.

By Lemma 4.6, it holds that

ALG(σi0) <

∫ p1

p0

qx̄(q)dq +m

(
1−

∫ p1

p0

x̄(q)dq

)
+ ∆̂ = p1ȳ + ∆̂ = ȳ ·OPT (σi0) + ∆̂

From Lemma 4.9, we know that the competitive ratio of the algorithm determined by (fk)
∞
k=1

is at least 1
ȳ
.

4.6. Comparison of finite and infinite-dimensional problems

We compare the optimal algorithms for (OWT N) and (OWT ∞). The optimal algorithm
for (OWT N) starts converting when the exchange rate reaches p(ᾱ). On the other hand,
the optimal algorithm for (OWT ∞) starts converting when the exchange rate reaches mc̄.
There is no essential difference between these two problems. So, one may wonder if p(ᾱ) =
m + M−m

N
· ᾱ ≈ mc̄, that is to say, ᾱ ≈ mc̄−m

M−m
·N . Lemma 4.10 shows that this intuition is

true.
Lemma 4.10. It holds that⌊mc̄−m

M −m
·N
⌋
≤ ᾱ ≤

⌈mc̄−m

M −m
·N
⌉
.

Proof. Consider the region S that is bounded by q 7→ 1
q−m

, q = mc̄, q = M , and the q-axis.
Its area is ∫ M

mc̄

dq

q −m
= ln

M −m

mc̄−m
= c̄.

The second equality follows from definition of c̄. The lower (upper) bound on ᾱ is established
by calculating the area of a collection of rectangles that circumscribe (inscribe, respectively)
the region S.

(i) The lower bound α1 = ⌊mc̄−m
M−m

· N⌋. By deforming α1 ≤ mc̄−m
M−m

· N , we get p(α1) ≤
mc̄. Consider an equal-interval subdivision q = p(α1), p(α1 + 1), p(α1 + 2), . . . , p(N) and a
collection of rectangles on each interval that circumscribe the region S (see Figure 1). The
total area is

N−1∑
j=α1

M −m

N
· 1

p(j)−m
=

N−1∑
j=α1

M −m

N
· 1

M−m
N

· j
=

N−1∑
j=α1

1

j
,

which must be greater than c̄. We have

p(α1 − 1)

m
−

N∑
j=α1

1

j
<

p(α1 − 1)

m
−

N−1∑
j=α1

1

j
<

p(α1)

m
−

N−1∑
j=α1

1

j
< c̄− c̄ = 0.
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Figure 1: Proof of Lemma 4.10. Collection
of rectangles that circumscribe the region
S, the shaded area, for m = 1, M = 2, and
N = 10. Then, c̄ ≈ 1.28 and α1 = 2

Figure 2: Proof of Lemma 4.10. Collection
of rectangles that inscribe the region S, the
shaded area, for m = 1, M = 2, and N =
10. Then, c̄ ≈ 1.28 and α2 = 3

Recalling the definition of ᾱ, we know that α1 − 1 cannot be a candidate for ᾱ. Hence,
ᾱ ≥ α1.

(ii) The upper bound α2 = ⌈mc̄−m
M−m

·N⌉. From α2 ≥ mc̄−m
M−m

·N , we get p(α2) ≥ mc̄. The
area of a collection of rectangles above p(α2), p(α2+1), p(α2+2), . . . , p(N) that inscribe the
region S is

N−1∑
j=α2+1

M −m

N
· 1

p(j)−m
=

N−1∑
j=α2+1

1

j
< c̄

(see Figure 2). The inequality

p(α2)

m
−

N∑
j=α2+1

1

j
> c̄− c̄ = 0

says that α2 is a candidate for ᾱ. Thus, ᾱ ≤ α2.

One may realize that for the case where mc̄−m
M−m

·N is not an integer, the lower and upper
bound do not coincide. Unfortunately, Lemma 4.10 is the tightest possible as long as we
approximate ᾱ by employing mc̄−m

M−m
·N . Indeed, the lower bound and the upper bound both

may become tight due to the parameters. We give an example of m = 1 and M = 2. For
either N = 8 or 9, it holds that 2 < mc̄−m

M−m
· N < 3. For N = 8, we have ᾱ = 2, which

matches the lower bound. For N = 9, we have ᾱ = 3, which matches the upper bound. It
is open whether a more precise bound can be given, or ᾱ can be written in a closed form
with c̄.

A natural intuition is that the competitive ratio of the optimal algorithm for (OWT N)
approaches that for (OWT ∞) as N grows, which is proved by Theorem 4.3.

Theorem 4.3. It holds that

lim
N→∞

ȳ1 = ȳ(=
1

c̄
).
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Table 1: The number of partitions N and the competitive ratio 1
ȳ1

for m = 1 and M = 2

N 2 3 4 5 6 7 8 · · · ∞
1
ȳ1

1.16667 1.20833 1.21667 1.22381 1.2375 1.24286 1.24357 · · · 1.27846

Proof. We bound ȳ1 from below and from above, using Lemmas 3.5 and 4.10:

ȳ1 ≥
m

p(ᾱ)
≥ m

m+ M−m
N

· ⌈mc̄−m
M−m

·N⌉
>

m

m+ M−m
N

·
(
mc̄−m
M−m

·N + 1
) =

1

c̄+ M−m
Nm

and

ȳ1 ≤
m

p(ᾱ− 1)
≤ m

m+ M−m
N

·
(
⌊mc̄−m
M−m

·N⌋ − 1
) <

m

m+ M−m
N

·
(
mc̄−m
M−m

·N − 2
) =

1

c̄− 2 · M−m
Nm

.

As N grows, the lower and upper bounds each approach 1
c̄
(= ȳ). By the squeeze theorem,

we conclude that ȳ1 also converges to 1
c̄
.

Here we give some numerical values for m = 1 and M = 2. Table 1 presents the values
of 1

ȳ1
for N = 2, 3, . . . , 8 and its limit (= c̄) as N → ∞. The result is interpreted as the

followings. A small N means that the number of possible events with the exchange rate is
few. Then, it does not affect the performance so much whether the future information is
available or not. In contrast, when N is large, the merit of having the knowledge of the
future becomes relatively significant.

4.7. On the gap between the primal and dual objective function values

The solution (λ̄, µ̄) to (D∞), parameterized by ε, is seen as an asymptotic optimal solution.
The primal and dual objective function values can be arbitrarily close but never coincide.
Note that (λ̄, µ̄) is not defined for ε = 0; the value of λ̄(p) for p = M diverges to infinity as
ε → 0.

There is a way to avoid this difficulty. See where this difficulty comes from. We have
failed to construct an arbitrary linear combination of constraints of (P∞) in Section 4.3. In
fact, λ introduced there does not represent an arbitrary linear combination. Viewed from
a different perspective, (D∞) is a problem for which only the weak duality theorem holds
true.

In this section we properly use the terminology functional rather than combination,
since we discuss what maps a function to a real number. The representation of an arbitrary
linear functional depends on the function space that the constraints belong to. (We have
skipped such careful arguments so far.) Assume that x is a Lebesgue integrable function
and integrals appearing in (P∞) are Lebesgue integrals. Then, it is known that the left-hand
side of (4.5) is a continuous function of p. Theorem 4.4 tells us how we should describe an
arbitrary linear functional. The right-hand side of (4.16) is a Lebesgue-Stieltjes integral.

Theorem 4.4 (the Riesz representation theorem (see [7] for example)). Every linear func-
tional J on the set of continuous functions from [m,M ] to R can be represented in the
form

J(g) =

∫ M

m

g(p)dΛ(p), (4.16)

where g is a continuous function on [m,M ] and Λ is a bounded variation on [m,M ].
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Applying Theorem 4.4, we have the following inequality, instead of (4.7),∫ M

m

{
−
∫ p

m

(q −m)x(q)dq + py

}
dΛ(p) + µ

∫ M

m

x(q)dq ≤ m

∫ M

m

dΛ(p) + µ.

Then we have the dual problem with variables (Λ, µ) and get an optimal Λ:

Λ̄(p) =


0, m ≤ p < mc̄;

− µ̄
(p−m)

+ µ̄
(mc̄−m)

, mc̄ ≤ p < M ;
µ̄

M−m
, p = M.

It is easily confirmed that the derivative of Λ̄ equals to λ̄ on intervals (m,mc̄) and (mc̄,M−ε).
Calculating the integrals, we have that there is no longer a gap between the primal and dual
objective function values.

To conduct rigorous analysis for infinite-dimensional linear optimization, discussion on
function spaces is required. See [8] for example. Before this section we have managed
without such discussion. Our claim is not that we should always take good care about
function spaces. We would like to say that it is sometimes the case that for practical
examples of infinite-dimensional linear optimization, such as the one-way trading problem,
an asymptotic optimal solution works enough.

Indeed, although λ introduced in Section 4.3 does not represent an arbitrary linear
combination, the objective function of (D∞) is still valid as an upper bound on the objective
function of (P∞). Hence, it is done if we find a pair of a primal and a dual solution such
that their objective function values can be arbitrarily close.

Our analysis is valid under the assumption that integrals are all Riemann integrals. We
have avoided introducing a Stieltjes integral by letting the value of λ̄ on interval [M − ε,M ]
be finite. All the facts we want can be proved as long as ε > 0 is chosen arbitrarily.

5. Concluding Remarks

As far as we know, there are only a few papers in the literature that solve a specific set
of instances of infinite-dimensional linear optimization problems. In Section 4 we demon-
strated that a problem in the real world can be formulated into an infinite-dimensional linear
optimization problem. This paper will be successful if the reader sees that it is sometimes
possible to find an analytical solution to such a linear optimization problem.

Most applications in the real world are a problem of a finite dimension. Even in such
a case, it would be helpful to consider both finite-dimensional and infinite-dimensional op-
timization as follows. First, run some computational experiments on a finite-dimensional
problem and check if there is any irregularity such as the jump in (λ̄1, . . . , λ̄N) in The-
orem 3.2. Next, formulate an infinite-dimensional problem and find an optimal solution.
Finally, obtain a solution to the finite-dimensional problem by some rounding.
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