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Competitive Analysis for the 3-Slope Ski-Rental Problem with the
Discount Rate∗

Hiroshi FUJIWARA†a), Shunsuke SATOU††, Nonmembers, and Toshihiro FUJITO††, Member

SUMMARY In the 3-slope ski-rental problem, the player is asked to
determine a strategy, that is, (i) whether to buy a ski wear and then a ski
set separately, or to buy them at once for a discount price, and (ii) when
to buy these goods. If the player has not got any thing, he/she can rent
it for some price. The objective is to minimize the total cost, under the
assumption that the player does not know how many times he/she goes
skiing in the future. We reveal that even with a large discount for buying
at once available, there is some price setting for which to buy the goods
separately is a more reasonable choice. We also show that the performance
of the optimal strategy may become arbitrarily worse, when a large discount
is offered.
key words: online algorithm, competitive analysis, online optimization,
ski-rental problems

1. Introduction

Suppose that the price of a ski wear is $300, the price of a
ski set, which is a pair of skis and a pair of boots, is $500,
and a combo of a ski wear and a ski set is offered for $600.
Then, buying the combo may seem nice. The analysis in this
paper shows, however, that if the cost of the rent of a ski set
is cheap, to buy the goods separately can be reasonable.

A price setting as above can be formulated as the 3-
slope ski-rental problem [1]. The objective is to minimize
the total cost, under the assumption that the player does not
know how many times he/she goes skiing in the future. For
this problem, there are two types of strategy:

• Rent both a ski wear and a ski set for some times, and
then buy the combo of them (later called “type 02”).

• Rent both a ski wear and a ski set for some times, and
then buy a ski wear. After that, rent only a ski set for
some times, and finally buy a ski set (later called type
“012”).

In this way, a strategy is characterized by the type and also,
importantly, the number of times of rentals. Note that the
player adopts a strategy as long as he/she keeps on skiing.
For example, it happens that the player quits skiing before
buying anything.
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The standard performance measure of such a strategy
is the competitive ratio [2], defined as the maximum ratio
of the cost incurred by the strategy to the optimal offline
cost, that is, the cost with the number of times of skiing
known in advance. An optimal strategy for the 3-slope ski-
rental problem is numerically calculated by the algorithm of
Augustine et al. [3]. Nevertheless, it has not been clear what
instance admits a small competitive ratio and does not. In this
paper we carry out a parametric analysis with the discount
rate that indicates how cheap the combo is compared with
the sum of the prices of the goods.

1.1 Our Contribution

We derive an optimal strategy in an analytical form for an
individual instance of the 3-slope ski-rental problem. We
reveal that there is a price setting with a small discount rate
for which to buy a ski wear and a ski set separately is better
than to buy the combo.

Investigating the relation between the discount rate and
the competitive ratio of the optimal strategy, we find the
easiest instance and the hardest instance among those with
a fixed discount rate. We consider two different sets of
instances: a narrow set of instances originated from Dynamic
Power Management [5] and a wide one which represents the
ski rental settings more naturally. Our result is summarized
in Table 1. Figures 1 and 2 show the ranges of the competitive
ratio of the optimal strategy for the instance sets with a fixed
discount rate.

It is a natural intuition that when the discount rate is
extremely large or small, the choice by the player is trivial and
therefore the instance is easy. That is to say, if the discount

Table 1 Competitive ratio, denoted by CR, of the optimal strategy for
the easiest/hardest instance each in for different sets.
set of CR of optimal strategy CR of optimal strategy
instances for the easiest instance for the hardest instance
narrow set 9

5 [4] 2.47 − ε [4]
(= N )
narrow set with 2, if 1

2 ≤ d < 4
5 ; 1

1−d − ε, if 1
2 ≤ d < 0.59;

fixed discount rate 1 + 4
5d , if 4

5 ≤ d ≤ 1 1
2

(
3 +

√
4
d − 3

)
− ε,

(= Nd ) if 0.59 ≤ d ≤ 1
wide set 9

5 ∞
(=W )
wide set with 2, if 0 ≤ d < 4

5 ; 1 + 1
d

fixed discount rate 1 + 4
5d , if 4

5 ≤ d ≤ 1
(=Wd )
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Fig. 1 Range of the competitive ratio of the optimal strategy for instances
in the narrow set (= Nd ) with each discount rate d. Nd is non-empty only
when 1

2 ≤ d ≤ 1.

Fig. 2 Range of the competitive ratio of the optimal strategy for instances
in the wide set (=Wd ) with each discount rate d.

rate is very small, to buy the combo is of course reasonable.
If the discount rate is very large, to buy the goods one-by-one
can avoid the risk of quitting skiing. The intuition is correct
for the narrow set of instances; the instance is easy when the
discount rate is extremely large or small. In contrast, it is not
the case for the wide set of instances; there is a hard instance
with the discount rate being almost zero. (See Figs. 1 and 2.)

1.2 Application

We mention that the study on the multislope ski-rental prob-
lem [1], a general form of the 3-slope ski-rental problem,
originally started as Dynamic Power Management on elec-
tric devices equipped with the “Sleep” mode [5]. A strategy
there is a schedule of automatically turning the device to
“Sleep” and shutting it “Off” when there is no user response.
The objective is to minimize the energy consumption dur-
ing an idle period of uncertain length, including the energy
consumption to resume the device. The 3-slope ski-rental
problem and Dynamic Power Management correspond as the
followings and thus turn out to be equivalent.

• the number of times of skiing = the length of the idle

period.
• buy the combo = keep staying state “On” for some time

from the beginning of the idle period, and then shut the
device “Off”.

• buys a ski wear and a ski set separately = keep staying
state “On” for some time from the beginning of the idle
period, next turn the device to “Sleep” and wait for a
while, and finally shut it “Off”.

• the price of a ski wear = the total energy consumption
for turning from “On” to “Sleep”, and turning from
“Sleep” to “On”.

• the price of a ski set = the total energy consumption for
turning from “Sleep” to “Off”, and turning from “Off”
to “On”.

• the price of the combo = the total energy consumption
for turning from “On” to “Off”, and turning from “Off”
to “On”.

• the cost of renting both a ski wear and a ski set once =
power consumed in “On”.

• the cost of renting only a ski set once = power consumed
in “Sleep”.

This correspondence suggests further application in partic-
ular in decisions in management, such as management of
factories where irregular and unscheduled orders arrive.

1.3 Related Work

The earliest idea of the ski-rental problem is found in the
paper [6], where the goods to be bought/rented are entire ski
gear. The question is when to buy them after renting them.

The k-slope ski-rental problem [1] is an extension that
ski gear consist of (k − 1) parts. (The original model was
that there are (k −1) different areas options for getting entire
ski gear.) The reason why the problem is called “k-slope”
is that once the player chooses a strategy, the cost increases
linearly with the number of times of skiing. The algorithm
of Augustine et al. [3] calculates an optimal strategy.

For arbitrary k, Damaschke [7] gave a lower bound on
the competitive ratio of 5+

√
5

2 ≈ 3.62. An upper bound of 4
is immediately derived from the result by Bejerano et al. [8].

For each k ≥ 3, the paper [9] gave a lower bound for
the k-slope ski-rental problem. A better upper bound than 4
due to [8] is in general unknown.

2. Preliminaries

2.1 Problem Statement

We define an instance of the 3-slope ski-rental problem. Our
notation basically follows the paper [4]. Although the indices
may seem redundant, we believe that they will help when
comparing results. In the general case an index corresponds
to a state that the player has already bought some of ski gear.
We denote an instance by (r1, b0,1, b1,2) such that:

• the price of a ski wear = b0,1,
• the price of a ski set (i.e., a pair of skis and a pair of
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boots) = b1,2,
• the price of the combo (i.e., a ski wear and a ski set)
= 1,

• the cost of renting both a ski wear and a ski set once
= 1, and

• the cost of renting only a ski set once = r1.

The prices are normalized so that the price of the combo
= 1. Namely, b0,1 and b1,2 are regarded as ratios. Of course,
b0,1 + b1,2 can be larger than one.

For ease of calculation, we hereafter assume that the
number of times of skiing and also the number of times
of renting goods are fractional numbers. Results from our
analysis can be converted in the real price setting by rescaling
and rounding.

A strategy of type 012 is written as x = (x1, x2), where

• the number of times of renting both a ski wear and a ski
set = x1, and

• the number of times of renting only a ski set = x2 − x1.

After x2 times of skiing, the player buys a ski set for a cost
of b1,2. Note that the number of renting goods may not be
realized when the player quits skiing earlier. We denote the
number of times of skiing by t. Then, the total cost of the
type-012 strategy is

ON (x, t) :=


t, 0 ≤ t < x1;
r1(t − x1) + x1 + b0,1, x1 ≤ t < x2;
r1(x2 − x1) + x1 + b0,1 + b1,2, x2 ≤ t.

The first expression shows the cost when the player keeps
renting the both goods for t times. The second one is the
cost when after renting the both goods for x1 times, the
player buys a ski wear for b0,1, and then rents only a ski set
for (t − x1) times. The last one is the cost when after renting
the both goods for x1 times, the player buys a ski wear for
b0,1, then the player rents only a ski set for (x2 − x1) times,
and finally buys a ski set for b1,2.

We denote a strategy of type 02 also by x = (x1, x2),
where

• the number of times of renting both a ski wear and a ski
set = x2.

After x2 times of skiing, the player buys both a ski wear and
a ski set for a cost of one. We always set x1 := x2 for a
strategy of type 02. The cost for skiing for t times is

ON (x, t) :=
t, 0 ≤ t < x2;

x2 + 1, x2 ≤ t .

If the player knew t in advance, the best action would
be one of the followings: (i) to keep renting both the goods,
(ii) to buy only a ski wear at the beginning and then to
keep renting only a ski set, or (iii) to buy the combo at
the beginning. It is easily confirmed that any other choice
requires more cost. By choosing the best of the three, the
cost is

OFF(t) := min
{
t, r1t + b0,1, 1

}
,

which we call the optimal offline cost.
For an instance such that b0,1 > 1 − r1, the case (ii) is

never chosen as the best option. Thus, the optimal offline
cost is explicitly written as

OFF(t) =
t, 0 ≤ t < 1;

1, 1 ≤ t.

In contrast, for an instance with b0,1 ≤ 1 − r1, we have

OFF(t) =


t, 0 ≤ t < b0,1

1−r1
;

r1t + b0,1,
b0,1
1−r1
≤ t < 1−b0,1

r1
;

1, 1−b0,1
r1
≤ t .

We evaluate the performance of a strategy by the com-
petitive ratio

Rx = sup
t≥0

ON (x, t)
OFF(t)

.

Namely, this ratio indicates how much the strategy can be
charged compared with the optimal offline cost. A small
competitive ratio signifies a good performance.

For an instance (r1, b0,1, b1,2), we say that strategy x is
optimal if Rx′ ≥ Rx for all x ′. Note that the optimality in
this paper is always established for each individual instance
and does not guarantee the performance for all instances.

Suppose that strategies x and x ′ are optimal for in-
stances (r1, b0,1, b1,2) and (r ′1, b

′
0,1, b

′
1,2), respectively. We

say that (r1, b0,1, b1,2) is easier (harder) than (r ′1, b
′
0,1, b

′
1,2),

if Rx < Rx′ (Rx > Rx′ , respectively) holds.

2.2 Set of Instances and the Discount Rate

We define sets of instances to be analyzed. The set of in-
stances for the 3-slope ski-rental problem considered in [4]
is

N := {(r1, b0,1, b1,2) | 0 < r1 < 1, 0 ≤ b0,1 ≤ 1,
0 ≤ b1,2 ≤ 1, b0,1 + b1,2 ≥ 1, b0,1 ≤ 1 − r1}.

This is originally from Dynamic Power Management [5]. It
is known that the competitive ratio of the optimal strategy
for the hardest instance in N is 2.47− ε, whereas that for the
easiest instance is 9

5 = 1.8 [4]. (See Table 1.)
We define the discount rate d as the ratio of the total

price of a ski wear and a ski set, to the price of the combo.
In short, d := 1

b0,1+b1,2
. We consider a set of instances that

have a fixed discount rate

Nd :=
{
(r1, b0,1, b1,2) ∈ N ��� 1

b0,1 + b1,2
= d

}
.

For any (r1, b0,1, b1,2) ∈ N , due to 1 ≥ b1,2 =
1
d − b0,1, we

have b0,1 ≥ 1
d − 1. On the other hand, b0,1 ≤ 1 is a constant.

Besides, b0,1 + b1,2 ≥ 1. Therefore, 1
2 ≤ d ≤ 1 is necessary
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for Nd to be non-empty.
There are some constraints in N which are originated

in Dynamic Power Management: b0,1 ≤ 1 and b1,2 ≤ 1. Ac-
cording to the correspondence in Sect. 1.2, the former (latter)
constraint means that the cost for resuming (shutting down)
from “Sleep” is less than that for resuming (shutting down,
respectively) from “Off”. This is quite valid for electric de-
vices. An instance with b0,1 > 1 or b1,2 > 1 may feel strange
because this means that the combo is cheaper than a single
item. However, it is occasionally the case that for example,
a train ticket to a further destination is a bit cheaper than that
to the exact destination. We are interested in what strategy
is chosen through the competitive analysis for such a case.

In addition, the constraint b0,1 ≤ 1 − r1 is set to leave
the possibility of choosing the case (ii) for the optimal offline
cost in Sect. 2.1, which is irrelevant to the price settings.

In this paper we consider also the set of instances with-
out these constraints

W = {(r1, b0,1, b1,2) | 0 < r1 < 1, 0 ≤ b0,1,

0 ≤ b1,2, b0,1 + b1,2 ≥ 1}.

Similarly to Nd , we deal with the set of instances with a fixed
discount rate

Wd =
{
(r1, b0,1, b1,2) ∈ W ��� 1

b0,1 + b1,2
= d

}
,

which is non-empty for any 0 < d ≤ 1.

3. Optimal Online Strategy

In this section we derive an optimal strategy for a given
instance in the wide instance set W . We begin by a lemma
for calculating the competitive ratio easily.

Lemma 1: For any instance (r1, b0,1, b1,2) in W and any
strategy x, it holds that

Rx = max
{

ON (x, x1)
OFF(x1)

,
ON (x, x2)
OFF(x2)

}
.

Proof: Although in this proof we assume that x = (x1, x2) is
of type 012 (i.e., x1 < x2), the argument immediately holds
for a strategy of type 02 (i.e., x1 = x2) as well. By definition
of ON and OFF, one can see that function t 7→ ON (x,t)

OFF(t) is
defined on each of the intervals that are divided by the points
t = 0, x1, x2, r1

1−b0,1
, 1, and 1−b0,1

r1
, though the order here may

not be different from their actual order. We prove the lemma
by claiming that the function attains a maximum at either x1
or x2, and does not attain a maximum elsewhere.

Since on each of the intervals, ON and OFF are linear
functions, ON (x,t)

OFF(t) has a form of a linear function divided
by a linear function. Therefore, function t 7→ ON (x,t)

OFF(t) is
monotone on each interval. This leads us to that function
t 7→ ON (x,t)

OFF(t) never takes a maximum at an inner point of
some interval. In other words, the function is maximized at
one of the endpoints of the intervals.

We are going to confirm that function t 7→ ON (x,t)
OFF(t)

does not attain a maximum at any other endpoints than x1
or x2. We consider instances with b0,1 ≤ 1 − r1 and those
with b0,1 > 1 − r1 separately. Recall that for an instance
with b0,1 ≤ 1 − r1, OFF is defined on intervals [0, r1

1−b0,1
),

[ r1
1−b0,1

,
1−b0,1
r1

), and [ 1−b0,1
r1
,∞), whereas for an instance with

b0,1 > 1 − r1, OFF is defined on intervals [0, 1) and [1,∞).
(See Sect. 2.1.)

We first consider the case of an instance with b0,1 ≤
1 − r1. (i) We investigate the point t = r1

1−b0,1
. (i-a) If

r1
1−b0,1

∈ (0, x1), ON (x,t)
OFF(t) =

t
r1t+b0,1

= 1
r1
− b0,1

r1 (r1t+b0,1) on
the right neighborhood, which is an increasing function.
Thus, function t 7→ ON (x,t)

OFF(t) does not attain a maximum at
t = r1

1−b0,1
, since there is another t for which the function takes

a larger value. We below show that the function cannot be
maximized in this way. (i-b) If r1

1−b0,1
∈ [x1, x2), ON (x,t)

OFF(t) =

r1 (t−x1)+x1+b0,1
t = r1 +

(1−r1)x1+b0,1
t on the left neighborhood.

Since this is a decreasing function, function t 7→ ON (x,t)
OFF(t)

does not attain a maximum at t = r1
1−b0,1

. (i-c) If r1
1−b0,1

∈
[x2,∞), ON is constant on the left neighborhood. On the
other hand, OFF increases there. Hence, function t 7→
ON (x,t)
OFF(t) is a decreasing function on the left neighborhood.

This implies that the function does not have a maximum
there. (ii) We check t = 1−b0,1

r1
similarly. We just show that

function t 7→ ON (x,t)
OFF(t) is an increasing function on the right

neighborhood or that the function is a decreasing function on
the left neighborhood. (ii-a) If 1−b0,1

r1
∈ (0, x1), ON (x,t)

OFF(t) =
t
1

on the right neighborhood, which is an increasing function.
(ii-b) If 1−b0,1

r1
∈ [x1, x2), ON (x,t)

OFF(t) =
r1 (t−x1)+x1+b0,1

1 on the
right neighborhood, which is an increasing function. (ii-c)
If 1−b0,1

r1
∈ [x2,∞), ON is constant on the left neighborhood,

while OFF increases there. Hence, function t 7→ ON (x,t)
OFF(t) is

a decreasing function on the left neighborhood.
We next turn to the case of an instance with b0,1 > 1−r1.

We are going to see that t 7→ ON (x,t)
OFF(t) does not attain a

maximum at t = 1. If 1 ∈ (0, x1), the claim follows from
(ii-a). If 1 ∈ [x1, x2), we are done similarly from (ii-b). If
1 ∈ [x2,∞), (ii-c) implies the claim. Thus, t = 1 cannot be
a maximizer of function t 7→ ON (x,t)

OFF(t) .
We add that for any instance, function t 7→ ON (x,t)

OFF(t)
cannot achieve a supremum as t → 0. As long as we consider
a strategy with x1 > 0, we have ON (x,t)

OFF(t) = 1 around t = 0.
This value cannot become a supremum since there is another
t such that ON (x,t)

OFF(t) > 1. If x1 = 0, we do not have to care
since ON (x,x1)

OFF(x1) is already a candidate of the maximizer.
From these arguments we conclude that function t 7→

ON (x,t)
OFF(t) is maximized at either t = x1 or t = x2. □

The following two lemmas provide an optimal strategy
for a given instance in a closed form. Lemma 2 shows that
for instances in W with b0,1 > 1 − r1, the optimal strategy is
expressed independently of the parameters of the instance.
Lemma 3 is for the set of instances in W with b0,1 ≤ 1 − r1,
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which contains N is as a proper subset.

Lemma 2: Suppose that an instance (r1, b0,1, b1,2) in W
satisfies b0,1 > 1− r1. Then, a type-02 strategy of x = (1, 1)
with Rx = 2 is optimal.

Proof: We first find an optimal strategy of type 02. For any
type-02 strategy x, we have the competitive ratio

Rx =
ON (x, x2)
OFF(x2)

=


x2+1
x2
, 0 < x2 < 1;

x2+1
1 , 1 ≤ x2.

It is obvious that Rx is minimized when x2 = 1. The mini-
mum value is 2.

To complete the proof, it suffices to show Rx > 2 for
any type-012 strategy x. Let x be a type-012 strategy. We
get

ON (x, x1)
OFF(x1)

=


x1+b0,1
x1
, 0 < x1 < 1;

x1+b0,1
1 , 1 ≤ x1.

If x1 < b0,1 or x1 > 2 − b0,1, then we are done, since this
implies Rx > 2. In what follows we assume b0,1 ≤ x1 ≤
2 − b0,1. To guarantee the existence of such x1, we also
assume b0,1 ≤ 1. Now, if 0 < x2 < 1, we derive ON (x,x2)

OFF(x2) =

r1 +
(1−r1)x1+b0,1+b1,2

x2
> r1 + (1 − r1)x1 + b0,1 + b1,2 ≥ r1 +

(1− r1)x1 + 1 ≥ r1 + (1− r1)b0,1 + 1 ≥ r1 + (1− r1)2 + 1 =
r1(1 − r1) + 2 > 2. We applied x1 ≥ b0,1, b0,1 > 1 − r1,
and b0,1 + b1,2 ≥ 1. If 1 ≤ x2, by a similar derivation, we
know ON (x,x2)

OFF(x2) =
r1 (x2−x1)+x1+b0,1+b1,2

1 ≥ r1 + (1 − r1)x1 +
b0,1+ b1,2 > 2. These facts lead us to the conclusion that any
type-012 strategy x yields Rx > 2. □

Lemma 3: Suppose that an instance (r1, b0,1, b1,2) in W
satisfies b0,1 ≤ 1 − r1. Then, min

{
1 + 1−b0,1

r1
, 1 + 1−r1

b0,1
, 1 +

1
2

(
b1,2 +

√
b2

1,2 + 4b0,1(1 − r1)
)}

is the competitive ratio of

the optimal strategy for the instance. (i) When 1 + 1−b0,1
r1

is the minimum, a type-02 strategy of x = ( 1−b0,1
r1
,

1−b0,1
r1

)

is optimal. (ii) When 1 + 1−r1
b0,1

is the minimum, a type-02

strategy of x = ( b0,1
1−r1
,
b0,1
1−r1

) is optimal. (iii) When 1+ 1
2

(
b1,2+√

b2
1,2 + 4b0,1(1 − r1)

)
is the minimum, a type-012 strategy

of x =
( −b1,2+

√
b2

1,2+4b0,1 (1−r1)

2(1−r1) ,
1−b0,1
r1

)
is optimal.

Proof: (I) We begin by finding an optimal strategy of type
02. For any type-02 strategy x, we obtain

Rx =
ON (x, x2)
OFF(x2)

=


x2+1
x2
, 0 < x2 <

b0,1
1−r1

;
1
r1
+

r1−b0,1
r1
· 1
r1x2+b0,1

,
b0,1
1−r1
≤ x2 <

1−b0,1
r1

;
x2 + 1, 1−b0,1

r1
≤ x2.

We immediately have that Rx decreases on (0, b0,1
1−r1

) and

increases on [ 1−b0,1
r1
,∞). What one should note is that on

[ b0,1
1−r1
,

1−b0,1
r1

), Rx is a decreasing function if r1 > b0,1 and is
a non-decreasing function otherwise. Therefore, if r1 > b0,1,
Rx attains a minimum of 1+ 1−b0,1

r1
at x2 =

1−b0,1
r1

. Otherwise,
Rx attains a minimum of 1 + 1−r1

b0,1
at x2 =

b0,1
1−r1

.
(II) We next find an optimal strategy of type 012. For

later use, we here write

ON (x, x1)
OFF(x1)

=


x1+b0,1

x1
, 0 < x1 <

b0,1
1−r1

;
x1+b0,1
r1x1+b0,1

,
b0,1
1−r1
≤ x1 <

1−b0,1
r1

;
x1 + b0,1,

1−b0,1
r1
≤ x1.

We are going to bound ON (x,x2)
OFF(x2) from below. Assuming

x2 > x1, we express

ON (x, x2)
OFF(x2)

=


r1 +

(1−r1)x1+b0,1+b1,2
x2

, 0 < x2 <
b0,1
1−r1

;
1+ (1−r1)x1+b1,2

r1x2+b0,1
,

b0,1
1−r1
≤ x2 <

1−b0,1
r1

;
r1x2 +

(1−r1)x1+b0,1+b1,2
1 ,

1−b0,1
r1
≤ x2.

With respect to x2, ON (x,x2)
OFF(x2) decreases on (0, b0,1

1−r1
) and

[ b0,1
1−r1
,

1−b0,1
r1

), whereas ON (x,x2)
OFF(x2) increases on [ 1−b0,1

r1
,∞). We

thus obtain

inf
x2

ON (x, x2)
OFF(x2)

=


1 + (1 − r1)x1 + b1,2, 0 ≤ x1 <
1−b0,1
r1

;
x1 + b0,1 + b1,2,

1−b0,1
r1
≤ x1.

The former is achieved when x2 =
1−b0,1
r1

, and the latter is
achieved when x2 → x1.

In the rest of the proof, instead of minimiz-
ing max

{ON (x,x1)
OFF(x1) ,

ON (x,x2)
OFF(x2)

}
, we minimize f (x1) :=

max
{ON (x,x1)

OFF(x1) , infx2
ON (x,x2)
OFF(x2)

}
with respect to x1. infx2

ON (x,x2)
OFF(x2) is an increasing function on (0,∞). For x1 =

b0,1
1−r1

,
we have infx2

ON (x,x2)
OFF(x2) = 1 + b0,1 + b1,2 ≥ 2. On the other

hand, for x1 =
b0,1
1−r1

, ON (x,x1)
OFF(x1) = 2 − r1 < 2. Hence, it

holds that for all x1 ≥ b0,1
1−r1

, f (x1) ≥ 1 + b0,1 + b1,2, which
implies that f attains a minimum anywhere on (0, b0,1

1−r1
]. We

now see function f for x1 ∈ (0, b0,1
1−r1

). ON (x,x1)
OFF(x1) is a de-

creasing function and diverges to infinity as x1 → 0. In
contrast, infx2

ON (x,x2)
OFF(x2) increases monotonically. We have

already seen that for x1 =
b0,1
1−r1

, ON (x,x1)
OFF(x1) < infx2

ON (x,x2)
OFF(x2) .

Therefore, there is a unique x1 ∈ (0, b0,1
1−r1

) such that
ON (x,x1)
OFF(x1) = infx2

ON (x,x2)
OFF(x2) . Together with the argument

above, f attains a minimum at this point. We calculate

this point as x1 =
−b1,2+

√
b2

1,2+4b0,1 (1−r1)

2(1−r1) . Then, the value of

f is 1 + 1
2

(
b1,2 +

√
b2

1,2 + 4b0,1(1 − r1)
)
. From the above

analysis on infx2
ON (x,x2)
OFF(x2) , we have the value of x2 =

1−b0,1
r1

.
□

To apply Lemmas 2 and 3 to instances having a fixed
discount rate helps to understand their meanings. Figure 3



1080
IEICE TRANS. FUNDAMENTALS, VOL.E99–A, NO.6 JUNE 2016

Fig. 3 The corresponding lemma and the type of the optimal strategy for
each instance (r1, b0,1, 1.33−b0,1) inW0.75. (Note that 1

0.75 ≈ 1.33.) The
dotted line segment is b0,1 = 0.5.

illustrates that each instance in W0.75 applies which lemma
and which case, and leads to what strategy. The example
of prices given at the beginning of Sect. 1 is normalized to
b0,1 = 0.5, b1,2 = 0.83, and d = 0.75, which is indeed
an instance in W0.75. Although the cost of the rent is not
mentioned there, this instance corresponds to some point
which satisfies b0,1 = 0.5 on Fig. 3. One can observe that
a point on b0,1 = 0.5 is contained in the region in which a
strategy of type 012 optimal, if 0 < r1 < 0.46. This implies
that if the cost of renting only a ski set is cheaper by 46%
than the cost of renting both a ski wear and a ski set, then to
buy the goods separately is reasonable.

The following corollary says that even for any small
discount rate, which means that the combo is very cheap,
there is a cost setting for the rent for which to buy the goods
separately is better than to buy the combo. The corollary
follows from the fact that as r1 → 0 and b0,1 → 0, both
1+ 1−b0,1

r1
and 1+ 1−r1

b0,1
diverge to infinity, whereas 1+ 1

2

(
b1,2+√

b2
1,2 + 4b0,1(1 − r1)

)
remains finite.

Corollary 1: For all 0 < d ≤ 1, there is an instance in Wd

for which a strategy of type 012 is optimal.

In this way, fixing the discount rate is helpful for clar-
ifying the relation between an instance and the competitive
ratio of the optimal strategy. In the next section we find the
easiest instance and the hardest instance with the discount
rate being as a parameter.

4. Parametric Analysis with the Discount Rate

4.1 The Easiest Instance

We find an instance in Wd for which there is a strategy x
that minimizes Rx . The reason why we first consider Wd is
that the easiest instance is eventually found in Nd ⊂ Wd and
therefore a similar result is established also for Nd .

Theorem 1: (a) Suppose that d is a constant with 0 < d <
4
5 . For any instance (r1, b0,1, b1,2) in Wd and for any strat-
egy x, it follows that Rx ≥ 2. The equality holds when
(r1, b0,1, b1,2) is an arbitrary instance in Wd that satisfies
b0,1 ≥ 1−r1, and x = (1, 1). (b) Suppose that d is a constant
with 4

5 ≤ d ≤ 1. For any instance (r1, b0,1, b1,2) in Wd and
for any strategy x, it follows that Rx ≥ 1 + 4

5d . The equality
holds when (r1, b0,1, b1,2) =

(
1− 2

5d ,
2

5d ,
3

5d
)

and x =
( 1

2, 1
)
.

Proof: Lemma 2 implies that for any instance in Wd that
satisfies b0,1 > 1 − r1, strategy x = (1, 1) is optimal and
Rx = 2.

In the following we investigate instances in Wd such
that b0,1 ≤ 1 − r1, and see what instance admits a compet-
itive ratio smaller than two. For simplicity of calculation,
let a = 1

d (1 ≤ a). Then, we have b1,2 = a − b0,1. For
an instance that applies (i) or (ii) of Lemma 3, the com-
petitive ratio of the optimal strategy is at least two, due
to 1 + 1−b0,1

r1
≥ 2 and 1 + 1−r1

b0,1
≥ 2. Thus, we focus on

instances that apply (iii) of Lemma 3, which is the case
where the last operand of min

{
1+ 1−b0,1

r1
, 1+ 1−r1

b0,1
, 1+ 1

2

(
a −

b0,1 +
√

(a − b0,1)2 + 4b0,1(1 − r1)
)}

is the minimum. Let

h(r, b) := 1 + 1
2

(
a − b +

√
(a − b)2 + 4b(1 − r)

)
. We are

going to see how low the value of h(r1, b0,1) becomes by
choosing an instance (r1, b0,1, a − b0,1) in Wd . Since func-
tion h is monotonically non-decreasing with r , h(r1, b0,1) ≥
h(1 − b0,1, b0,1) = 1 + 1

2

(
a − b0,1 +

√
(a − b0,1)2 + 4b2

0,1

)
holds for every instance. We minimize this with respect
to b0,1. By differentiating h(1 − b, b) with b, we obtain
1
2

(
−1 + −a+5b√

(a−b)2+4b2

)
, whose sign changes from plus to mi-

nus at b = 2
5 a as b increases. Hence, h(r1, b0,1) is minimized

when b0,1 =
2
5 a and r1 = 1 − b0,1 = 1 − 2

5 a. The minimized
value is 1 + 4

5 a, which does not exceed two for 1 ≤ a ≤ 5
4 .

What we can know from the analysis is that for Wd with
1 ≤ a ≤ 5

4 , instance (r1, b0,1, b1,2) =
(
1 − 2

5 a, 2
5 a, 3

5 a
)

mini-
mizes the competitive ratio of the optimal strategy. Lemma 3
says that the optimal strategy is a strategy of type 012

x =
( −b1,2+

√
b2

1,2+4b0,1 (1−r1)

2(1−r1) ,
1−b0,1
r1

)
=

( 1
2, 1

)
.

On the other hand, for Wd with 5
4 < a, any instance with

b0,1 > 1 − r1 minimizes the competitive ratio of the optimal
strategy to two, as we have mentioned at the beginning of
the proof. A strategy of type 02 of x = (1, 1) is optimal.

We add that for Wd with 5
4 < a, instances with b0,1 =

1 − r1, which applies (i) or (ii) of Lemma 3, also admits a
competitive ratio of two. The optimal strategy is x = (1, 1).

The statement of the theorem is obtained by replacing
a with 1

d . □
The instance appearing in the statement (b) of Theo-

rem 1 belongs to Nd . In the statement (a), we can choose an
instance in Nd. Thus, the following corollary immediately
follows.

Corollary 2: (a) Suppose that d is a constant with 1
2 ≤
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d < 4
5 . For any instance (r1, b0,1, b1,2) in Nd and for any

strategy x, it follows that Rx ≥ 2. The equality holds when
(r1, b0,1, b1,2) is an arbitrary instance in Nd that satisfies
b0,1 = 1−r1, and x = (1, 1). (b) Suppose that d is a constant
with 4

5 ≤ d ≤ 1. For any instance (r1, b0,1, b1,2) in Nd and
for any strategy x, it follows that Rx ≥ 1 + 4

5d . The equality
holds when (r1, b0,1, b1,2) =

(
1− 2

5d ,
2

5d ,
3

5d
)

and x =
( 1

2, 1
)
.

4.2 The Hardest Instance

It turns out that there is no hardest instance in Nd; the hardest
instance is expressed as a limit. Thus, under the assumption
that an optimal strategy is always chosen for the given in-
stance, we analyze the least upper bound on its competitive
ratio. In turn, an optimal strategy with finite x1 and x2 may
not exist for some extreme instance. Therefore, we evalu-
ate the infimum on the competitive ratio. For an instance
(r1, b0,1, b1,2), let infx Rx be the maximum value of u such
that Rx′ ≥ u for all x ′.

Theorem 2: Let d0 (≈ 0.594414) be the inverse of the
unique real root of the equation z3 − 3z2 + 4z − 3 = 0.
(i) Suppose that d is a constant with 1

2 ≤ d < d0. The supre-
mum value of infx Rx for (r1, b0,1, b1,2) ∈ Nd is 1

1−d , when
r1 → 0, b0,1 =

1
d −1, and b1,2 = 1. Then, the infimum of Rx

is achieved when x1 → 1
d − 1 and x2 → 1

d − 1. (ii) Suppose
that d is a constant with d0 ≤ d < 1. The supremum value
of infx Rx for (r1, b0,1, b1,2) ∈ Nd is 1

2

(
3 +

√
4
d − 3

)
, when

r1 → 0, b0,1 =
1
d − 1, and b1,2 = 1. Then, the infimum of

Rx is achieved when x1 → 1
2

(
−1 +

√
4
d − 3

)
and x2 → ∞.

(iii) The supremum value of infx Rx for (r1, b0,1, b1,2) ∈ N1
is 2, when (iii-a) 0 < r1 < 1, b0,1 = 0, and b1,2 = 1, or
(iii-b) r1 → 0, 0 ≤ b0,1 ≤ 1, and b1,2 = 1 − b0,1. For (iii-a),
the infimum of Rx is achieved when x1 = 0 and x2 =

1
r1

. For
(iii-b), the infimum of Rx is achieved when x1 → b0,1 and
x2 → ∞.

For Wd , we can find the hardest instance. However, the
optimal strategy is obtained as a limit.

Theorem 3: (i) Suppose that d is a constant with 0 < d < 1.
The supremum value of infx Rx for (r1, b0,1, b1,2) ∈ Wd is
1 + 1

d , when 0 < r1 ≤ d, b0,1 = 0, and b1,2 =
1
d . Then,

the infimum of Rx is achieved when x1 = 0 and x2 → ∞.
(ii) The supremum value of infx Rx for (r1, b0,1, b1,2) ∈ W1
is 2, when (ii-a) 0 < r1 < 1, b0,1 = 0, and b1,2 = 1, or
(ii-b) r1 → 0, 0 ≤ b0,1 ≤ 1, and b1,2 = 1 − b0,1. For (ii-a),
the infimum of Rx is achieved when x1 = 0 and x2 =

1
r1

. For
(ii-b), the infimum of Rx is achieved when x1 → b0,1 and
x2 → ∞.

We will give the proofs of Theorems 2 and 3 later. We have
the next corollary on W from Theorems 1 and 3. In short,
even for the optimal strategy, there is an instance in W for
which the competitive ratio is arbitrarily large. This is caused
by an instance where the price of a ski wear is almost zero,

the price of a ski set is by far higher than that of the combo,
and the cost of renting a ski set is very cheap, as the instance
in Theorem 3. For such an instance, the optimal type-012
strategy is better than any type-02 strategy. Nevertheless,
the competitive ratio of the optimal type-012 strategy is still
large.

Corollary 3: For all M ≥ 9
5 , there is an instance in W for

which the competitive ratio of any strategy is at least M .

We here state a lemma which will be used in the proofs
of Theorems 2 and 3. In particular, the hardest instance
in Theorem 2 is obtained by letting r1 approach zero. If
we allow r1 to be zero, then, in turn, the optimal strategy
cannot be defined. The aim of the lemma is to carry out
maximization on a domain that permits r1 = 0.

Lemma 4: Let a be a constant ≥ 1, and a0 (≈ 1.68233)
be the unique real root of the equation z3 − 3z2 + 4z −
3 = 0. Let g(r, b) := min

{
1 + 1−r

b , 1 +
1−b
r , 1 +

1
2

(
a − b +√

(a − b)2 + 4b(1 − r)
)}

, where an operand is dropped if it is
not defined. Then, function g attains a maximum as follows:
(A) On domain DA := {(r, b) | 0 ≤ r ≤ 1, a−1 ≤ b ≤ 1−r }.
(A-i) If a0 ≤ a < 2, the maximum value is a

a−1 , when
(r, b) = (0, a − 1). (A-ii) If 1 < a ≤ a0, the maximum
value is 1

2 (3 +
√

4a − 3), when (r, b) = (0, a − 1). (A-iii) If
a = 1, the maximum value is 2, when (r, b) = (y, 0) with
0 ≤ y ≤ 1 or (r, b) = (0, w) with 0 ≤ w ≤ 1. (B) On domain
DB := {(r, b) | 0 ≤ r ≤ 1, 0 ≤ b ≤ 1 − r } ⊇ DA. (B-i) If
1 < a, the maximum value is 1 + a, when (r, b) = (y, 0)
with 0 ≤ y ≤ 1

a . (B-ii) If a = 1, the maximum value is 2,
when (r, b) = (y, 0) with 0 ≤ y ≤ 1 or (r, b) = (0, w) with
0 ≤ w ≤ 1.

Proof: The first and second operands of the minimum op-
eration in function g are non-increasing functions each with
r and b. We have to take a bit care about the third one.
Let h(r, b) := 1 + 1

2 (a − b +
√

(a − b)2 + 4b(1 − r)), as
the same as the proof of Theorem 1. It is immediately
observed that function h decreases or remains constant as
r grows. Thus, h(r, b) ≤ h(0, b) holds for all r with
0 ≤ r ≤ 1. We derive for all b with 0 ≤ b ≤ 1, ∂h(0,b)

∂b =

1
2

(
2−(a−b)√
(a−b)2+4b

− 1
)
=

2(1−a)(√
(a−b)2+4b+2−(a−b)

)√
(a−b)2+4b

≤ 0,

since we have
√

(a − b)2 + 4b + 2 − (a − b) ≥ a − b +
2 − (a − b) > 0 due to a − b ≥ 0. Hence, h(0, b) is non-
increasing with b. Therefore, it holds that for all (r, b) ∈ DA,
h(r, b) ≤ h(0, a − 1). Similarly, for all (r, b) ∈ DB,
h(r, b) ≤ h(0, 0) holds.

Now, note that if r ≤ b and r ≤ 1 − b, then 1 + 1−r
b ≤

1 + 1−b
r . From this, the maximum value of function g for

each of the domains is obtained as followings.
(A) For domain DA, each operand of the minimum

operation of g is maximized when (r, b) = (0, a − 1). Thus,
g attains a maximum of min{1 + 1

a−1,
1
2

(
3 +
√

4a − 3
)
} at

(r, b) = (0, a − 1). Regard each operand as a function of a.
As a grows, the former decreases, while the latter increases.
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These two operands take the same value, when a = a0 (≈
1.68233), where a0 is the unique real root of the equation
z3 − 3z2 + 4z − 3 = 0.

(A-i) For a0 ≤ a ≤ 2, the maximum value of g is
g(0, a−1) = 1+ 1

a−1 . Since 1+ 1−r
b is a decreasing function

each with r and b, (r, b) = (0, a − 1) is a unique maximizer
of g.

(A-ii) For 1 < a < a0, the maximum value is
g(0, a − 1) = h(0, a − 1) = 1

2

(
3 +
√

4a − 3
)
. Since

∂h(0,b)
∂b = 1

2

(
1√

4a−3
− 1

)
< 0 for b = a− 1, and h(r, a− 1) =

1
2 (3+

√
1 + 4(a − 1)(1 − r)) is a decreasing function with r ,

(r, b) = (0, a − 1) is a unique maximizer.
(A-iii) For a = 1, the maximum value is g(0, 0) =

h(0, 0) = 2. We have also h(r, 0) = h(0, b) = 2 for 0 ≤
r ≤ 1 and 0 ≤ b ≤ 1. Since for b > 0, h is a decreasing
function with r , any of (r, b) = (y, 0) with 0 ≤ y ≤ 1 or
(r, b) = (0, w) with 0 ≤ w ≤ 1 achieves the maximum.

(B) For domain DB, each operand of the minimum
operation of g is maximized when (r, b) = (0, 0). The first
and second operands are not defined, since they diverge to
infinity as r → 0 and b→ 0. Thus, the maximum value of g
is g(0, 0) = h(0, 0) = 1 + a.

(B-i) For 1 < a, (r, b) = (0, 0) is not a unique
maximizer, since ∂h(0,b)

∂b = −1 + 1
a < 0 for b = 0 but

h(r, 0) = 1 + a. We solve the equation 1 + 1−b
r =

1 + 1
2 (a − b +

√
(a − b)2 + 4b(1 − r)) with b = 0, and then

get a root (r, b) = ( 1
a , 0). This leads us to that for (r, b) with

r > 1
a and b = 0, 1 + 1−b

r is the minimum in the minimum
operation of g. Note that now that r > b and r ≤ 1 − b,
1 + 1−r

b > 1 + 1−b
r holds. Therefore, every (r, b) = (y, 0)

with 0 ≤ y ≤ 1
a is a maximizer of g.

(B-ii) For a = 1, the maximum value is g(0, 0) =
h(0, 0) = 2. Similarly to (A-iii), we know that any of
(r, b) = (y, 0) with 0 ≤ y ≤ 1 or (r, b) = (0, w) with
0 ≤ w ≤ 1 achieves the maximum. □
Proof of Theorem 2: For ease of calculation, let a = 1

d (1 ≤
a ≤ 2), as the same as the proof of Theorem 1. Again, we
have b1,2 = a−b0,1. Applying Lemma 3 to an instance in Nd

with b0,1 ≤ 1−r1, we know that infx Rx = min
{
1+ 1−b0,1

r1
, 1+

1−r1
b0,1
, 1 + 1

2

(
a − b0,1 +

√
(a − b0,1)2 + 4b0,1(1 − r1)

)}
. We

are going to seek an instance that maximizes this. For
(r1, b0,1, b1,2) ∈ Nd , 1 ≥ b1,2 = a − b0,1 holds. So, the range
of b0,1 is a − 1 ≤ b0,1 ≤ 1. If we allow r1 to be chosen from
the range 0 ≤ r1 ≤ 1, Lemma 4 (A) says that the maximum
value is determined according to the range of a. However,
the maximum is achieved by (r1, b0,1, b1,2) which does not
belong to Nd for cases (A-i), (A-ii), and some of (A-iii).
Function g of Lemma 4 is continuous with respect to both r
and b on DA. Hence, for all ε > 0, there is (r1, b0,1, b1,2) in
Nd such that g(r1, b0,1) > (maximum value of g) − ε.

When (A-i) in Lemma 4 is the case, infx Rx = 1+ 1−r1
b0,1

.
Using (ii) of Lemma 3, we know that a type-02 strategy is
optimal. When r1 → 0 and b0,1 = a−1, we have x1 → a−1
and x2 → a − 1.

When (A-ii) in Lemma 4 is the case, infx Rx =

1 + 1
2

(
a − b0,1 +

√
(a − b0,1)2 + 4b0,1(1 − r1)

)
. By (iii) of

Lemma 3, a type-012 strategy turns out be optimal. When
r1 → 0 and b0,1 = a − 1, we have x1 → 1

2

(
−1 +

√
4
d − 3

)
and x2 → ∞.

When (A-iii) in Lemma 4 is the case, we can obtain a
supremum as the same as (A-ii) above. We get two sets of
instances that achieve the supremum. The optimal strategy
is derived by applying (iii) of Lemma 3 for each.

The statement of the theorem is obtained by replacing
a with 1

d . □
Proof of Theorem 3: Lemma 2 states that for any instance in
Wd with b0,1 > 1 − r1, there is a strategy with a competitive
ratio of two. In contrast, it is revealed that infx Rx achieves a
supremum larger than two for those with b0,1 ≤ 1 − r1. This
fact is led similarly to the proof of Theorem 2. We employ
(B) of Lemma 4. It turns out that the result of maximization
applies (iii) of Lemma 3, that is to say, a type-012 strategy
is optimal. □

5. Discussion

What one should note is that in the multislope ski-rental
problem in general, the order of buying goods is fixed. That
is to say, it is not allowed for the player to buy goods in an
arbitrary order. Indeed, in this paper the player is obliged to
buy a ski wear first. It is interesting to assume a submodular
set function that maps any subset of ski gear to the price, and
to perform a competitive analysis allowing to buy goods in
an arbitrary order.
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