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Abstract

The advancement in computer hardware and the employment of 3D sensors has conveyed a
wide range of applications and opportunities for development in image processing, resulting
in new branches of research such as 3D image processing. One of the common types of
data obtained from 3D sensors is the 3D point cloud, a collection of points in 3D space
representing an object’s or environment’s shape. They are widely utilized in developing
perception systems for self-driving cars, Autonomous Intelligent Vehicles, and Unmanned
Aerial Vehicles. Also, in creating content for Virtual Reality experiences and Digital Twins.

The registration of 3D point clouds is a fundamental task in 3D image processing that
looks for the transformation that optimally aligns the 3D point clouds to form a more
extensive and detailed representation, being a core process for applications that need digital
reconstruction. For example, autonomous intelligent vehicles perform System Localization
and Mapping (SLAM), which estimates the vehicle’s location and orientation while building
a map of the environment comprised of hundreds or thousands of registered 3D point clouds
obtained from a 3D sensor. Although there is a broad range of registration methods to date,
only a few can successfully determine a good transformation that aligns 3D point clouds
with partial overlaps below 40

The importance of developing registration methods for 3D point clouds with low overlap
lies in the possibility of performing the full digital reconstruction of objects and environments
with fewer data. Particularly useful in developing perception systems for truly robust
Autonomous Intelligent Vehicles, which must perform SLAM without interruption in the
presence of potentially low overlap 3D point clouds. Alternatively, it is desired when the
storage resources or time to acquire the data are limited and compel us to obtain a few 3D
point clouds from the most significant angles of an object or scene - having fewer 3D point
clouds to work with to assemble an entire reconstruction.

The main reason why most typical registration approaches fail in a low overlap scenario is
due to a high rate of incorrect data association (i.e., defining what points have to be aligned).
The most common method to perform this data association is through a Nearest-neighbor
search for each point in the point cloud to be aligned. However, it is an inadequate method
when the 3D point clouds are initially far from the optimal alignment, or there are a lot of
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potential outliers coming from noise or not overlapping areas. Other registration approaches
substitute the nearest-neighbor search for pipelines making use of key points and feature
point descriptors matched on the descriptive space and filtered by random sampling iterative
methods. Nevertheless, these also fail in the low overlap conditions because the true overlap
of low overlapping 3D point clouds lies between boundary surfaces and surfaces within the
boundaries, which have very different point dispersion that governs the descriptiveness of
the features, making them a challenge to associate correctly.

On the one hand, in recent years, Artificial Neural Networks have also been applied to
perform the registration of 3D point clouds, bringing outstanding advancements to 3D image
processing for digital reconstruction. Among them, some even focus on the low overlap
problem. However, as with most Artificial Neural Network methods, these require extensive
and costly datasets to train and high-end hardware to run due to the high computational
complexity of convolving operations in 3D. On the other hand, the Hough transform is a
well-known, conceptually simple, easy to implement, and flexible technique for feature
extraction in image processing not fully explored in the 3D counterpart that does not require
any training or high-end hardware to run. Furthermore, in 3D point cloud registration, these
mechanisms allow us not to make direct hard point correspondences and drastically reduce
the number of evaluation units to find the desired solution transformation.

This thesis presents the formulation details, implementations, experimental evaluations,
and results of a couple of registration methods focused on aligning point subsets from the
overlapping areas of 3D point clouds. The core idea of both methods relies on the likelihood
of finding close to optimal transformations when aligning point subsets derived from the
proper overlapping areas, regardless of the point dispersion. This work is divided into two
parts to make it clear to the reader. The first part introduces the first developed method
proposing the Supervoxel Segmentation technique to divide the 3D point clouds into subsets,
registering them and evaluating the corresponding transformation via an inlier-focused error
maximization objective function to find the best solution. The second part refers to the
second developed method, which uses the same segmentation technique but improves the
computational complexity by reducing the number of subsets to align. It implements a voting
mechanism to determine the solution and replaces the evaluation of the transformations
for the minimization of a metric that guarantees the maximum overlap and minimum error
between corresponding points. The second part also covers a study on the effect of replacing
the conventional quaternion rotation representation by the Euler angles over the second
method. Furthermore, it extends to ablation and comparative studies that showcase how the
method performs under its ruling parameters and compares it against the first method and
other publicly available state-of-the-art methods.
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Chapter 1

Introduction

With the exponential development and increasing availability of relatively more powerful
computing tools, there has also been an exponential interest in developing algorithms to
process n-dimensional (nD) information to make technologies that, decades ago, belonged to
science fiction. Image processing has a wide range of achieved milestones when processing
two-dimensional (2D) information. Such as helping us read a text in different languages on
the go, calibrating our smartphones’ compass via image recognition, and even detecting ma-
lignant signs of tumors in a matter of seconds, to name a few. Nonetheless, the development
of three-dimensional (3D) image processing has not yet achieved the same maturity due to
the higher complexity imposed by the third dimension, which requires more computational
power. Hence, it still is a relatively new field in constant development that takes advantage of
the newest computing tools every year.

Digital reconstruction is one of the main development interests in 3D image processing
since it is well employed in many fields and industries, from media production to medical
imaging, archaeology, and robotics. To carry it out, first, obtaining data through 3D sensors is
necessary, whose popularity and availability have increased in the last decade. Light Detection
and Ranging (LiDAR) sensors, also known as laser scanners, and Time of Flight (ToF) sensors
are the most commonly employed 3D ones that can digitize real-world environments and
objects with relative ease (see Figure 1.1). As shown in Figure 1.2, nowadays, LiDAR
and ToF sensors are common components of perception systems of Autonomous Intelligent
Vehicles (AIVs), Unmanned Aerial Vehicles (UAVs), and other robotic systems. The obtained
images from these sensors are digitized representations known as 3D point clouds, a collection
of 3D points P= {pi}NP

i=1 that hold the shape and geometric characteristics of the original
object or environment.
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(a) Velodyne® LiDAR (b) Realsense® LiDAR (c) Helios® ToF sensor

Figure 1.1: Common 3D sensors.

(a) ZOOX® self-driving car (b) AIV (c) UAV

Figure 1.2: Systems that utilize 3D sensors.

1.1 3D point cloud registration

As shown in Figure 1.3, due to limitations of the field of view and occlusion effects, 3D point
clouds directly obtained from a sensor are partial representations rather than entirely digitized
objects or environments. In order to retrieve the original shape, the partial representations
are aligned and combined through a process known as registration. Informally speaking,
registration consists of looking for the rigid transformation that aligns a source point cloud
onto a target point cloud, preserving the original shape but extending the visual representation
of the source with the target, forming a more extended and detailed 3D point cloud.

When the process is carried out only between a source and a target 3D point cloud, it is
known as pairwise registration; meanwhile, if it involves three or more, it is known as multi-
view registration. The latter is what actually can retrieve the full original shape, as shown in
Figure 1.4. However, it is an extension of the pairwise process that aligns consecutive pairs
of 3D point clouds in sequence, often improved through pose graph optimization in SLAM
applications [1]. Therefore, many researchers and developers emphasize developing robust
pairwise registration that inherits less error to the multi-view stage, reducing the need for
post-optimization to improve the reconstruction.
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Figure 1.3: 3D point cloud acquisition by a ToF sensor.

Figure 1.4: Full digital reconstruction of an object.

1.2 Pairwise registration

Formally, we can define the pairwise registration of 3D point clouds in the following manner:
having two point clouds, the source P= {pi}NP

i=1 and the target Q= {q j}NQ
j=1, along with a

set of point correspondences C= {(i, j)}, we look for the rigid body transformation matrix
T(R, t) that minimizes the sum of squared errors:

argmin ∑
(i, j)∈C

∥∥q j −Rpi − t
∥∥2

. 1.1

Reordering P and Q and considering the set of point correspondences C with the index n,
we can define the point sets {pn}{qn} and reduce the problem to estimate the rigid body
transformation

p̄n = Rpn + t n = 1, . . . , |C| := N, 1.2

which describes the transformation of points {pn} into {p̄n}. Hence, getting as close as
possible to {qn} minimizing the sum of squared point-to-point distances

argmin∑∥qn − p̄n∥2 . 1.3
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Remark 1.1: Special case of the Absolute Orientation Problem

Registration is a special case of the Absolute Orientation Problem

p̄n = λsRpn + t, 1.4

where we only want the parameters of the rigid body transform R ∈ SO(3) and t ∈ R3.
Hence, the scale parameter is λs = 1.

1.2.1 Direct optimal solution: known data association

Having perfect data association (i.e., we know the perfect set of point correspondences C),
it is possible to directly find an optimal solution by computing a shift involving the center
of masses of both 3D point clouds and performing a rotational alignment using Singular
Value Decomposition (SVD). Formally speaking: considering a set of optional weights
W = {wn}N

n=1 so that the squared error minimizes as

argmin∑∥qn − p̄n∥2 wn, 1.5

the center of masses of both 3D point clouds (i.e., the means of the point sets) are

p0 =
∑pnwn

∑wn
q0 =

∑qnwn

∑wn
. 1.6

Hence, the cross-covariance matrix is

H= ∑(pn −p0)(qn −q0)
Twn. 1.7

From which it is possible to compute SV D(H) = UDVT, directly computing the rotation
matrix and translation vector as

R = UVT t = q0 −Rp0. 1.8

This approach solves the registration problem directly and optimally. Nevertheless,
perfect data association is nearly impossible in real-world scenarios as it would mean that
both 3D point clouds overlap entirely and represent the same surfaces, being unpractical for
digital reconstruction. In reality, we want the 3D point clouds to represent different parts
of the object or environment and partially overlap to complement each other to form the
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(a) (b)

Figure 1.5: Initial guess (a) and converge (b) of ICP.

complete reconstruction. Hence, this method solves the problem based on the stringent and
ideal constraints of having a perfect set of point correspondences C.

1.2.2 No direct optimal solution: unknown data association

In practice, we face unknown data associations for the registration process. It means that
we do not have prior knowledge of a perfect set of point correspondences C, and no direct
optimal solution exists. The Iterative Closest Points (ICP) algorithm [2] is the most widely
used technique for registering 3D point clouds which tries to estimate the data association
and corresponding transform. However, since the correct data association is unknown and,
unlike in the previous case, it is impossible to determine the solution in one single step, ICP
makes iterative guesses of the correspondences and the parameters of the transformation,
gradually reducing the sum of squared errors between point correspondences. Figure 1.5
depicts how from an initial guess of T with guessed point correspondences, depicted in dark
red and dark blue, ICP converges to the alignment of the entire point sets with different and
better correspondences.

In detail, from an initial guess, ICP at each iteration, first estimates C by the point-to-point
nearest-neighbor function, and then updates T based on the least-squares estimation method
by Umeyama [3]. These two steps are performed until one of three possible termination
criteria are met:

1. The number of iterations has reached a maximum of imposed iterations.

2. The difference between the previous and current transformation is smaller than an
imposed threshold known as the Transformation Epsilon εT .
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3. The sum of squared errors is smaller than a defined threshold known as the Euclidean
Fitness Epsilon ε f .

Remark 1.2: Estimation of the overlapping ratio

The overlapping ratio is the percentage of overlapping points, defined as

ξ = (2N/(NP+NQ)) ·100 or ξ = (N/NP) ·100. 1.9

The definition on the left, considers both point clouds as C is formed by points from both
of them. The second definition only considers the source and is more commonly used
as the set C is built from using the source points as the base. However, both estimations
are very similar in practice.

1.2.3 Conventional registration algorithms

ICP is the most well-studied registration algorithm with the most variations [4–8]. Its variants
improve speed, tolerance to noise and outliers, basin of convergence, and stability. Point-
to-plane registration (N-ICP) [9], Trimmed ICP (TrICP) [10], and Levenberg-Marquardt
ICP (LM-ICP) [11] are the variants that present direct improvements on the error metric,
data association, and optimization techniques which, along with ICP, are considered the
Conventional Registration Algorithms (CRAs). N-ICP performs similarly to ICP, but it
requires the point normal vectors of Q to estimate spanning planes and define nearest-
neighbor based on the point-to-plane distance. Modifying the objective function as

argmin∑
∥∥(qn − p̄n) ·nq

∥∥2
. 1.10

TrICP improves tolerance to noise and speed of by consistently using the Least Trimmed
Squares (LTS) approach at each step of ICP. Here, LTS arranges C in ascending order and
selects the number of points Npo that can be paired to estimate their sum LTS. LM-ICP is
an improved ICP robust to the initial positions of the 3D point clouds, which estimates the
correspondences the same way as ICP, but employs the Levenberg-Marquardt algorithm to
minimize the sum of squared errors. Table 1.1 shows a comparison between the four CRAs.

The core operation of CRAs is an iterative local optimization that makes them prone to
get stuck in local solutions that may or may not correctly align the 3D point clouds. Because
of it, CRAs cannot correctly align 3D point clouds whose initial positions are far from
the global solution, or partial overlap is low. In order to perform any registration of 3D
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Table 1.1: Comparison between conventional registration algorithms

ICP N-ICP TrICP LM-ICP

Error metric Point-to-point
distance

Point-to-plane
distance

Point-to-point
distance

Point-to-point
distance

Minimization
optimization

Umeyama
least-squares
algorithm

Umeyama
least-squares
algorithm

Umeyama
least-squares
algorithm

Levenberg-
Marquardt
algorithm

Ideal
conditions

Perfect set C
or
NP = NQ

Perfect set C
or
NP = NQ

Known ξ

since
Npo = ξ NP

Perfect set C
or
NP = NQ

point clouds, these must overlap so that they can be aligned based on the geometry of the
overlapping surfaces. The proportion of points in these surfaces is known as the overlapping
ratio, and they also represent the true point correspondences that lead to the globally optimal
alignment. However, it has been shown that as the overlapping ratio decreases, the likelihood
of obtaining a good alignment with a CRA decreases due to poor definition of C in the
presence of many outliers that belong to not-overlapping areas [8, 12].

1.2.4 Non-conventional registration algorithms

To estimate better point correspondences other non-conventional registration algorithms
[13, 14] follow a pipeline that consists of:

1. Estimating key points.

2. Computing the feature descriptors corresponding to the key points.

3. Making correspondences by matching points in the feature space.

4. Rejecting wrong correspondences based on random sampling iterative methods such
as RANSAC [15].

5. Estimating a solution using the SVD method, assuming that the resulting correspon-
dences are almost perfect.

This kind of approaches generally work well with partial overlaps, but can still yield
wrong correspondences and incorrect alignments with low overlapping ratio 3D point clouds.
Principally, due to shape-dependent parameter tuning, the use of normals-dependent informa-
tion from their key points/descriptor estimators, and the difference of point densities between
the overlapping areas which affects the point normals and, consequently, the descriptiveness
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Figure 1.6: Differences of point densities in low overlapping 3D point clouds.

of the point descriptors. Furthermore, as shown in Figure 1.6, in low overlapping conditions
the point densities of the overlapping areas mismatch from one point cloud to the other,
which also leads to false positives when making hard point-to-point correspondences with
feature descriptors.

With the increasing popularity of artificial Neural Networks and Deep Learning, along
with the availability of more powerful GPUs, and more extensive datasets [16–18], robust
point descriptors [19, 20] and 3D point clouds registration methods [21–24] based on these
techniques have been developed in the late years. However, most of these are trained on
relatively small datasets that may or may not have an specific domain of our interest, and
even if we use a pre-trained model and adopt transfer learning we can face limitations such
as negative transfer. It means that the initial and target problems are not similar enough,
making the pre-training irrelevant. Furthermore, whenever transfer learning is used, the
distributions of the pre-training and test data have to be similar or not vary too much, and
the number of training data should not over-fit the model [25, 26]. Therefore, we could
assume that pre-trained Deep Learning models for 3D point clouds are a viable option when
there is sufficient training data of a new type of dataset that is close to a pre-trained domain.
Additionally, due to the third dimension, Deep Learning methods for 3D point clouds are
considerably resource heavy and demand vast amounts of Video Random Access Memory
(VRAM) from a Graphics Processing Unit (GPU) for training.



1.3 Motivation 9

Remark 1.3: Low overlapping ratio

The overlapping ratio can vary from full overlap (100%) to no overlap at all (0%)
between the 3D point clouds. To define what percentages are high, medium, or low
overlap there is no actual set rule. However, most literature defines low overlapping
ratio from 10% to about 40%.

1.3 Motivation

Currently, there is a wide range of registration methods for 3D point clouds, but not many
consider the low overlap problem: an scenario that imposes the challenge of finding a local
alignment for a small quantity of data points equivalent to the global alignment for all the
points in the datasets, and allows us to complete the digital 3D reconstruction of objects or
environments with less 3D point clouds, as shown in Figure 1.8.

When performing digital 3D reconstruction it is a common practice to register many 3D
point clouds with high overlapping ratios covering all possible angles to preserve as much
details as possible from the original shape (cf. Figure 1.4). Hence, if it is possible to simply
do this to complete the reconstruction, why bother on using less datasets with low overlap?
Mainly because there are situations where registering less 3D point clouds with low overlap
may be ideal:

• Acquiring 3D point cloud data is still costly nowadays, imposing limitations on the
time given to acquire the data. Hence, we may have to face situations where we do not
have enough time to obtain many 3D point clouds to cover every single angle of an
object or environment – having to work with less 3D point clouds to achieve the full
reconstruction.

• Considering that unprocessed 3D point clouds obtained from high definition 3D sensors
can be in the order of Megabytes or even Gigabytes per seconds of scanning, we may
also face data storage limitations where also having 3D point clouds covering most of
the surfaces and relatively low overlap between them is the best option.

• Low overlap registration is also desired to develop robust perception systems for
AIVs and UAVs performing Simultaneous Localization and Mapping (SLAM) [27].
Equipping them with the ability to recover from sudden external interruptions that can
potentially produce low overlapping 3D point clouds of the environment and lost the
localization of the system, as shown in Figure 1.7.
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Figure 1.7: Schematic of an UAV continuously scanning after an external interruption.

Figure 1.8: Full digital reconstruction of an object using low overlapping 3D point clouds.

It is worth mentioning that the registration of low overlapping 3D point clouds could
resemble another interesting problem known as fragment repair [28, 29], which consists
of digitally reconstructing an object from individual pieces. However, to the best of our
knowledge, fragment repair works on volumetric objects. Thus, the formulation of this
problem and solutions are out of the scope of this work.

1.4 Contributions

During the last years we have worked on the employment of subset-search-based methods
for the registration of 3D point clouds, focusing on the low overlap problem. Unlike CRAs
and feature-based registration approaches, a subset-focused approach gives us the possibility
to not make hard point-to-point correspondences and leverage the neighboring interaction of
the points at a local scale driven by the shape of the 3D point clouds. Providing the ability of
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finding close-to-optimal solutions derived from the alignment of the true overlapping areas.
The present work contains the theoretical foundations, formulations, implementation details,
experimental setups and results that form part of the following contributions:

• A registration method that uses a multi-scale and inlier-only error maximization search,
leveraging the assumption of perfect data association between individual subsets from
both 3D point clouds.

• A descriptor-free pairwise registration method that uses a voting mechanism to define
the solution transform derived from the alignment of subsets of the overlapping areas.

• An extensive ablation and a comparative study of the final version of the proposed
descriptor-free and voting-based registration method leading to the statement of a
usage guideline.

• A study on the effect of the Euler angles to align low overlapping 3D point clouds
and the significance of their order under the framework a voting-based registration
approach.

• An evaluation of the proposed registration methods on datasets that gradually reduce
their overlap to define the overlap working limits.

1.5 Outline

After this introduction, Chapter 2 comprehends the problem reformulation that states the
core idea behind the focus on aligning subsets in the low overlap problem, and the first
registration method developed on it. It rigorously describes the approach itself, and the
executed experimental evaluation. Chapter 3 first states the applied countermeasures for
the most obvious issues of the first method. Then, describes a voting-based one with a
preliminary experimental evaluation. On Chapter 4 there is an extensive evaluation of the
second method, where ablation studies and comparatives were carried on to fully comprehend
the capabilities and limitations of this approach. Chapter 5 is dedicated to a parallel iteration
of the second approach, where the rotation representation in the voting space is replaced for
the Euler angles. Corresponding implementation details and experiments are also described in
this chapter. Chapter 6 complements this work with an evaluation of the overlapping limits
of the proposed registration methods. Lastly, Chapter 7 presents the definitive conclusions
and open problems of this work that can be used as the base for new elemental and application
research.



Chapter 2

Pairwise registration using supervoxel
segmentation

This chapter focuses on the registration approach introduced in "Pairwise Registration of
Low Overlapping 3D Point Clouds Using Supervoxel Segmentation" and published in IIEEJ
Transactions on Image Electronics and Visual Computing, Vol. 7, No. 2.

2.1 Background and related work

2.1.1 Problem reformulation

As stated in Chapter 1, in the low overlap problem the definition of C is key to succeed. In
one hand, the common nearest-neighbor search is not optimal because true correspondences
originally are distant from the optimal alignment and outliers from the not overlapping areas
can easily "fool" the search. On the other hand, descriptor-based search are potentially
affected by the mismatch of point densities between the true overlapping areas. We also
know that CRAs easily succeed if NP = NQ = N as hypothetically every point pi has a
unique correspondence q j (i.e., {pi}

{
q j
}
= {pn}{qn}). Thus, how can we achieve this

ideal condition without using any point density-dependent feature descriptor?
Clearly, the only way is to isolate the overlapping areas from the 3D point clouds and

register these. We could focus the attention to specific areas assuming that these are always
the areas of interest in low overlapping ratio 3D point clouds, as proposed by Wu et al.[30]
that the overlap is concentrated at the borders. But, this assumption is not always true and
does not clearly delimit the beginning and end of the borders. Nevertheless, we can agree
that a pair of corresponding subsets from the overlapping areas, regardless if they lay on
the borders or not, when registered produce a transformation that optimally aligns the full
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overlap and point clouds. Thus, if P and Q are divided into subsets it is possible to retrieve the
solution transformation from those subsets that perfectly align. Now, the emerging question
is: what defines a perfect alignment?

A perfect alignment is when having the least sum of squared errors between the true
correspondences. These can be set following the definition of Ref. [12]: Cpq is built by
aligning the 3D point clouds with the solution T and doing a radius-search with radius ε

of two times the Cloud Resolution (CR) in Q for each pi ∈ P. That is, for each point in the
source which nearest neighbor in the target lays within ε , there is a correspondence and the
total of correspondences considering both 3D point clouds is 2N.

Remark 2.1: Cloud Resolution

The cloud resolution is the mean Euclidean distance between all the points and their
nearest neighbors in a 3D point cloud.

CR =
1

NP

NP

∑
i=1

∥pi −pinn∥
2 2.1

It is widely used when the metric or scanning precision of the sensor is unknown.

Considering ε as the inlier threshold that defines the correspondences, it is possible to
set an objective function that estimates the sum of squared errors only between the correct
overlapping points:

E (T | C, ε) =
N

∑
i=1

(
∥qn − p̄n∥2 ≤ ε

)
. 2.2

In this sense, by measuring the Euclidean error only between true overlapping points, the
best transformation Tb actually maximizes the sum of squared errors. Therefore, the T that
produces the best alignment is the one that meets

E∗ = max
T

E (T | C, ε) . 2.3

2.1.2 Practical registration of LiDAR scans

Due to their partial overlapping and complex structures, 3D point clouds obtained from
LiDAR scanners require practical considerations to ease and accelerate their registration.
Cai et al. [31] considered that in practice relative rotations are constrained to the azimuth in
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terrestrial systems, removing two Degrees of Freedom (DOF) and making T defined only by
t ∈ R3 and R ∈ SO(1) around the vertical axis. They also follow the definition of the sum of
squared errors in Equation 2.2 as it robustly estimates it and rejects false correspondences.
In their case, ε is given by the precision of the scanning sensor, but do not consider the low
overlap problem.

2.1.3 Supervoxel segmentation

There are many ways in which we can divide a 3D point cloud into subsets, such as selecting
random points and use these as centers to find their k-nearest neighbors, or their radial
neighbors. However, techniques like these are not consistent due to the random selection of
initial points, and their processing time depends of the number of initial points and range of
neighbors. Also, the likelihood to make subsets with repeated points (i.e., the subsets cross
their boundaries) increases with the number of initial points and range of neighbors. Hence,
it is desired to adopt a method which run time is fast enough to use as a pre-processing and
consistently produces subsets which boundaries do not cross between each other. The Voxel
Cloud Connectivity Segmentation, better known as Supervoxel Segmentation (SVS) [32] is a
method for the 3D space that has the desired characteristics and divides 3D point clouds via
fast volumetric over-segmentations known as supervoxels using voxel relationships.

More specifically, SVS divides the 3D space into a voxelized grid space with a resolution
of seed radius Rseed , where the voxels have a resolution of voxel radius Rvoxel and a kd-tree-
based adjacency graph is built in any given voxel, then it evenly places a set of seed points
in the grid space from which expands to the clusters. This expansion consists of assigning
voxels to each cluster using a local k-means clustering but constrained by the adjacency
graphs and the flow defined from the expansion distance

∆P =

√
λ

D2
c

m2 +µ
D2

s

3R2
seed

+ εD2
HiK, 2.4

Where λ controls the influence of color information as a Euclidean color distance Dc in the
CIELab space [33], µ controls the spatial distance Ds between points, and ε controls the
geometric similarity of the points measured by the Fast Point Feature Histogram (FPFH) [14]
descriptor. The simplified version of the expansion distance in Equation 2.5 is computed in a
feature space consisting of the color Euclidean distance Dc from the normalized RGB space
[34], the space distance Ds normalized by Rseed , and the normal distance Dn that measures
the angle between normal vectors. Moreover, wc, ws, and wn replace λ , µ , and ε respectively,
being weights that individually control the effects of the distances.
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Figure 2.1: Subset-based registration method flowchart.

∆
′
P =

√
wcD2

c +ws
D2

s

3R2
seed

+wnD2
n, 2.5

The consistency in SVS is achieved thanks to its flow constrained clustering, but also
by making good use of the voxelized space, as the occupied voxels closer to the evenly
placed seed points in the voxelized space become the seed voxels. Hence, the definition of
the seeding voxels from where the subsets expand is governed by the position and shape
of the 3D point cloud in the voxelized space, and only changes if any of these properties
changes. Moreover, the voxelized spaced along with the iterative expansion distances allow
to precisely cluster planar and curved surfaces; meanwhile the adjacency graphs of the voxels
help to avoid boundary crossing between subsets.

From the different parameters of SVS Rseed and Rvoxel are the sizing parameters that
determine the size and quantity of the supervoxels/subsets, but Rseed has a higher influence
on defining their size as it controls the resolution of the grid where the seed points are placed.

2.2 Proposed method

With basis on the aforementioned problem reformulation we propose to exploit the local
minima convergence and ideal condition of CRAs by clustering the 3D point clouds into
point subsets via SVS and look for the pair of these that due to its similarity in shape and
size perfectly align and registration produces the T that when applied to the full 3D point
clouds fulfills Equation 2.3. The proposed registration method is depicted in the flowchart
of Figure 2.1 and described in the following subsections.
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2.2.1 Pre-processing

The first step consists of simply computing the point normals of P and Q with a normal
radius Rnormals of 10 CR, and the FPFH descriptors for all the points with an feature radius
RFPFH of also 10 CR.

2.2.2 Main process

Making point subsets

Next, both point clouds divide into subsets Psv = {Pssk}
SSP
k=1 and Qsv = {Qssl}

SSQ
l=1 using SVS

ruled by the seed radius Rseed .

Aligning and rejecting subsets combinations

Afterward, we obtain the transformations T from the registration of all the possible subsets
combinations (Pssk , Qssl) using LM-ICP, with the Identity matrix as initial rotation R0 = I3

and a null initial translation t0 = (0, 0, 0), and save them in a vector VT. The size of
this vector is SSP× SSQ if all the combinations are registered. However, registering all
combinations implies a high probability of obtaining transformations from subsets that do
not correspond between each other. Thus, to avoid combinations of unrelated surfaces we set
a degree of geometric similarity DoS, which measures how similar are a pair of subsets by
counting the descriptor correspondences between them. In theory, the higher the value of
DoS the more similar and geometrically related are the subsets. Hence, a pair (Pssk , Qssl) is
rejected if DoS is zero, or registered if otherwise.

To estimate DoS between a pair of subsets (Pssk , Qssl) we need their one-to-one related
descriptor subsets (PFPFHssk , QFPFHssl). Using the latter, point correspondences are esti-
mated in the same manner as Buch et al.[35] and Lowe [36]: for each point descriptor pFPFH

in PFPFHssk , the first and second nearest neighbors in QFPFHssl are found. Then, if the
ratio between their distances is lower than a correspondence threshold Cthr, the first nearest
neighbor is considered a correspondence, and DoS increases by one.

Remark 2.2: LM-ICP for the registration of subsets

For the registration of the subsets, LM-ICP was chosen due to its robustness to the initial
positions. A property desired for the registration of subsets that may be part of the same
surface but have a different orientation in their respective point clouds.
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Solution estimation

Lastly, the transformation that achieves the best alignment Tb is defined by evaluating all Ts
in VT with Equation 2.1. Then, Tb is the T that meets Equation 2.2.

2.2.3 Multi-scale process

All transformations are obtained from the registration of point subsets relatively similar in
size. Thus, their size plays a significant role in the method. SVS’s parameter Rseed controls
the size of the subsets: the larger it is, the less but bigger are the generated point subsets
and vice-versa. Since there is no predefined optimal Rseed value that leads to the optimal
transformation To, it is necessary to find them through a multi-scale evaluation. It means,
iterating over the stages of the main process decreasing the value of Rseed at a step rate τ ,
from a maximum Rmax

seed to a minimum Rmin
seed .

In this multi-scale fashion, at each iteration Rseed has a value that produces different
point subsets to register as described in the main process. Then the resulted transformations
are evaluated to find Tb for each scale. All Tb from each iteration are saved in a vector
VTb in order to perform the same evaluation with Equation 2.1 and define the optimal
transformation To. That is, To is the Tb that satisfies Equation 2.2.

Remark 2.3: Definition of Rmax
seed and Rmin

seed

Rmax
seed can be as significant enough to at least generate a couple of subsets at the first

iteration, but due to the spatial relationship between supervoxels and the voxel grid in
the segmentation process Rmin

seed = Rvoxel + τ .

2.3 Experimental evaluation

2.3.1 Implementation and datasets

The proposed method was implemented in C++ using the Point Cloud Library (PCL) [37],
along with OpenMP [38] for parallel processing of the subsets rejection, registration, and
transformations evaluation. The experiments were conducted in a computer equipped with
an Intel® Core i7-7700HQ (2.80 GHz × 8) and 32 GB of RAM on Ubuntu.

The utilized datasets were model 3D point cloud pair of Armadillo, Bunny, Dragon, and
Happy Buddha from the Stanford 3D Scanning Repository [39]. Moreover, a laser scan pair
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Table 2.1: Utilized datasets.

Datasets Sizes (points) ξgt (%)

Armadillo
P: ArmadilloStand_0
Q: ArmadilloStand_270

NP = 28,220
NQ = 24,034 26.66

Bunny
P: bun_0
Q: bun_270

NP = 40,256
NQ = 31,701 30.90

Dragon
P: dragonStandRight_0
Q: dragonStandRight_288

NP = 41,841
NQ = 24,573 29.64

Happy Buddha
P: happyStandRight_0
Q: happyStandRight_288

NP = 78,056
NQ = 72,346 19.88

Stairs
P: Hokuyo_0
Q: Hokuyo_3

NP = 181,077
NQ = 187,959 33.04

of Stairs from the ASL Datasets [40]. Each 3D point cloud pair has an overlapping ratio
ξgt below 40%, measured based on the definition of Equation 1.9 that considers both 3D
point clouds. Table 2.1 shows the specific datasets, the source-target arrangement, number
of points, and corresponding ξgt .

We ran experiments recording the E and ξ of Tb at each iteration, as well as the processing
time and the Mean Squared Error with Penalty, which is defined as

MSEp =
1

NP

NP

∑
i=1

dpq dpq =

{∥∥q j − p̄i
∥∥2 if dpq ≤ ε

1 otherwise
2.6

It measures the mean squared error between the true overlapping points and gives a penalty
of 1 for each pi ∈ P that does not have a correspondence q j ∈ Q within ε . In low overlapping
3D point clouds MSEp allows to estimate small values of error of alignment for point clouds
that are correctly registered, and vice-versa.

Regarding to the parameters, we set the values shown in Table 2.2 in terms of CR for the
left column. Cthr represents a ratio ∈ [0,1], and wc, wc, wc the weights for SVS. Parameter
wc was set to zero because the datasets do not have color information, and Cthr as 0.1 to
guarantee a strict rejection of unrelated subsets by the DoS. Rmax

seed and τ , were defined large
enough to generate at least two subsets at the first iteration, and small enough to gradually
evaluate a wide range subset sizes. In the case of the laser scan Rvoxel and Rmax

seed were scaled
up by ten because the size of this dataset is several times larger than the others.
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Table 2.2: Parameters values

Parameter Value [CR] Parameter Value
Rn 10 wc 0
RFPFH 10 ww 2.5
Rvoxel 2.5 wn 0.5
Rmax

seed 100 Cthr 0.1
τ 1
ε 2

2.3.2 Results and discussion

Table 2.3 the quantitative results obtained from the proposed method, comparing them to
the ground-truth and three CRAs, and Table 2.5 shows the qualitative results depicting P

in red and Q in blue. It is worth mentioning that although TrICP is considered a CRA, it
is not included in the comparison because it requires of the pre-knowledge of ξ which in a
practical scenario is unknown.

Qualitatively, unlike CRAs, the proposed approach in most datasets keeps the shape of
the datasets, obtaining alignments very close to the ground-truth. In the cases of Bunny,
Dragon, Happy Buddha, and Stairs, the resulting alignments are visually almost perfect,
and can be corroborated with the quantitative results of Table 2.3 since the metrics of the
alignments from the proposed method are significantly closer to the ground truth. Although
there are still some noticeable differences, as in the case of Bunny, these do not indicate a
wrong result, but that there is still room for improvement in the alignment, which can be
achieved by a fine registration stage.

With the same color pattern as in Table 2.5, Figures 2.2(b), 2.3(b), 2.4(b), 2.5(b), and
2.6(b) show the subsets that led to To in every dataset; meanwhile the left side corresponds
to the complete subset segmentations (each subset is indicated by a color) generated by SVS
with the value of Rseed indicated in Table 2.4. Examining Armadillo’s ground-truth and the
leading subsets in Figure 2.2(b) we can notice that because the overlapping surfaces are
mostly round, these are almost completely featureless. Therefore, at the subset rejection
stage, many subset combinations coming from this parts pass to be aligned because their DoS
points them as geometrically related, without considering if these arise from opposite sides
of the surfaces causing an alignment with drift. A simple analogy to this is the registration of
the two halves of a sphere, since both do not have any other geometric description than their
roundness, the final registration will produce a bowl shape instead of the desired sphere. In
figures 2.2 to 2.6 it is also clear that the method fulfills the expectation that registered point
subsets of equal or similar size and shape satisfy Equation 2.2.
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Table 2.3: Comparison of quantitative results between the ground-truth, proposed method,
and CRAs

Metric Ground-truth Proposed
method ICP N-ICP LM-ICP

E 4.56 4.03 0.64 0.77 0.64
Armadillo ξ (%) 26.66 23.63 3.67 4.61 3.63

MSEp 0.7533 0.7813 0.9660 0.9573 0.9663
E 6.89 4.74 1.26 1.55 1.25

Bunny ξ (%) 30.9 19.20 5.06 6.21 4.99
MSEp 0.7239 0.8284 0.9547 0.9444 0.9554
E 5.48 5.62 1.41 1.45 1.43

Dragon ξ (%) 29.64 30.18 6.27 6.24 6.36
MSEp 0.7648 0.7605 0.9502 0.9504 0.9495
E 6.08 6.78 3.11 3.41 2.99

H. Buddha ξ (%) 19.88 22.70 9.55 10.67 9.20
MSEp 0.8084 0.7813 0.9080 0.8971 0.9113
E 896.42 812.27 132.32 96.11 128.05

Stairs ξ (%) 33.04 26.31 4.09 2.93 3.87
MSEp 0.6682 0.7363 0.9589 0.9706 0.9611

Table 2.4: Optimal Rseed and processing times

Rseed [CR] tT (sec) tm (sec)
Armadillo 31 94.75 0.73
Bunny 70 444.74 2.47
Dragon 58 136.88 1.04
Happy Buddha 31 552.60 3.08
Stairs 927 5,925.2 0.98

Regarding the Rseed value where To originates from and the processing time, Table 2.4
shows the resulting optimal sizes and corresponding total tT and median tm processing times.
Here it is expressed that the proposed method takes only a few minutes (between 10 min to
1.5 min) to process the model datasets, but the scaled-up values of Rmax

seed and Rvoxel for the
laser scan dataset drastically impact on tT because more values of Rseed have to be processed,
taking approximately 1.64 hours to find a definitive solution.
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Table 2.5: Comparison of qualitative results between the ground-truth, proposed method,
and CRAs

Ground-truth Proposed
method ICP N-ICP LM-ICP
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(a) Source and Target subsets (b) Best subsets

Figure 2.2: Segmentations and point subsets that lead to To in Armadillo

(a) Source and Target subsets (b) Best subsets

Figure 2.3: Segmentations and point subsets that lead to To in Bunny

(a) Source and Target subsets (b) Best subsets

Figure 2.4: Segmentations and point subsets that lead to To in Dragon
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(a) Source and Target subsets (b) Best subsets

Figure 2.5: Segmentations and point subsets that lead to To in Happy Buddha

(a) Source and Target subsets (b) Best subsets

Figure 2.6: Segmentations and point subsets that lead to To in Stairs

2.4 Conclusion

The proposed registration method can find transformations that register a pair of 3D point

clouds with a low overlapping ratio close to the optimal alignment. Although the result in

one of the tested datasets is not close to the optimal alignment, it is significantly better than

CRAs. In reality, the proposed method excels the CRAs in all cases. Nevertheless, it might

not be the optimal with large datasets due to its relatively long processing time. Furthermore,

because of its core subset-to-subset registration, it is weak against 3D point clouds which

shapes have large featureless surfaces or repeated patterns.



Chapter 3

Descriptor-free voting-based registration

This chapter comprehends the conception details, and preliminary experimentation of the
second devised approach, presented in "Descriptor-free Voting-based Registration of Low
Overlapping 3D Point Clouds" and published in Proceedings of the 48th Annual Conference
of the Institute of Image Electronics Engineers of Japan.

3.1 Background and related work

3.1.1 Problem reformulation

The registration method introduced in the previous chapter satisfactorily achieves the main
goal of registering low overlapping 3D point clouds. Nonetheless, it comprises several things
that can be improved:

• The value for Rmax
seed has to be set manually.

• The objective function can be satisfied by incorrect alignments.

• It utilizes feature point descriptors.

To tackle the first issue, we simply applied the multi-scale usage of SVS proposed by
Ref.[41] which simply finds the mean maximum distances from the bounding boxes of the
3D point clouds to estimate Rmax

seed . However, doing it arises a new problem: the total number
of subsets to evaluate is very high because the search space given by all the possible sizes of
Rseed increases, also increasing the total processing time. Table 3.1 shows Rmax

seed and total
processing time tT in each dataset before and after applying the automatic estimation.
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Table 3.1: Rmax
seed and tT before and after automatic setting.

Rmax
seed before (CR) Rmax

seed after (CR) tT before (sec) tT after (sec)
Armadillo 100 290 94.75 275.02
Bunny 100 213 444.74 675.52
Dragon 100 256 136.88 310.46
H. Buddha 100 302 552.60 1,212.36
Stairs 1000 2183 5,925.2 13,057.87

Figure 3.1: Core idea: same transformation from the alignment of different subsets.

By setting to perform SVS only in the source P it is possible to reduce in half the
total number of subset registration to make, but it implies registering small subsets with a
larger 3D point cloud and not having one-to-one full data association as originally intended.
Nevertheless, we know that subsets Pssk still perfectly align somewhere in the true overlapping
surfaces of the target Q, and the corresponding transformations of these alignments are
relatively similar or the same since they correspond to the registration of the overlapping
areas. Thus, we can retrieve the alignment led by the subsets via a voting scheme without
the need of feature descriptors to compute any similarity between subsets. In other words:
by segmenting the source 3D point cloud and registering every subset with the target, the
resulting transformations from the subsets belonging to the truly overlapping areas are rather
similar and represent the solution transformation (cf. Figure 3.1) which can be retrieved via
Hough voting.

To solve the matter of concern with the objective function in Equation 2.3 it is necessary
to describe good transformations more robustly. Thus, by keeping the definition of true point
correspondences (i.e., source points pi with a target neighbor q j that lays within the radius
threshold ε of two times the cloud resolution of P), and combining MSEp (cf. Equation
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2.6) with the objective function defined by Chetverikov et al.[42], we define a metric that
describes good transformations as those that minimize the squared error between true point
correspondences and maximize the overlapping ratio:

ψ =
MSEp

ξ λ+1 . 3.1

Remark 3.1: Value of λ

λ in the definition of ψ is a preset parameter λ ≥ 0 that controls the influence of
the overlapping ratio ξ . Increasing it allows to avoid undesirable alignments from
featureless surfaces, and throughout this work we follow the setting λ = 2.

3.1.2 Hough voting

The Hough Transform (HT) [43] is a popular technique used in computer vision originally
proposed for line detection in 2D images and later on was modified to detect also circles and
ellipses. Its voting scheme and core idea is to vote for the image features in the parameter
space of the shape to detect. The corresponding votes are accumulated into an array (the
accumulator) which dimensions depend on the number of parameters of the desired shape.
Then, the desired shape is found by the local maxima of votes in the accumulator.

A simple example is to understand the concept is the detection of lines in 2D images:
given the edge points (xi, yi) the task is to detect a line y = mx + c. Considering a point
(xi, yi) that passed through the desired line, we can write the equation yi = mxi + c and
rewrite it as c = −mxi + yi. Since (xi, yi) are known, the latter equation allows us to look
at the problem in two different spaces (the image space and the parameter space) and map
between them. Then, each point in the image space corresponds to a line in the parameter
space, and all the points in a line of the parameter space correspond to all the points that pass
through a point in the image space. Hence, taking more points in the image space will give
another line in the parameter space, and the crossing point of these lines in the parameter
space correspond to the parameters that describe a line in the image space (see Figure 3.2).
The algorithm for this line detection is described in Algorithm 1, where the parameter space
is quantized and referenced by the accumulator A(m, c).

Regarding the mechanics of HT, it is important to consider the impact of the size of bins
in the accumulator: if it is too big different shapes may be merged, but if it is too small, noise
causes shapes to be missed. Furthermore, the parameterization must be chosen carefully as
parameters with infinite possibility of values require large accumulators, more memory, and
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Figure 3.2: Mapping between the image space and parameter space for line detection.

computation. In theory, the latter also applies to shapes with many parameters as it would
require a very sparse and high-dimensional accumulator of low computational efficiency and
high memory demand.

Despite the wide use of HT in 2D images [44–47], in 3D is not broadly used due to
the high number of parameters in 3D shapes. Originally HT was only used to detect 3D
shapes with a relatively small number of parameters such as cylinders [48] and spheres
[49]. Nevertheless, it has been show that the technique can be employed to detect free-from
shapes in the 3D spaces with some arrangements hat reduce the size of the Hough space [50].
Additionally, we must consider that nowadays memory constraints tend to be relative to the
hardware we have on hand and it is not necessarily a problem in most modern consumer
level computers anymore.

Algorithm 1 Hough transform for line detection

Quantize parameter space (m, c)
Create accumulator array A(m, c)
Set A(m, c) = 0 for all (m, c)
for each edge point (xi, yi) do

if (m, c) lies on the line c =−mxi + yi then
A(m, c) = A(m, c)+1 ◃ Voting

end if
end for
Find local maxima in A(m, c)
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3.1.3 Voting-based registration

The introduction of the HT for registration 3D point clouds is relatively new [12]. The core
idea is to leverage the high likelihood of CRAs to converge to an almost optimal alignment
when having one-to-one data association and exploit the repeatability of transformations from
the registration of subset pairs (Pssk , Qssl). Being those perfectly aligned subsets originated
from the truly overlapping areas, the transformations binned into a parameter space represent
the correct alignment of the full 3D point clouds. However, naive definitions of the point
subsets might lead to extremely high time complexities.

One of the main contributions of Ref.[12] is to replace the 16 parameters matrix repre-
sentation of the rigid body transformation for a concatenated vector of only 7 parameters.
The key is to split T into the rotation matrix R and translation vector t, and replace the
rotation matrix for its quaternion representation a+bî+ cĵ+dk̂. Thus, the transformation
can be represented by the vector T7D =

{
a, b, c, d, tx, ty, tz

}
which makes the accumulator

A(T7D) seven-dimensional.
In terms of quantization of the parameter space, because of the replacement to a quaternion

representation the terms for the rotation are delimited by [−1,1], but the translation can
be infinite along any direction. To solve this issue Ref.[12] also proposes a delimitation
of translation [−tlimit , tlimit ] based on the size of the bounding boxes both 3D point clouds,
where tlimit is one and a half times the difference between the overall minimum and maximum
vertices of the bounding boxes.

Lastly, the bin in which every parameter of the transformation T7D fits in A(T7D) is
defined by bi = (ρ −ρmin)/Nb. Where ρ is the corresponding parameter to fit and Nb the
number of bins in every dimension of the accumulator A(T7D).

3.2 Proposed method

Considering the reformulation aforementioned as well as related work, we present a 3D point
clouds registration method that is descriptor-free and employs Hough voting to retrieve the
solution from the alignment of source cloud subsets build by SVS. The proposed approach is
detailed in the following subsections and shown in the flowchart of Figure 3.3.
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Figure 3.3: Voting-based registration method flowchart.

3.2.1 Main process

Making point subsets

The first step consists of making point subsets only from the source Psv = {Pssk}
SSP
k=1, by

setting a value of seed radius Rseed via Supervoxel Segmentation (SVS).

Aligning and evaluating

In this stage, an initial rotation R0 corresponding to a rotation around the vertical axis at
an angle ra is applied to each subset Pssk and then registered to Q via ICP with null initial
translation t0 = (0, 0, 0) to obtain the corresponding T of their alignment. Since no features
are used, R0 changes the initial position of the subset Pssk and improves ICP’s basin of
convergence. However, because the best initial position of Pssk is undefined, we perform
several registrations with initial rotations R0 from different angles, progressively increasing
ra at an angle step as.

Next, the resulting T is applied to P and evaluated with the descriptive metric in Equation
3.1. At this point it is still possible to obtain wrong T’s from the alignment of unrelated sur-
faces. Therefore, we discard these if ψ < ψthr, being ψthr a false transformations threshold.
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Remark 3.2: Definition of the angle step as

The angle step at which the rotation angle ra increases is defined as as = 360◦/Nr,
where Nr is a number of rotations set manually.

Binning and voting

Having a putative good T, it is changed to a its seven-dimension vector representation T7D

and binned into a seven dimension accumulator A(T7D) in the same manner as Ref.[12].
From this point the process uses the T7D representation, but from now on it will referred as T
for simplification purposes.

The voting process is a straightforward Hough voting scheme where the votes vi of each
bin bi are increased by ν if the corresponding T exists in A(T7D). Otherwise, bi is created
and its votes initialized as vi = ν , being ν a voting step of 1.

Solution estimation

The last stage consists of looking for the highest local maxima in the parameter space, it
means locating the bi that has the maximum number of votes vmax in the accumulator. Because
vmax derives from a series of similar Ts we estimate an averaged transformation Tavg formed
from all these, which represents them as Tb. Notwithstanding, in the event of finding several
local maxima with equal vmax Tavg is estimated for each ot these bins, then evaluated via ψ ,
and lastly the Tavg that satisfies ψ → min is defined as the solution transformation Tb.

3.2.2 Multi-scale process

Because the size of the subsets build by SVS is controlled by Rseed , in the same fashion of the
method described in Chapter 2 we perform stages the first three stages of the main process
in a multi-scale approach from a maximum seed radius Rmax

seed to a minimum Rmin
seed . The latter

are estimated based on the multi-scale usage of SVS [41] introduced in Section 3.1.1.

3.3 Experimental evaluation

3.3.1 Implementation and datasets

The present approach was also implemented in C++ using PCL [37] along with OpenMP
[38], and evaluated with 3D point clouds pairs of the models Armadillo, Bunny, Dragon,
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and Happy Buddha from the Stanford 3D Scan Repository [39]. However, in comparison to
the previous method, the datasets were arranged in inverse order, it means that the 3D point
clouds labeled as 0 are the target Q, meanwhile the others are the source P. Experiments
were carried out on the same system specified in Section 2.3.1.

In this method the two parameters that most influence the process are number of ro-
tations Nr for the subset preregistration and the number of bins Nb in the accumulator
A(T7D). Therefore, we carried out preliminary experiments with four different values of
Nr = {4, 8, 16, 32}, two Nb = {50, 100}, and set the threshold ψthr = 0.1. As for the
parameters of SVS, we kept them as originally set in the experimental setup of Section
2.3.1, and empirically set Rmin

seed = 10 Rvoxel since evaluations below that scale do not generate
subsets large enough to be registered by ICP.

Lastly, to assess the quality of the results, we evaluated the solution Tb and the ground-
truth Tgt with Equation 3.1 and estimated their absolute difference:

ψdi f f =
∣∣ψgt −ψb

∣∣ . 3.2

3.3.2 Results and discussion

Table 3.2 shows the obtained qualitative results distinguishing the source P in red, the target
Q in blue, and the overlap C in black. Charts in Figure 3.4 summarize the quantitative results
where the vertical axis shows ψdi f f in logarithmic scale. An analysis to the qualitative results
clearly indicates that the proposed method can obtain solution transformations Tb that align
the 3D point clouds very well in most cases, meanwhile the numeric results infer that these
are significantly close to the optimal since ψdi f f ranges between

(
10−7, 10−1).

Quantitative results also reveal a trend to get better results as Nr increases regardless of
the value on Nb in the datasets with stronger geometric features (Dragon and Happy Buddha).
This trend does not apply in Armadillo nor Bunny (cf. Figure 3.4(a) and Figure 3.4(b)).
However, the prominent round shape of Bunny allows to have a more stable behavior with the
increase of rotations and better results with a more strict accumulator A(T7D). In the case
of Armadillo, because the metric in Equation 3.1 describes transformations that maximize
ξ , the higher it is the lower ψ becomes and successfully passes through the threshold ψthr.
Thus, because as Nr increases more subsets with little geometric features from the back of
the model perfectly align producing many Ts that successfully pass through ψthr and yield
most votes in A(T7D), the solution converges to a local alignment.

With respect to the differences between the results of 50 and 100 bins, the accumula-
tor A(T7D) differentiates transformations more strictly as Nb increases. It seems that the
parameter Nb does not have as big of an impact on the results compared to Nr, but may
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(a) Armadillo (b) Bunny

(c) Dragon (d) Happy Buddha

Figure 3.4: Quantitative results of preliminary experiments.

lead to local incorrect solutions when Nr does not provide good initial positions to improve
the basin of convergence of ICP. This behavior is evident in the results of Dragon with
(Nr = 4, Nb = 100), and (Nr = 8, Nb = 100). Lastly, comparing qualitative results with the
approach presented in Chapter 2, this method can find an almost perfect solution for all
mode-type datasets, as in the previous approach the somewhat featureless surface on the back
of Armadillo turned out to be challenging.

3.4 Conclusion

The proposed descriptor-free voting-based registration method is capable to successfully
find fairly good transformations for low overlapping ratio 3D point clouds of model-type
datasets. Although the approach achieves its primary objective, there is a dependency on the
parameters Nr and Nb, as well as in the 3D point clouds’ shape to obtain good results. Hence,
a more comprehensive analysis of its behavior under a wider range of function parameters is
required to define a precise usage reference.
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Table 3.2: Qualitative results of preliminary experiments.
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Chapter 4

Evaluation of piece-wise voting for low
overlapping 3D point clouds

The present chapter centers on the comprehensive evaluation carried out on the registration
methods introduced in the previous chapter, which results were presented in "A Piece-wise
Registration Method for Low Overlapping 3D Point Clouds" at the 7th IIEEJ International
Conference on Image Electronics and Visual Computing (IEVC 2021); and extended in "A
Registration Method on Piece-wise Voting for Low Overlapping 3D Point Clouds" for the
IIEEJ Transactions on Image Electronics and Visual Computing, Vol. 9, No. 2.

4.1 Background and related work

4.1.1 Open questions

Going back to last chapter’s experiments, these were designated as preliminary because
do not provide a clear idea on how the framework can be improved and behaves under the
variation of the parameters Nr and Nb. Additionally, a close analysis to the main process in
Section 3.2.1 shows that the registration algorithm to align Pssk to Q also has an impact on
the whole process. Therefore, we name this as core registration and open the possibility to
use any of the CRAs to perform it. Considering the latter, the open questions to the proposed
descriptor-free voting-based registration methods are:

• How does it behave under variations of its ruling parameters Nr, Nb, and core regis-
tration?

• How does it perform compared to available state-of-the-art registration methods for
the low overlap problem?
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4.1.2 State-of-the-Art on registration of low overlapping 3D point clouds

As previously mentioned in Chapter 1, to date the volume of work that addresses pairwise
registration of low overlapping 3D point clouds is very scarce, but the interest in solving the
problem increased in recent years. Addressing it in different fashions: using relatively robust
point descriptors, on the basis of the interaction between neighboring points, and utilizing
deep learning. Next, there is an introduction to some of these registration approaches that we
can refer to as the State-of-the-Art (SoTA).

Descriptor-based

Despite the factors previously mentioned in Section 1.2.4 about the conventional pipeline
used for partial overlapping registration, there are feature-based methods for low overlap 3D
point clouds. One of the pioneering works on the topic [30] addresses the problem assuming
that the overlapping areas of the source cloud P are located at the borders. Thus, it samples
border points and uses their Gaussian and mean curvatures [51] as local descriptors to match
and make data association. Nevertheless, its dependence on non-robust local point descriptors
makes it unstable method on 3D point clouds with uneven point densities – turning it not
viable for noisy datasets obtained from laser scanners or low-end 3D sensors. Additionally,
the experiments in this work were only carried out on the Bunny model of the Stanford 3D
Scan Repository [39] which makes the extensibility of the approach inconclusive.

Sun et al. [52, 53] made point subsets from the source and target to decompose them
via the K-SVD [54] algorithm, build sparse patch features, make data association by the
sparse representations, and retrieve the solution T by registering matched subsets using the
Coherent Point Drift [55] algorithm. Here, in a similar fashion as the approaches presented
in this work, the subsets act as the registration unit to avoid potential mismatches when using
the whole point clouds. The authors claim good performance and robustness to noise, but
the experiments were carried on handcrafted datasets with consistent point densities that
call into question the reported performance and reliability. Furthermore, for the registration
problem itself it is worth to consider that the dictionary of K-SVD is defined by minimizing
a high non-convex function that does not guarantee finding useful features that yield a good
alignment [56].

The method developed by Prokop et al.[57] uses line features from both point clouds
fed into a trial-and-error search to match the largest number of lines, and separates the
Euclidean transformation’s parameter space to separately look for each one via individual
fitness functions – claiming being able to register 3D point clouds with overlapping ratios
down to 20%. However, the approach is tailored to specific scanning conditions that delimit
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its applications. In it, there is an assumption that the 3D point clouds’ coordinate system is
aligned to the 3D sensor, which allows to estimate the rotation R only around the vertical
z-axis and limit the translation t to the x-y plane. Besides, it also works under the assumption
that straight edges strictly exist in the 3D point clouds, restricting its applicability to urban
and man-made environments. Additionally, the approach’s parameters are very susceptible
to the dataset’s shape, making it hard to tune in practical situations.

Neighboring interaction-based

An analogous approach to using point feature descriptors but without making hard point-to-
point data association, is to exploit the information that neighboring points of the points in
the overlapping areas possess, allowing to isolate from non-overlapping areas and focus on
the region of interest. The HMRF-ICP [58] method exploits point neighboring interactions
by using a Hidden Markov Random Field to infer data association via the Expectation-
Maximization algorithm within the process of ICP. This approach reports good alignments on
laser scan 3D point clouds but also failure cases driven by insufficient modeling of outlier
points.

Deep learning-based

As mentioned in Section 1.2.4, deep-learning has been applied to develop 3D point cloud
registration methods [21–24], but it was until very recently that the technique was utilized
with focus on the low overlap registration problem. Point-cloud REgistration with Deep At-
tention To the Overlap Region (PREDATOR) [59] is a neural network architecture assembled
to learn to detect the overlapping areas and focus on them to sample deep learning-based
convolutional feature descriptors. In other words, the approach learns where to sample robust
feature point descriptors for a more accurate data association and alignments. Another very
recent approach combines deep learning with HT [60] to build a framework that, just like the
approaches of this work, leverages Hough voting in a 6D transformation parameter space. It
also extracts deep learning-based features to estimate a series of putative correspondences,
and assemble a set of triplets from these to cast votes on the parameter space. Votes that
are refined through a fully convolutional refinement module and finally predict the solution
transformation by the consensus among the correspondences in the refined parameter space.

Both approaches outperform non-low-overlapping-focused registration methods in the
low overlap problem on popular 3D deep learning benchmarks. Nevertheless, as most deep
learning-based methods, these demand many datasets to train for a specific domain which
makes them not viable when there is insufficient training data for a new type of dataset.
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Moreover, nowadays deep learning models for 3D point cloud processing are considerably
resource-heavy and require vast amounts of VRAM to train and operate. PREDATOR is
so complex and demanding that the authors reported using a batch size of one in all the
experiments because of memory restrictions even with 2021 top-of-the-line hardware.

4.2 Votes compensation

The experiments performed for the extended evaluation of this chapter utilize a somewhat
improved version of the voting-based registration approach. In reality, the method is the same
but replaces the voting step ν = 1 for the definition ν = Nb/cb that endures compensating
votes as the bin size in the accumulator A(T7D) decreases; where cb is a compensation
factor. This compensation is useful to allow more differentiation between potentially good
transformations in the parameter space when the discrimination is rigorous.

4.3 Experimental evaluation

Since the main objective is to answer the questions raised in Section 4.1.2, we conducted two
types of experiments: first, and ablation study to evaluate the behavior of the proposed voting-
based registration methods under different values of the ruling parameters; and second, a
comparative study between both methods proposed in this work and other SoTA approaches.

4.3.1 Datasets

In the ablation study the experiments were carried out on the same model-type datasets
from the Stanford 3D Scan Repository used throughout this work, as well as in the pair
of laser scan 3D point clouds of the environment Stairs from the ASL Datasets. However,
there is a difference in the pair of 3D point clouds of the Armadillo model, as the source
dataset ArmadilloStand_270 was replaced for ArmadilloStand_330 to attempt
to obtain more shape descriptiveness and avoid potential drifted alignments result of the
back of the model. Additionally, three point cloud pairs from the test set scenes At Home,
Study Room, and Maryland Hotel 1 of 3DLoMatch [59] dataset were included in order to
test on a dataset tailored for the low overlap problem. Table 4.1 specifies the employed 3D
point clouds with their sizes and ground-truth overlapping ratio ξgt . It is worth mentioning
that the overlapping ratio ξgt in this case compared to what is shown in Table 2.1 differs
due to switched order of source P and target Q clouds. In the case of Stairs, the change is
particularly noticeable but the datasets were kept the same for uniformity purposes between
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Table 4.1: Utilized datasets

Datasets Sizes (points) ξgt (%)

Armadillo
P: ArmadilloStand_330
Q: ArmadilloStand_0

NP = 28,415
NQ = 28,220 32.72

Bunny
P: bun_270
Q: bun_0

NP = 31,701
NQ = 40,256 33.62

Dragon
P: dragonStandRight_288
Q: dragonStandRight_0

NP = 24,573
NQ = 41,841 29.64

Happy Buddha
P: happyStandRight_288
Q: happyStandRight_0

NP = 72,346
NQ = 78,056 20.37

Stairs
P: Hokuyo_3
Q: Hokuyo_0

NP = 187,959
NQ = 181,077 50.98

At Home
P: cloud_bin_3
Q: cloud_bin_0

NP = 190,519
NQ = 425,577 27.24

Study Room
P: cloud_bin_5
Q: cloud_bin_2

NP = 428,948
NQ = 334,279 43.25

Maryland Hotel 1
P: cloud_bin_3
Q: cloud_bin_2

NP = 357,247
NQ = 630,366 15.66

both proposed registration approaches. The target clouds Q from At Home, Study Room, and
Maryland Hotel 1 were moved to the ground-truth position, so in the experiments we look for
the solution transformation Tb that aligns the source P to the global reference frame, which
allows us to compare it to the ground-truth Tgt . Furthermore, due to the significant larger
size of At-home, Studyroom, and Maryland Hotel 1, voxel down-sampling with a leaf size of
0.1 applied in order to reduce the processing time.

4.3.2 Evaluation measures

To perform a better evaluation of any given alignment, we compare them to the ground-truth
by ψdi f f of Equation 3.2, the rotation error Rerror as the geodesic distance between the
rotations [61], and the translation error terror as the L-2 norm between the translations:

Rerror = arccos

(∣∣∣∣∣ tr
(
R⊤

b Rgt
)
−1

2

∣∣∣∣∣
)

terror =
∥∥tgt − tb

∥∥ . 4.1
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4.3.3 Ablation study

Ablation experiments setup

As mentioned earlier, the ruling parameters are the number of bins Nb, the number of
rotations Nr, and the core registration algorithm, from which we can form configurations
named scenarios composed as (dataset, Nb, Nr, CRA). To expand the range of evaluated
values for each parameter, each dataset was tested with four values for the number of bins
Nb = {10, 30, 60, 90}, five for the number of rotations Nr = {4, 8, 16, 32, 64}, and the four
CRAs (i.e., ICP, N-ICP, TrICP, and LM-ICP) as the core registration algorithm – resulting in
a total of 640 scenarios to evaluate. With regard to the inner parameters, we kept ψthr = 0.1
and empirically set the compensation factor cb = 10. These experiments were also conducted
on the same system specifications introduced in Section 2.3.1.

Ablation results

The charts in Figure 4.1 to Figure 4.8 show the quantitative results on Rerror, terror, and
ψdi f f of all scenarios. Each triplet of diagrams corresponds to one CRA as core registration,
where the vertical axes express the evaluation measures (ψdi f f in logarithmic scale), the
horizontal axes to Nb, and each series to Nr.

At a glance, it is clear that terror does not vary along with the changes on the triplets
(Nb, Nr, CRA), only between datasets. Resulting in about 0.001 m (1 mm) in all model-type
datasets and over 1 m in the laser scan as its scale is significantly larger. Furthermore, like in
the results of the preliminary experiments on Chapter 3, it seems that ψdi f f does not work
as the definitive indication of the performance of the method. For example Bunny with
TrICP, ψdi f f indicates that Nb = 10 gives the worst results but comparing to Rerror, Nb = 10
performs better than Nb = 90. Nonetheless, this happens because of the discrimination level
of the accumulator A(T7D) and the fact that wrong alignments can still satisfy ψ ≤ ψthr. As
in low values of Nb Ts with significant differences, good or wrong, can be placed into the
same bin, then when retrieving the solution by Tavg the misalignment can be diminished
or magnified depending on the amount of good and bad Ts in the same bin - which is
more noticeable in the Rerror. However, all the corresponding Ts met ψ ≤ ψthr and the
differentiation between good and bad ones does not transcend to ψdi f f as it is estimated from
Tb, not from an averaged ψ . Thus, we can resolve that assessing an alignment solely by the
evaluation measure ψdi f f is not enough.

Results on Rerror provide clearer indications on the performance of the method. N-ICP
as core registration operates best in Armadillo and Bunny because this CRA leverages the
uniform distribution of the normals on the large round surfaces of these datasets. Such
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occurrence also takes place in Happy Buddha as long as A(T7D) does discriminate Ts
rigorously (cf. Rerror in Figure 4.4(a) at Nb = 90). In the case of Dragon because its shape is
more pronounced than the other models, there is higher variation in the results, but N-ICP
and LM-ICP perform the best with Nb ≥ 30. For Stairs, N-ICP converges to alignments with
translation drift consequence of the large planar surfaces of this dataset. Overall, the number
of rotations Nr seems to be dependent of the number of bins Nb and, more importantly, the
core registration algorithm. However, Nr ≥ 16 is steadier with 30 ≤ Nb ≤ 60.

The datasets from 3DLoMatch showed a more steady behavior along the variations
of (Nb, Nr), due to the uniformity in point density obtained after the applied voxel down-
sampling. However, with significantly larger errors in the three metrics as shown in Figures
4.6, 4.7, and 4.8. Most Rerror values range from nearly 1◦ to 3◦, which may not seem big for
the scale of these datasets, but the terror indicate significant translation errors between 1.5 to
5 m. ψdi f f values on these datasets also describe a poor performance, surpassing or being
very close to ψthr = 0.1 in all cases. Notwithstanding, judging from the results in Rerror and
ψdi f f combined, one can tell that the method performs best in these datasets with N-ICP,
Nb ≥ 60, and Nr = 64 (cf. N-ICP in Figures 4.6, 4.7, and 4.8).

Although the results are somewhat noisy and allegedly no configuration consistently
performs best, the scenarios with minimum Rerror, terror, and ψdi f f are:

• (Armadillo, 60, 32, N-ICP)

• (Bunny, 60, 8, LM-ICP)

• (Dragon, 30, 4, N-ICP)

• (Happy Buddha, 60, 32, N-ICP)

• (Stairs, 60, 4, ICP)

• (At Home, 10, 16, LM-ICP)

• (Study Room, 90, 64, N-ICP)

• (Maryland Hotel 1, 90, 64, N-ICP)

The corresponding alignments to these scenarios are shown in Figure 4.11, where the source
P is depicted in red and the target Q in blue. It also clearly shows the translation drift
terror ≈ 1 m in Stairs, result of many transformations from Pssk subsets originated at the
planar surfaces that perfectly align to the large planar areas of the target Q, as well as the
misalignments in At Home, Study Room, and Maryland Hotel 1.
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(a) ICP: Rerror (b) ICP: terror (c) ICP: ψdi f f

(d) N-ICP: Rerror (e) N-ICP: terror (f) N-ICP: ψdi f f

(g) TrICP: Rerror (h) TrICP: terror (i) TrICP: ψdi f f

(j) LM-ICP: Rerror (k) LM-ICP: terror (l) LM-ICP: ψdi f f

Figure 4.1: Quantitative results of Armadillo
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(a) ICP: Rerror (b) ICP: terror (c) ICP: ψdi f f

(d) N-ICP: Rerror (e) N-ICP: terror (f) N-ICP: ψdi f f

(g) TrICP: Rerror (h) TrICP: terror (i) TrICP: ψdi f f

(j) LM-ICP: Rerror (k) LM-ICP: terror (l) LM-ICP: ψdi f f

Figure 4.2: Quantitative results of Bunny
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(a) ICP: Rerror (b) N-ICP: terror (c) N-ICP: ψdi f f

(d) N-ICP: Rerror (e) N-ICP: terror (f) N-ICP: ψdi f f

(g) TrICP: Rerror (h) TrICP: terror (i) TrICP: ψdi f f

(j) LM-ICP: Rerror (k) LM-ICP: terror (l) LM-ICP: ψdi f f

Figure 4.3: Quantitative results of Dragon
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(a) ICP: Rerror (b) ICP: terror (c) ICP: ψdi f f

(d) N-ICP: Rerror (e) N-ICP: terror (f) N-ICP: ψdi f f

(g) TrICP: Rerror (h) TrICP: terror (i) N-ICP: ψdi f f

(j) LM-ICP: Rerror (k) LM-ICP: terror (l) N-ICP: ψdi f f

Figure 4.4: Quantitative results of Happy Buddha
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(a) ICP: Rerror (b) ICP: terror (c) ICP: ψdi f f

(d) N-ICP: Rerror (e) N-ICP: terror (f) ICP: ψdi f f

(g) TrICP: Rerror (h) TrICP: terror (i) ICP: ψdi f f

(j) LM-ICP: Rerror (k) LM-ICP: terror (l) ICP: ψdi f f

Figure 4.5: Quantitative results of Stairs
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(a) ICP: Rerror (b) ICP: terror (c) ICP: ψdi f f

(d) N-ICP: Rerror (e) N-ICP: terror (f) ICP: ψdi f f

(g) TrICP: Rerror (h) TrICP: terror (i) ICP: ψdi f f

(j) LM-ICP: Rerror (k) LM-ICP: terror (l) ICP: ψdi f f

Figure 4.6: Quantitative results of At Home
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(a) ICP: Rerror (b) ICP: terror (c) ICP: ψdi f f

(d) N-ICP: Rerror (e) N-ICP: terror (f) ICP: ψdi f f

(g) TrICP: Rerror (h) TrICP: terror (i) ICP: ψdi f f

(j) LM-ICP: Rerror (k) LM-ICP: terror (l) ICP: ψdi f f

Figure 4.7: Quantitative results of Study Room
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(a) ICP: Rerror (b) ICP: terror (c) ICP: ψdi f f

(d) N-ICP: Rerror (e) N-ICP: terror (f) ICP: ψdi f f

(g) TrICP: Rerror (h) TrICP: terror (i) ICP: ψdi f f

(j) LM-ICP: Rerror (k) LM-ICP: terror (l) ICP: ψdi f f

Figure 4.8: Quantitative results of Maryland Hotel 1
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Remark 4.1: DfVb and RwSVS connotation

• DfVb stands for Descriptor-free Voting-based.

• RwSVS stands for Registration with Supervoxel Segmentation.

4.3.4 Comparative study

Comparative experiments setup

Since the proposed voting-based approach can vary in the core registration algorithm, and
to obtain CRA-specific results we divide this approach into four variants denoted as DfVb:
ICP, DfVb: N-ICP, DfVb: TrICP, and DfVb: LM-ICP. Additionally we also added to the
comparative study the method introduced in Chapter 2 denoted as RwSVS.

Although all registration methods introduced in Section 4.1.2 are SoTA that we could
have included in this comparative study, we excluded the approach by Prokop et al.[57] since
it requires exhaustive data-specific parameter tuning more difficult to set that the parameters
of this work’s approaches. Besides, most of the employed datasets do not follow their
assumptions and their publicly available code implementation is incomplete which does not
allow us to test it. The source code of the methods by Wu et al.[30] and Sun et al.[53] were
not publicly released and implementing them by ourselves could be the source of incorrect
results. Therefore, these two methods were not included in the comparison as well. The
voting-based method [12] from which we borrowed the binning procedure was also not taken
into consideration in the comparison because of its extremely long processing time. Last
but not least, we do not include to the comparison the deep learning-based method [59, 60]
because of their high demand on computational resources and training data.

Considering the before mentioned limitations, we carried out the comparative study
only between the four variants of the voting-based method (DfVb), the registration with
Supervoxel Segmentation RwSVS, HMRF-ICP, and a Global Registration (GlbReg) pipeline.
The parameters of HMRF-ICP were set as described by the authors, and to represent DfVb
variants in a general manner we use the median values of each core registration variant with
all different combinations of (Nb, Nr). As for the GlbReg pipeline, it consists of computing
the Scale Invariant Feature Transform (SIFT) key points [62], their corresponding FPFH
descriptors, and estimating the transformation matrix via RANSAC. Its specific parameters
for each dataset are in Table 4.2.

As mentioned in Section 4.3.1 only the initial position of the target 3D point clouds
from 3DLoMatch were modified to be aligned to the global reference frame. No additional
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Table 4.2: Parameters utilized for Global Registration

Dataset Parameter Value Dataset Parameter Value

Armadillo

Rn 5

Stairs

Rn 20
RFPFH 30 RFPFH 50
SIFTminscale 0.001 SIFTminscale 0.1
SIFTmin contrast 0.0005 SIFTmin contrast 0.005
RANSACiterations 1,000,000 RANSACiterations 1,000,000

Bunny

Rn 20

At Home

Rn 20
RFPFH 40 RFPFH 50
SIFTmin scale 0.001 SIFTmin scale 0.1
SIFTmin contrast 0.0005 SIFTmin contrast 0.005
RANSACiterations 1,000,000 RANSACiterations 1,000,000

Dragon

Rn 20

Study Room

Rn 20
RFPFH 40 RFPFH 50
SIFTmin scale 0.001 SIFTmin scale 0.1
SIFTmin contrast 0.0005 SIFTmin contrast 0.005
RANSACiterations 1,000,000 RANSACiterations 1,000,000

H. Buddha

Rn 15

M. Hotel 1

Rn 20
RFPFH 30 RFPFH 50
SIFTmin scale 0.001 SIFTmin scale 0.1
SIFTmin contrast 0.0005 SIFTmin contrast 0.005
RANSACiterations 1,000,000 RANSACiterations 1,000,000

rotation or translation were pre-applied to the other datasets. Hence, their initial positions are
the original rotation and translation differences in reference to the local frame of the target Q
as the global frame.

Comparative results

Figure 4.9 comprehends the quantitative comparison in Rerror, terror, ψdi f f , and process-
ing time between all the evaluated approaches. In these charts each series represents a
method, the horizontal axes correspond to the datasets, and the vertical axes to the evaluation
measures in logarithmic scale. Depicting P in red and Q in blue, Figure 4.10 shows ground-
truth alignment and Figures 4.9 to 4.14 show the corresponding qualitative results of the
approaches.

By analyzing Figure 4.9(a), one can tell that HMRF-ICP drastically outperforms in the
rotation estimation for Armadillo with Rerror = 0◦ and Dragon with Rerror ≈ 0.01◦. However,
as shown in the translation error comparative of Figure 4.9(b), and ψdi f f comparative of
Figure 4.9(c) it is not better than any of DfVb variants in terms of terror and compares
equally in ψdi f f . Still, the improved translation does not describe substantial differences
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between both methods in these datasets (cf. Armadillo and Dragon in Figure 4.11(c) and
Figure 4.13(c)). Moreover, HMRF-ICP does not perform well for the rotation in Bunny and
Happy Buddha, for the translation in Stairs, and for all metrics in At Home, Study Room, and
Maryland Hotel 1.

In Stairs RwSVS performs the best with a significantly better terror ≈ 0.01 m (10 mm). In
the model-type datasets RwSVS achieves good alignments but converges to a local minima
alignment in Bunny due to the large spherical surfaces on the front chest of this model
(cf. Figure 4.12(e)). Furthermore, the datasets from 3DLoMatch also turned out to be
challenging for this method as it also fails to obtain good alignments for these, but performs
better than the other methods in Study Room (cf. Figure 4.12(g)), with a Rerror ≈ 0.12◦, and
a ψdi f f ≈ 10−5.

As expected, GlbReg is the only evaluated method that fails in almost all datasets. It
outperforms the proposed methods DfVb and RwSVS only in Armadillo (cf. Figure 4.14(a)),
with a Rerror ≈ 0.01◦ and ψdi f f < 10−4. However, it is also in Armadillo that all the evaluated
methods obtain a good solution, which suggests that this dataset is not necessarily challenging
despite having a low overlap. It is important to remark that better results could be obtained
with different parameters for GlbReg, but it would require exhaustive trial-and-error tests that
may not deliver significant improvements. As shown in the previous ablation study DfVb
also requires of parameter tuning to deliver the best possible results, but, unlike GlbReg, the
ruling parameters are easier to interpret as these are independent from the scale or size.

Although quantitative results of DfVb variants are the median values, it is clear that
DfVb can estimate nearly optimal Ts in all model-type datasets. Particularly, DfVb: N-ICP
generally performs best as these have more detailed shapes that help to take advantage of
the point normals. Nonetheless, it does not occur in Stairs because the dataset has many
non-dense and large plane surfaces that can incorrectly align when divided into subsets.
Furthermore and in general, DfVb fails in all scene type datasets, as clearly shown in Figure
4.11 and indicated by high Rerror between 1◦ and 10◦, terror > 10m, and ψdi f f > 10−4 in the
quantitative results of Figure 4.9.

Regarding the processing time, is clearly shown in Figure 4.9(d) that DfVb and RwSVS
are significantly slower than HMRF-ICP and GlbReg. In one hand, RwSVS takes from 100 to
1,000 seconds to converge in the model-type datasets and from 1,000 to 100,000 seconds, or
about 16 minutes to 28 hours, in scene type datasets; DfVb variants take a median processing
time between 1,000 and 10,000 seconds, or about 16 minutes to 3 hours in all datasets. In
the latter case, DfVb converges faster to a solution in the datasets from 3DLoMatch than in
the model-type datasets, but it is result of the down-sampling. On the other hand HMRF-ICP
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(a) Rerror comparative (b) terror comparative

(c) ψdi f f comparative (d) Processing time comparative

Figure 4.9: Comparative study quantitative results

and GlbReg are equally fast in most cases, converging to a solution within 1 and 1,000

seconds in all tested datasets.

The time complexity of DfVb, O
((

Rmax
seed −Rmin

seed

) ·SSP log(Nr)
)
, or in theory a log-

linear time complexity O(n logn), reveals the reason for its sub-optimal processing time

performance even with down-sampled 3D point clouds. In practice, its time complexity is

ruled by the size of the input 3D point clouds, since it fixes the range of values for Rseed from

a maximum Rmax
seed to a minimum Rmin

seed . Thus, the bigger are the point clouds, the longer the

processing time will be (noticeable in the scene type datasets). Additionally, the number

of rotations Nr also directly influences the bottleneck of the method, as more rotations to

consider means more transformations to process. For its part, RwSVS’s time complexity

O
((

Rmax
seed −Rmin

seed

) ·SSP ·SSQ
)
, in theory O(n), is significantly simpler but, in practice still

depends on the size of the input 3D point clouds.
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(a) Arm (b) Bun (c) Dra (d) HaB

(e) Str (f) AtH (g) StdR (h) MrH

Figure 4.10: Ground-truth alignments

(a) Arm (b) Bun (c) Dra (d) HaB

(e) Str (f) AtH (g) StdR (h) MrH

Figure 4.11: DfVb qualitative results
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(a) Arm (b) Bun (c) Dra (d) HaB

(e) Str (f) AtH (g) StdR (h) MrH

Figure 4.12: RwSVS qualitative results

(a) Arm (b) Bun (c) Dra (d) HaB

(e) Str (f) AtH (g) StdR (h) MrH

Figure 4.13: HMRF-ICP qualitative results
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(a) Arm (b) Bun (c) Dra (d) HaB

(e) Str (f) AtH (g) StdR (h) MrH

Figure 4.14: GlbReg qualitative results

4.4 Usage guideline

This section establishes a guideline to adopt the proposed descriptor-free voting-based

registration approach as the results of the ablation study do not present a clear pattern for an

exemplary parameter configuration. The recommendations are the following:

1. Choose the algorithm for the core registration based on the shape of the 3D point

clouds. However, N-ICP and LM-ICP are generally good starting points.

2. Set 30 ≤ Nb ≤ 60 and Nr ≥ 16 to achieve the best possible alignment, as these tend to

perform good with any CRA as core registration.

3. To define the number of rotations Nr, consider the end application in which the methods

is utilized as this parameter directly affects the processing time.

4. This registration method is more suitable for offline applications to process model-type

datasets.
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4.5 Conclusion

We conducted an ablation and comparative study to attempt to understand the behavior of
the proposed voting-based registration approach under its ruling parameters, as well as a
comparative study to evaluate its performance against the first approach proposed in this
work, an SoTA method, and a Global Registration pipeline.

The ablation study comprehended an extensive experimentation that showcased the
behavior broadly. Although its results did not clearly define the fittest parameter configuration,
these allowed us to define recommendations about how to set up the parameters and use the
approach to obtain the best possible results.

Results from the comparative study showed that the proposed approaches achieve better
results than a Global Registration pipeline and similar results to HMRF-ICP in model-type
datasets. Nevertheless, the voting-based approach might not be adequate for applications that
utilize large datasets from environments or require real-time performance.

Moreover, the datasets from 3DLoMatch showed to be truly challenging for all the
evaluated methods, but we should have in mind that these were down-sampled through
voxel down-sampling which alters the density of the point clouds and organizes the points
evenly in the 3D space. In DfVb and RwSVS down sampling affects SVS and the inlier
threshold that defines the correspondences C - increasing the likelihood to retrieve false
positive transformations. Which tells us that RwSVS and DfVb are sensitive to the point
density.



Chapter 5

Evaluation of Euler angles in
voting-based registration

The present chapter comprehends a parallel registration approach based on the proposed
voting-based approach but that replaces the representation of the rotation for the Euler angles,
which was introduced in "An Evaluation of Order of Significance of Euler Angles in Voting-
based Registration of 3D Point Clouds" in Proceedings of the 49th Annual Conference of the
Institute of Image Electronics Engineers of Japan.

5.1 Background and related theory

5.1.1 Motivation to replace the rotation representation

As described in Section 3.2.1, the proposed voting-based approach utilizes the quaternion
as the rotation representation to map into the parameter space, reducing the number of
parameters only for the rotation from nine to four. The quaternion representation is widely
employed in 3D not only because it has a smaller computational footprint, but also because it
allows to freely rotate an object in the 3D space without having to worry about a phenomenon
known as gimbal lock. It means loosing one degree of freedom in the 3D space when the two
of three axes are positioned into a parallel configuration, locking into rotating in a 2D space.

Nevertheless, the quaternion representation is difficult to understand when trying to
comprehend the effects of a rotation on an object. Thus, when the main objective is to
observe the effects of specific rotations simpler and straightforward representation are
preferred, such as the Euler angles (EA). Under the proposed voting-based registration
method, replacing the quaternion by the EA not only allows us to clearly understand and
visualize the transformation that takes place to align the 3D point clouds correctly, but
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also reduce the dimension of the accumulator from seven to six. This is because the a
rotation represented by the EA is composed by only three parameters, three rotation angles
around the primary axes (θx, θy, θz). Hence, we can use a six-dimensional transformation
vector representation T6D =

{
θx, θy, θz, tx, ty, tz

}
along with a smaller accumulator A(T6D).

However, the order in which the EA are applied has an effect on the final positioning.
Considering this possible modification to the proposed voting-based method, the question to
answer is:

• What is the effect of using the Euler angles in a voting-based registration approach?

5.1.2 Rotation factorization

The EA, as mentioned before, represent angles to rotate about the corresponding axis. These
individual rotations about the coordinate axes are

R(θx) =

1 0 0
0 cosθx −sinθx

0 sinθx cosθx


R(θy) =

 cosθy 0 sinθy

0 1 0
−sinθy 0 cosθy


R(θz) =

cosθz −sinθz 0
sinθz cosθz 0

0 0 1



. 5.1

Where θx/θy/θz > 0 indicate counterclockwise rotations in their correspondent zero-leveled
planes.

A rotation R can be factorized as the product of rotations about the coordinates axes, and
it is possible to retrieve the rotation angles from it considering the factoring order. There are
six factoring orders: XYZ, XZY, YXZ, YZX, ZXY, and ZYX. If, for example, we want the
factoring order XY Z, it means that the rotation is composed by R = Rx (θx)Ry (θy)Rz (θz).
Therefore, by setting the following notation ca = cosθa, sa = sinθa, and

R =

r00 r01 r02

r10 r11 r12

r20 r21 r22

 , 5.2
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along with the individual rotations we can formally define the different factoring orders of R
and estimate the EA [63].

XYZ factoring order

R(θx)R(θy)R(θz) =

r00 r01 r02

r10 r11 r12

r20 r21 r22

=

 cycz −cycz sy

czsxsy + cxsz cxcz − sxsysz −cysx

−cxczsy + sxsz czsx + cxsysz cxcy

 5.3

The most straightforward equivalence is r02 = sy, then θy = arcsin(r02) and the three cases
to consider to retrieve the EA are:

1. When θy ∈
(
−π

2 ,
π

2

)
, then cy ̸= 0 and cy (sx, cx) = (−r12, r22).

∴ θx = arctan
(
−r12

r22

)
, θy = arcsin(r02) , θz = arctan

(
−r01

r00

)
. 5.4

2. When θy =
π

2 , then sy = 1, cy = 0 and[
r10 r11

r20 r21

]
=

[
czsx + cxsz cxcz − sxsz

−cxcz + sxsz czsx + cxsz

]
=

[
sin(θz +θx) cos(θz +θx)

−cos(θz +θx) sin(θz +θx)

]
. 5.5

There is only one degree of freedom and the factorization is not unique.

∴ θy =
π

2
, θz +θx = arctan

(
r10

r11

)
. 5.6

3. When θy =−π

2 , then sy =−1, cy = 0 and[
r10 r11

r20 r21

]
=

[
−czsx + cxsz cxcz + sxsz

cxcz + sxsz czsx − cxsz

]
=

[
sin(θz −θx) cos(θz −θx)

cos(θz −θx) −sin(θz −θx)

]
. 5.7

There is only one degree of freedom and factorization is not unique.

∴ θy =−π

2
, θz −θx = arctan

(
r10

r11

)
. 5.8

XZY factoring order

R(θx)R(θz)R(θy) =

r00 r01 r02

r10 r11 r12

r20 r21 r22

=

 cycz −sz czsy

sxsy + cxcysz cxcz −cysx + cxsysz

−cxsy + cysxsz czsx cxcy + sxsysz

 5.9
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The most straightforward equivalence is r01 = −sx, then θz = arcsin(−r01) and the three
cases to consider to retrieve the EA are:

1. When θz ∈
(
−π

2 ,
π

2

)
, then cz ̸= 0 and cz (sy, cy) = (r02, r00).

∴ θx = arctan
(

r21

r11

)
, θy = arctan

(
r01

r00

)
, θz = arcsin(−r01) . 5.10

2. When θz =
π

2 , then sz = 1, cz = 0 and[
r10 r12

r20 r22

]
=

[
sxsy + cxcy −cysx + cxsy

−cxsy + cysx cxcy + sxsy

]
=

[
cos(θy −θx) sin(θy −θx)

−sin(θy −θx) cos(θy −θx)

]
.

5.11
There is only one degree of freedom and the factorization is not unique.

∴ θz =
π

2
, θy −θx = arctan

(
−r20

r22

)
. 5.12

3. When θz =−π

2 , then sz =−1, cz = 0 and[
r10 r12

r20 r22

]
=

[
sxsy − cxcy −cysx − cxsy

−cxsy − cysx cxcy − sxsy

]
=

[
−cos(θy +θx) −sin(θy +θx)

−sin(θy +θx) cos(θy +θx)

]
.

5.13
There is only one degree of freedom and the factorization is not unique.

∴ θz =−π

2
, θy +θx = arctan

(
−r20

r22

)
. 5.14

YXZ factoring order

R(θy)R(θx)R(θz) =

r00 r01 r02

r10 r11 r12

r20 r21 r22

=

 cycz + sxsysz czsxsy − cysz cxsy

cxsz cxcz −sx

−czsy + cysxsz cyczsx + sysz cxcy

 5.15

The most straightforward equivalence is r12 = −sx, then θx = arcsin(−r12) and the three
cases to consider to retrieve the EA are:

1. When θx ∈
(
−π

2 ,
π

2

)
, then cx ̸= 0 and cx (sy, cy) = (r02, r22).

∴ θx = arcsin(−r12) , θy = arctan
(

r02

r22

)
, θz = arctan

(
r10

r11

)
. 5.16
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2. When θx =
π

2 , then sx = 1, cx = 0 and[
r00 r01

r20 r21

]
=

[
cycz + sysz czsy − cysz

−czsy + cysz cycz + sysz

]
=

[
cos(θz −θy) −sin(θz −θy)

sin(θz −θy) cos(θz −θy)

]
. 5.17

There is only one degree of freedom and the factorization is not unique.

∴ θx =
π

2
, θz −θy = arctan

(
−r01

r00

)
. 5.18

3. When θx =−π

2 , then sx =−1, cx = 0 and[
r00 r01

r20 r21

]
=

[
cycz − sysz −czsy − cysz

−czsy − cysz −cycz + sysz

]
=

[
cos(θz +θy) −sin(θz +θy)

−sin(θz +θy) −cos(θz +θy)

]
.

5.19
There is only one degree of freedom and the factorization is not unique.

∴ θx =−π

2
, θz +θy = arctan

(
−r01

r00

)
. 5.20

YZX factoring order

R(θy)R(θz)R(θx) =

r00 r01 r02

r10 r11 r12

r20 r21 r22

=

 cycz sxsy − cxcysz cxsy + cysxsz

sz cxcz −czsx

−czsy cysx + cxsysz cxcy − sxsysz

 5.21

The most straightforward equivalence is r10 = sz, then θz = arcsin(r10) and the three cases
to consider to retrieve the EA are:

1. When θz ∈
(
−π

2 ,
π

2

)
, then cz ̸= 0 and cz (sx, cx) = (−r12, r00).

∴ θx = arctan
(
−r12

r11

)
, θy = arctan

(
−r20

r00

)
, θz = arcsin(r10) . 5.22

2. When θz =
π

2 , then sz = 1, cz = 0 and[
r01 r02

r21 r22

]
=

[
sxsy − cxcy cxsy + cysx

cysx + cxsy cxcy − sxsy

]
=

[
−cos(θx +θy) sin(θx +θy)

sin(θx +θy) cos(θx +θy)

]
. 5.23
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There is only one degree of freedom and the factorization is not unique.

∴ θz =
π

2
, θx +θy = arctan

(
r21

r22

)
. 5.24

3. When θz =−π

2 , then sz =−1, cz = 0 and[
r01 r02

r21 r22

]
=

[
sxsy + cxcy cxsy − cysx

cysx − cxsy cxcy + sxsy

]
=

[
cos(θx −θy) −sin(θx −θy)

sin(θx −θy) cos(θx −θy)

]
. 5.25

There is only one degree of freedom and the factorization is not unique.

∴ θz =−π

2
, θx −θy = arctan

(
r21

r22

)
. 5.26

ZXY factoring order

R(θz)R(θx)R(θy) =

r00 r01 r02

r10 r11 r12

r20 r21 r22

=

cycz − sxsysz −cxsz czsy + cysxsz

czsxsy + cysz cxcz −cyczsx + sysz

−cxsy sx cxcy

 5.27

The most straightforward equivalence is r21 = sx, then θx = arcsin(r21) and the three cases
to consider to retrieve the EA are:

1. When θx ∈
(
−π

2 ,
π

2

)
, then cx ̸= 0 and cx (sy, cy) = (−r20, r22).

∴ θx = arcsin(r21) , θy = arctan
(
−r20

r22

)
, θz = arctan

(
−r01

r11

)
. 5.28

2. When θx =
π

2 , then sx = 1, cz = 0 and[
r00 r02

r10 r12

]
=

[
cysz − sycz czsy + cysz

czsy + cysz −cycz + sysz

]
=

[
cos(θy +θz) sin(θy +θz)

sin(θy +θz) −cos(θy +θz)

]
. 5.29

There is only one degree of freedom and the factorization is not unique.

∴ θx =
π

2
, θy +θz = arctan

(
r02

r00

)
. 5.30
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3. When θx =−π

2 , then sx =−1, cx = 0 and[
r00 r02

r10 r12

]
=

[
cysx + sycz czsy − cysz

−czsy + cysx cycz + sysz

]
=

[
cos(θy −θz) sin(θy −θz)

−sin(θy −θz) cos(θy −θz)

]
. 5.31

There is only one degree of freedom and the factorization is not unique.

∴ θx =−π

2
, θy −θz = arctan

(
r02

r00

)
. 5.32

ZYX factoring order

R(θz)R(θy)R(θx) =

r00 r01 r02

r10 r11 r12

r20 r21 r22

=

cycz czsxsy − cxsz cxczsy + sxsz

cysz cxcz + sxsysz −czsx + cxsysz

−sy cysx cxcy

 5.33

The most straightforward equivalence is r20 = −sy, then θy = arcsin(−r20) and the three
cases to consider to retrieve the EA are:

1. When θy ∈
(
−π

2 ,
π

2

)
, then cy ̸= 0 and cy (sx, cx) = (r21, r22).

∴ θx = arctan
(

r21

r22

)
, θy = arcsin(−r20) , θz = arctan

(
r10

r00

)
. 5.34

2. When θy =
π

2 , then sy = 1, cy = 0 and[
r01 r02

r11 r12

]
=

[
czsx − cxsz cxcz + sxsz

cxcz + sxsz −czsx + cxsz

]
=

[
sin(θx −θz) cos(θx −θz)

cos(θx −θz) −sin(θx −θz)

]
. 5.35

There is only one degree of freedom and the factorization is not unique.

∴ θy =
π

2
, θx −θz = arctan

(
−r12

r11

)
. 5.36

3. When θy =−π

2 , then sy =−1, cy = 0 and[
r01 r02

r11 r12

]
=

[
−czsx − cxsz −cxcz + sxsz

cxcz − sxsz −czsx − cxsz

]
=

[
−sin(θx +θz) −cos(θx +θz)

cos(θx +θz) −sin(θx +θz)

]
.

5.37
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There is only one degree of freedom and the factorization is not unique.

∴ θy =−π

2
, θx +θz = arctan

(
−r12

r11

)
. 5.38

5.2 Modifications to the methods

The main modification necessary to make the voting-based methods to work with the EA
consist of, first, computing the EA based on the chosen factoring order, and form along with
the translation vector t a six-dimensional transformation vector T6D. Next, T6D is evaluated
by the descriptive metric in Equation 3.1 but following the chosen factoring order when
applying T6D to P. The rest of the process keeps the same as in the original approach but
considering the factoring order also when binning into the accumulator A(T6D), and limiting
the EA within the range [−π, π] when creating a new bin bi.

5.3 Experimental evaluation

5.3.1 Implementation and datasets

This alternative version of the voting-based methods adds one more parameter to the ruling
parameters (i.e., Nb, Nr and core registration algorithm), the EA’s factorization order (cf.
Section 5.1.2). Since the main goal is to evaluate the effect of the EA representation in the
proposed approach, we performed experiments using the six factorization orders, with a
couple of configurations that are reliable in the original approach, Nb = 90, Nr = 32 with all
four CRAs. For the datasets and metrics, we utilized the model datasets as in the original
approach, along with the evaluation of Rerror, terror and ψdi f f between the ground-truth and
resulting alignments.

5.3.2 Results and discussion

Qualitative results are shown in Tables 5.1 to 5.4, depicting in red the source P, in blue the
target Q, and the overlap or correspondences C in black. Quantitative results are outlined in
the charts of Figure 5.1, the vertical axis corresponds to evaluation metrics in logarithmic
scale and the horizontal axis to the factorization orders. By looking at ψdi f f , in most cases
(85 out of 96) the obtained transformation Tb produces an alignment very close to the optimal
solution with a difference to the ground-truth in the range of

(
10−6, 10−4).
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In the eleven cases resulting in misalignment, there is a clear pattern at the factorization
orders XYZ and ZYX, specially in the Bunny dataset. In this particular case, the correspond-
ing qualitative results in Table 5.2 do not show an evident misalignment with TrICP as core
registration with order XYZ. However, quantitative results on Rerror and ψdi f f (cf. Figures
5.1(d) and (f)) indicate that compared to the other orders, the alignment is slightly worse
with ψdi f f > 10−5. In this case Rerror does not seem to be a better indicative compared to
ψdi f f , but rather a complement as it follows a similar pattern with order XYZ and ZYX.

The reason behind the misalignment only on orders XYZ and ZYX is related to the
necessary rotation to align the datasets. In reality, the biggest difference between the original
positions on all datasets is in the rotation around the vertical y-axis. Therefore, the orders
that apply θy first are leading to the most significant required rotation at the beginning of
the full alignment, and then apply less significant rotations from θx and θz. This happens
the other way around in the opposite case. On the other hand, XYZ and ZYX first apply a
less significant rotation, then attempt to amend it with the most significant one but worsen
the complete alignment with the third and also less significant rotation. This phenomena
is clearer in datasets with large primitive-like surfaces (i.e., spheres, planes, cylinders) that
are prone to drift, such as Bunny which has many round sphere-like surfaces. In the other
datasets, the XYZ and ZYX pattern is not as prominent, but these two factoring orders are
where the eleven cases of misalignment come from.

5.4 Conclusion

We investigated the influence of the Euler angles on a voting-based registration methods for
low overlapping 3D point clouds. Results indicate that this rotation representation can be
adopted and still obtain significantly good alignments, but also that, as expected, the angles’
factoring order has a significant impact. Showing that the factoring order has to be chosen
depending on the largest rotation difference between the original positions of the 3D point
clouds. Being necessary to choose an order that does not apply the most significant rotation
secondly in the sequence. Furthermore, observations on the quantitative and qualitative
results indicate that none of the chosen metrics individually best describes a good alignment.
Rather, the judgment should be based on a joint indication between all metrics.
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(a) Armadillo: Rerror (b) Armadillo: terror (c) Armadillo: ψdi f f

(d) Bunny: Rerror (e) Bunny: terror (f) Bunny: ψdi f f

(g) Dragon: Rerror (h) Dragon: terror (i) Dragon: ψdi f f

(j) Happy Buddha: Rerror (k) Happy Buddha: terror (l) Happy Buddha: ψdi f f

Figure 5.1: Quantitative results of (Nb = 90, Nr = 32, CRA) on different factoring orders
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Table 5.1: Qualitative results between factoring orders in Armadillo
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Table 5.2: Qualitative results between factoring orders in Bunny
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Table 5.3: Qualitative results between factoring orders in Dragon
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Table 5.4: Qualitative results between factoring orders in Happy Buddha
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Chapter 6

Overlapping limits

This chapter evaluates the overlapping limitations of the registration methods proposed in
this work. The contents are an extension that complements the analysis and understanding of
these registration methods for low overlapping 3D point clouds.

6.1 Background

Both registration approaches presented in this work were conceived with a focus on low
overlapping 3D point clouds, being tested on 3D point clouds with overlapping ratios ranging
from 15% to nearly 50% (cf. Table 4.2), and resulting in solutions close to the global optimal
in model type datasets. As shown in Chapter 4, the proposed registration methods are
not optimal for large 3D point clouds from scene-type datasets, mainly due to their time
complexity and low success rate on these datasets. Nevertheless, their success on model-type
datasets raises the question:

• Up to what percentage of overlapping ratio the proposed approaches are successful?

6.2 Experimental evaluation

To answer the previous question, one would like to see how the approaches perform in terms
of Rerror, terror, and ψdi f f as the overlapping ratio ψ smoothly transitions from a high to
a low percentage, making noticeable the points where the methods fail. Nonetheless, the
original datasets of the used model type 3D point clouds do not provide a smooth transition
of overlapping ratio (i.e., the 3D point clouds in the complete dataset transition in larger steps,
for example, from 100% to 75%, to 50%, to 25%). Therefore, we made our sets of 3D point
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Figure 6.1: Top and isometric views of simulated scan 3D point clouds of the Bunny model

clouds from the Armadillo, Bunny, Dragon, and Happy Buddha with smooth overlapping
ratio transitions.

6.2.1 Datasets acquisition and preparation

The Kinect 3D sensor simulation from the BlenSor [64] package was utilized to create a
series of 3D point clouds which partial overlap that gradually increases/decreases. Each
original full model mesh reconstruction of Armadillo, Bunny, Dragon, and Happy Buddha
provided in the 3D Stanford Repository was imported into BlenSor, gradually rotated around
their vertical axis in steps of 15◦ from 0◦ to 180◦, and scanned in every step with a sensor
resolution of 640×480 pixels. This resulted in thirteen 3D point clouds for each model, as
shown in the example of Figure 6.1, where the 3D point clouds are depicted in red and the
original model in gray.

6.2.2 Experimental setup

The experimental setup consisted in running both proposed methods setting the 3D point
clouds at 0◦ as the target Q and the scans from 0◦ to 180◦ as the source P while evaluating
Rerror, terror, and ψdi f f . For the second approach, its four variants were evaluated on the
parameter configuration (Nb = 30, Nr = 32), which generally performs good according to
the usage guideline of Section 4.4. Furthermore, once again, no initial rotation or translation
was applied to the 3D point clouds before registration. As for the utilized hardware and
software, these experiments were carried out in the same ones specified in Section 2.3.1.

6.2.3 Results and discussion

The charts in Figure 6.2 show the obtained results from RwSVS, where the horizontal axes
correspond to the gradually decreasing overlapping ratio between 3D point cloud pairs, the
vertical axes to the evaluation metrics in logarithmic scale, and each series to a dataset.
Similarly, Figures 6.3 to 6.6 show the results from each variant of DfVb.
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(a) Rerror (b) terror (c) ψdi f f

Figure 6.2: Overlapping limit evaluation of RwSVS

(a) Rerror (b) terror (c) ψdi f f

Figure 6.3: Overlapping limit evaluation of DfVb: ICP

(a) Rerror (b) terror (c) ψdi f f

Figure 6.4: Overlapping limit evaluation of DfVb: N-ICP
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(a) Rerror (b) terror (c) ψdi f f

Figure 6.5: Overlapping limit evaluation of DfVb: TrICP

(a) Rerror (b) terror (c) ψdi f f

Figure 6.6: Overlapping limit evaluation of DfVb: LM-ICP

Figure 6.2(c) clearly depicts how RwSVS tends to perform worse as the overlapping

ratio decreases in all datasets, which is clearer in Armadillo and Happy Buddha. Bunny
and Dragon follow a similar tendency but the results are worse compared to the other two

models. As shown in Figure 6.2(a) the tendency to decrease the quality of the alignment

as ξ decreases is clearer with Rerror, ranging from about 0.1◦ to less than 10◦ in all partial

overlaps. In terms of terror, RwSVS also shows a tendency to deteriorate as ξ decreases.

In overall, there is a slight pattern in all datasets of decreasing the quality of the solution

from 90% to 50% overlap, improving after 50% up to 30%, and decreasing the quality again

from 30% to 5%. Therefore, one can say that for the utilized datasets the overlapping limits

of RwSVS are [50%, 30%]. Furthermore, despite having ξgt = 100%, RwSVS shows some

error in all the metrics because the solution transformation derives from the alignment of

subsets, which can present rotation or translation drift. However, these errors are insignificant

due to their low values.

On the other hand, all variants of DfVb show a more steady behavior as ξ decreases,

but the same tendency of worse results as there is less overlap between the 3D point clouds.

However, it is only noticeable in the Rerror and ψdi f f results as terror does not change along
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(a) Simulated (b) Real

Figure 6.7: Comparison between simulated scan and real scan 3D point clouds

with the overlapping ratio. The tendency in ψdi f f results does not help to find the overlapping
ratio limits. But, as mentioned in the preliminary conclusion in Section 4.5 it is better to
judge the quality of a solution based on all three metrics. Despite it, by judging the quality
of the solution on the Rerror in Figures 6.3(a), 6.5(a), one can tell that DfVb: ICP, DfVb:
TrICP, and DfVb: LM-ICP variants tend to gradually perform worse from 90% to 50%.
Then, between 50% to 20% the results improve and worsen below this point. The latter
behavior tells us that the overlapping limits of these variants are [50%, 20%]. As for DfVb:
N-ICP, the Rerror results in Figure 6.4(a) follow a less prominent tendency of improvement
at [45%, 30%].

Comparing the results on terror from both approaches, the most noticeable thing is the
behavior difference. Meanwhile, RwSVS depicts a pattern similar to Rerror and ψdi f f , terror

in DfVb remains the same along with the different overlapping ratios. This is an effect of the
differences in where the transformations are retrieved from and the mechanism employed
to find the solution. In the first method, the transformations derive from the alignment of
individual subsets, which translations may differ from the translation of the global solution
and present drifts. Meanwhile, in the second method the transformations are retrieved from
the alignment of subsets with full 3D point clouds and then binned into a Hough space. It is
because of the voting mechanism that the different translations get normalized and show a
steady behavior along with the change of overlapping ratio.

Additionally, results also show that the changing points that indicate the overlapping
limits are not very prominent. It may be caused by the smooth overlapping transitions
achieved by the simulated scan datasets. But also, because as shown in Figure 6.7 these
datasets have rougher surfaces, fewer points, and noise at the borders. Simulated scan 3D
point clouds are rougher due to some voxel-like artifacts that add more descriptiveness to
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Figure 6.8: Drifted alignment ot two smooth round surfaces

Figure 6.9: Non-drifted alignment ot two non-smooth round surfaces

surfaces that are very smooth in the real scan data, like in the chest of Bunny. This helps
to avoid drifted alignments that could arise from subsets of featureless round surfaces and
differentiate better small rotational differences when registering these, as shown in Figures
6.7 and 6.9.

6.3 Conclusion

The registration approaches proposed in this work showed success in overlapping ratios
between 50% down to 30% or 20%, depending on the method or variant. It tells us that
because the approaches were conceived to work on low overlapping ratios (ξ ≤ 40%), it is
around these ratios that can perform well on model-type datasets from simulated 3D sensors.
In addition, experimental results reinforce that to judge the quality of an alignment given
by any transformation, it should be based on the analysis of the values obtained by all three
evaluation metrics.



Chapter 7

Conclusion and open problems

In this work, we introduced our research on leveraging subset segmentation for the pairwise
registration of 3D point clouds under low overlapping conditions. Unlike traditional and
newer approaches, we proposed two methods that do not make direct point-to-point corre-
spondences to retrieve a solution transformation. Instead, these replace the points for point
subsets as the focus of attention, indirectly adding the neighbor interaction information to the
subsets and inheriting semi-local shape features that can be paired with the ideal conditions
of conventional registration algorithms to find a close to optimal alignment.

The first proposed methods can successfully retrieve transformations close to the opti-
mal alignment for 3D point clouds with low overlapping ratios through a straightforward
optimization multi-scale process with a linear time complexity dictated by the size of the
input 3D point clouds. The second method automates the definition of the multi-scale pro-
cess parameters and replaces the maximization optimization for a Hough voting scheme.
The latter casts votes for transformations from subset alignments that minimize the error
between putative point correspondences and maximize the overlapping ratio. It also results
in alignments close to the global optima but only in model-type datasets and log-linear
time complexity. As the latter approach allows a wide range of parameter configurations,
we demonstrated its performance and behavior in a significantly large range of parameters,
establishing a usage guideline for any end-user to obtain the best possible results without
much effort.

Additionally, we included a parallel version of the second approach, which replaces the
rotation representation in the parameter space for the Euler angles, showing that it can also
obtain alignments close to the global optima in model-type datasets. However, in this case,
the angles’ factorization order is added as a parameter that must be chosen based on the
most significant rotational difference between the initial positions of the 3D point clouds.
Lastly, we evaluate both methods using 3D point clouds from simulated sensors on a smooth
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transition from high to low overlap to investigate their overlap limits and find the range where
these succeed – confirming that their working range is in the low overlap category.

In summary, we have shown and proved the potential and limitations of addressing the
registration of low overlapping 3D point clouds via subset-focused approaches. Nevertheless,
although for model-type datasets, we have obtained good results in terms of quality of
alignments based on the employed evaluation metrics, the proposed methods are not faultless,
and we recognize several open problems:

• The first proposed method uses FPFH point descriptors to set a degree of similarity
between point subsets. However, it only employs a somewhat binary threshold to judge
if a pair of subsets are geometrically related or not. A better approach could be to
define a weighted degree of similarity, where only point subsets with a "high weight"
are justified to be locally registered. Notwithstanding, we still have to consider that
point descriptors such as FPFH can still lead to false positives due to the differences
in point densities in low overlapping conditions. Hence, it needs a robust local point
description against point densities for better results or a fast and robust matching
technique like the one proposed by Ref. [65] based on Robust Optimal Transport.

• We think the descriptive metric ψ introduced in Chapter 3 deserves to be studied
more deeply. Preliminary conclusions point out that we cannot base the judgment of
the correctness of a transformation solely on its difference from the ground-truth but
consider the errors in rotation and translation. By studying its behavior under different
shapes of 3D point clouds and point densities and determining the optimal value for its
parameter λ , we could potentially make it more robust and improve its descriptiveness.
Then, spread its usage to describe good transformations in the registration problem
since there is no quantitative rule to describe a good transformation.

• The first obvious problem in the proposed voting-based approach is the lack of consis-
tent behavior in different parameter values. We believe that the main reason behind it is
the lack of a robust definition of true overlapping points that form the correspondences
C. Both methods utilize a radius search nearest-neighbor as the base to define them,
which is affected by the initial positions. Therefore, when the voting-based method
attempts to improve the initial positions by adding more rotations, we also add more
possibilities of obtaining false-positive transformations. In order to solve this issue,
we need some robust point descriptions to guarantee to align the subsets where they
should, no matter what the initial positions are. Furthermore, it could also be helpful
to reduce the processing time of both methods and discriminate subset better.
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• The biggest drawback of the proposed methods is their unpractical time complexity.
One of the reasons we did not compare both methods to more sophisticated Deep
Learning-based approaches like Ref.[59, 60] was that the time complexity did not allow
us to obtain results fast enough to freely test on larger datasets and evaluations with
widely adopted metrics such as Registration Recall. We could say that the brute force
search of both approaches is their biggest flaw. We think that adopting the proposed
subset division concept and pairing it with robust feature descriptors and novel search
techniques such as GORE [66] and TEASER [67] could drastically reduce the solution
search space and deliver faster and more accurate results.

• Regarding processing datasets other than model-type, only the first method showed
capabilities to find adequate solutions for laser scan datasets, but at the cost of long
processing times. 3DLoMatch, a new dataset of indoor scene-type 3D point clouds
tailored explicitly for the low overlap problem, proved to be a challenge for both
methods. Nonetheless, these were down-sampled to reduce the processing time,
affecting the cloud resolution and consequently the construction of the subsets by
supervoxel segmentation and the inlier threshold that determines the correspondences C
– potentially increasing the likelihood of retrieving many false-positive transformations.
It indicates that both methods are sensitive to the point densities and that voxel down-
sampling is not an adequate solution to reduce the processing time when registering
large-scale 3D point clouds with the proposed methods.

• Lastly, we acknowledge that because the core registration in both methods is a conven-
tional algorithm, these may have inherited the conventional algorithms’ weak points.
Hence, being weak against 3D point clouds whose original positions are significantly
far away in terms of translation. It could also add to the poor performance on the
point clouds from 3DLoMatch since these are significantly far away from each other at
their original positions compared to the other datasets. Hence, both methods can be
classified as local registration algorithms, and more work must be done to match up
with other state-of-the-art methods such as Ref.[59, 60].
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