Doctoral Dissertation (Shinshu University)

The Hessian matrices of generating polynomials associated to graphs and matroids

September 2022

Akiko Yazawa
Department of Science and Technology; Graduate School of Medicine, Science and Technology; Shinshu University

Introduction

We say that a sequence $a_{0}, a_{1}, \ldots, a_{n}$ of real numbers is unimodal, log-concave, and symmetric if

- $a_{0} \leq a_{1} \leq \cdots \leq a_{m} \geq \cdots \geq a_{n}$ for some $0 \leq m \leq n$,
- $a_{i}^{2} \geq a_{i-1} a_{i+1}$ for all $1 \leq i \leq n-1$,
- $a_{i}=a_{n-i}$ for all $0 \leq i \leq n$,
respectively. The log-concavity of a sequence is a stronger property than the unimodality of a sequence. We sometimes find that an important sequence coming from combinatorial objects is unimodal and symmetric. The sequence

$$
\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}
$$

of binomial coefficients is a prototypical example. By direct calculation, we can show that the sequence is unimodal and symmetric. The sequence of binomial coefficients also comes from a combinatorial objects: The Boolean lattice $B(n)$ on n elements is the poset of all subsets of n elements ordered by inclusion. The Boolean lattice is a ranked poset, whose the k th rank $B_{k}(n)$ consists of all subsets with k elements. Hence the cardinality of $B_{k}(n)$ is $\binom{n}{k}$. The sequence of binomial coefficients is realized as the rank sequence of $B(n)$, i.e., the sequence

$$
\# B_{0}(n), \# B_{1}(n), \ldots, \# B_{n}(n)
$$

of the cardinalities of each rank of the Boolean lattice $B(n)$, a combinatorial object.

We often find that such an important sequence coming from combinatorial objects also comes from algebraic objects. In the case of the prototypical example, the sequence of binomial coefficients also comes from an algebraic objects: The algebra $A=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$ is a graded algebra. The k th homogeneous components A_{k} of A is spanned by square-free monomials in k elements. Hence the dimension $h_{k}(A)$ of A_{k} is $\binom{n}{k}$. The sequence of binomial coefficients is realized as the sequence

$$
h_{0}(A), h_{1}(A), \ldots, h_{n}(A)
$$

of the dimensions of each homogeneous components of the algebra A.

Table 1. Bases and dimensions of $H^{\bullet}(X)$

homogeneous spaces	bases	dimensions
$H^{0}(X)$	1	$\binom{n}{0}$
$H^{2}(X)$	$x_{1}, x_{2}, \ldots, x_{n}$	$\binom{n}{1}$
$H^{4}(X)$	$x_{1} x_{2}, \ldots, x_{1} x_{n}, x_{2} x_{3}, \ldots$	$\binom{n}{2}$
\vdots	\vdots	\vdots
$H^{2 n-2}(X)$	$x_{1} \cdots x_{n-1}, x_{1} \cdots x_{n-2} x_{n}, \ldots, x_{2} \cdots x_{n}$	$\binom{n}{n-1}$
$H^{2 n}(X)$	$x_{1} \cdots x_{n}$	$\binom{n}{n}$

To show that a sequence coming from algebraic objects is unimodal and symmetric, techniques from algebraic geometry is useful. In particular, the hard Lefschetz theorem is often useful. Let us recall the hard Lefschetz theorem. Let X be a compact Kähler manifold of dimension d with Kähler form ω, and $H^{\bullet}(X)$ the cohomology ring. The following is known as the hard Lefschetz theorem.

Theorem 1. The linear map $\times \omega^{d-k}: H^{k}(X) \rightarrow H^{2 d-k}(X)$ is bijective for $k=1,2, \ldots, d$.

For the compact Kähler manifold X of dimension d, we have the sequence

$$
\operatorname{dim} H^{0}(X), \operatorname{dim} H^{2}(X), \ldots, \operatorname{dim} H^{2 d}(X)
$$

of the dimensions of even parts of $H^{\bullet}(X)$. The bijectiveties of the linear maps $\times \omega^{d-k}$ obtained by the hard Lefschetz theorem imply

- $\operatorname{dim} H^{0}(X) \leq \operatorname{dim} H^{2}(X) \leq \cdots \leq H^{2 d^{\prime}}(X)$,
- $\operatorname{dim} H^{2 d}(X) \leq \operatorname{dim} H^{2 d-2}(X) \leq \cdots \leq H^{2 d^{\prime}}(X)$,
- $\operatorname{dim} H^{k}(X)=\operatorname{dim} H^{2 d-k}(X)$ for all k,
where d^{\prime} is $\left\lfloor\frac{d}{2}\right\rfloor$. In other words, the hard Lefschetz theorem induces the unimodality and symmetricity of the sequence. In the case of the prototypical example, the hard Lefschetz theorem is also useful to show the unimodality and symmetricity of the sequence. Let us see how to apply the hard Lefschetz theorem to the sequence of the binomial coefficients. Let X be the products $\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}$ of n projective lines. Then, it is known that

$$
\begin{aligned}
H^{\bullet}(X) & =H^{\bullet}\left(\mathbb{P}^{1} \times \cdots \times \mathbb{P}^{1}\right) \\
& \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}, \ldots, x_{n}^{2}\right),
\end{aligned}
$$

where $x_{i} \in H^{2}\left(\mathbb{P}^{1}\right)$. Since square-free monomials in x_{1}, \ldots, x_{n} span $H^{\bullet}(X)$, the dimension $\operatorname{dim} H^{2 k}(X)$ is $\binom{n}{k}$. See Table 1. By the hard Lefschetz theorem, we obtain the unimodality and symmetricity of the sequence of binomial coefficients.

Besides the prototypical example, there are unimodal and symmetric sequences showed from the hard Lefschetz theorem. Let us see some other examples.

The poset of the Weyl group ordered by the Bruhat order has the unimodal and symmetric rank sequence. Let W be the Weyl group of a complex semisimple algebraic group G. The Weyl group is a ranked poset by the Bruhat oreder. We consider the rank seuquence of the poset. Let X be the flag variety of W, i.e., the algebraic variety of the quotient group of a complex semisimple algebraic group G by a Borel subgroup. A basis for $H^{\bullet}(X)$ indexed by the Weyl group W is known. Since the dimension $H^{2 k(X)}$ is the number of elements in k th rank of the Weyl group, by the hard Lefschetz theorem, we obtain the unimodality and symmetricity of the rank sequence of the poset. Moreover, in this case, since the structure of the poset W is compatible with the ring structure of $H^{\bullet}(X)$, the bijectivity of $\times \omega^{d-k}$ for some element ω implies the bijection between k th rank and $d-k$ th rank of the Weyl group such that each elements is comparable with the corresponding element. Hence there exist δ chains such that their union is w, where δ is the maximum of the rank sequence. Generally, for a ranked poset P with the rank sequence $r_{0}, r_{1}, \ldots, r_{n}$, it is known that

$$
\max \{\# A \mid A \text { is an antichain of } P\}
$$

is equal to the minimum $d(P)$ of numbers m such that there exists m chains whose union is P. Since each rank is an antichain, we have $\max \left\{r_{0}, r_{1}, \ldots, r_{n}\right\} \leq d(P)$. We say that a ranked poset P has the Sperner property if $d(P)=\max \left\{r_{0}, r_{1}, \ldots, r_{n}\right\}$. Moreover, for k, we say that P satisfies the property S_{k} if

$$
\begin{aligned}
& \max \left\{\#\left(A_{1} \cup \cdots \cup A_{k}\right) \mid A_{i} \text { is an antichain of } P\right\} \\
& \quad=\max \left\{r_{i_{1}}+\cdots+r_{i_{k}} \mid 0 \leq i_{1}<\cdots<i_{k} \leq n\right\} .
\end{aligned}
$$

In [22], Stanley applies the hard Lefschetz theorem to obtain the following.

Theorem 2. The poset of the Weyl group defined by the Bruhat order satisfies the property S_{k} for all k, and the rank sequence is unimodal and symmetric.

The next example is a sequence coming from the face poset of a polytope. Let \mathcal{P} be a d-dimensional polytope, and $f_{i}(\mathcal{P})$ the number of faces of dimension $i-1$, where $f_{0}(\mathcal{P})=1$. The face poset, i.e., the poset of all faces of \mathcal{P} ordered by inclusion, is a ranked poset with the rank sequence $f_{0}(\mathcal{P}), f_{1}(\mathcal{P}), \ldots, f_{d}(\mathcal{P})$. In this case, we consider not the rank sequence but the sequence

$$
h_{0}(\mathcal{P}), h_{1}(\mathcal{P}), \ldots, h_{d}(\mathcal{P})
$$

defined from the rank sequence as follows:

$$
h_{i}(\mathcal{P})=\sum_{j=0}^{i}\binom{d-j}{d-i}(-1)^{i-j} f_{j}(\mathcal{P}) .
$$

We can also define $h_{i}(\mathcal{P})$ by the following equation for the generating functions:

$$
\sum_{i=0}^{d} h_{i}(\mathcal{P}) x^{d-i}=\sum_{i=0}^{d} f_{i}(\mathcal{P})(x-1)^{d-i}
$$

In [21], it is shown that if \mathcal{P} is a simplicial convex polytope, then $\left(h_{0}(\mathcal{P}), h_{1}(\mathcal{P}), \ldots, h_{d}(\mathcal{P})\right)$ is unimodal and symmetric. To show it, the hard Lefschetz theorem is used. Let X be a toric variety defined by a simplicial convex polytope \mathcal{P}. It is shown that we have a basis for $H^{\bullet}(X)$ indexed by faces of \mathcal{P}. By the hard Lefschetz theorem, we obtain the unimodality and symmetricity of the sequence when \mathcal{P} is a simplicial convex polytope. In [6], it is shown that if $\left(h_{0}(\mathcal{P}), h_{1}(\mathcal{P}), \ldots, h_{d}(\mathcal{P})\right)$ is unimodal and symmetric, then \mathcal{P} is a simplicial convex polytope. It is shown in a combinatorial way. To summarize, we obtain the following, known as g-theorem.

Theorem 3. The sequence $\left(h_{i}(\mathcal{P})\right)_{i}$ is unimodal and symmetric if and only if \mathcal{P} is a simplicial convex polytope.

The next example is the rank sequence of a vector space lattice. For a vector space V over a finite field, the vector space lattice $\mathcal{L}(V)$ is the poset of all subspaces of V ordered by inclusion. The vector space lattice $\mathcal{L}(V)$ is a ranked poset, whose the k th rank $\mathcal{L}_{k}(V)$ consists of all k-dimensional subspaces of V. We consider the rank sequence of the vector space lattice. In this case, we do not consider the hard Lefschetz theorem for a cohomology ring but consider the strong Lefschetz property for a graded ring, a ring theoretical abstraction of the hard Lefschetz theorem. For a graded ring $A=\bigoplus_{k}^{d} A_{k}$, we say that A has the strong Lefschetz property if there exist $L \in A_{1}$ such that the linear map $\times L^{d-2 k}: A_{k} \rightarrow A_{d-k}$ is bijective for $k=1,2, \ldots,\left\lfloor\frac{d}{2}\right\rfloor$. For a graded ring $A=\bigoplus_{k}^{d} A_{k}$ with the strong Lefschetz property, we have the sequence

$$
\operatorname{dim} A_{0}, \operatorname{dim} A_{1}, \ldots, \operatorname{dim} A_{d}
$$

of the dimensions. The bijectiveties of the linear maps $\times L^{d-2 k}$ obtained by the strong Lefschetz property imply

- $\operatorname{dim} A_{0} \leq \operatorname{dim} A_{1} \leq \cdots \leq A_{d^{\prime}}$,
- $\operatorname{dim} A_{d} \leq \operatorname{dim} A_{d-1} \leq \cdots \leq A_{d^{\prime}}$,
- $\operatorname{dim} A_{k}=\operatorname{dim} A_{d-k}$ for all k,
where $d^{\prime}=\left\lfloor\frac{d}{2}\right\rfloor$. In other words, the strong Lefschetz property induces the unimodality and symmetricity of the sequence. The unimodality
and symmetricity can be shown by using the strong Lefschetz property in the same way as the hard Lefschetz theorem. Note that in the hard Lefschetz theorem, we need a manifold or a variety and their cohomology ring. In the strong Lefschetz property, we do not need to consider any manifolds or varieties but we have to show that the ring has the strong Lefschetz property. Now we return to the rank sequence of the vector space lattice of V. We associate a vector v with the variable x_{v}, and consider

$$
F=\sum_{B \in \mathcal{B}} \prod_{v \in B} x_{v}
$$

where \mathcal{B} is the set of all bases for V. Let $A=\mathbb{K}\left[x_{v} \mid v \in V\right] / \operatorname{Ann}(F)$, where $\operatorname{Ann}(F)$ is the annihilator ideal generated by the polynomials that annihilate F as the partial differential operators. In [13], it is shown that we have a basis for the graded algebra A indexed by subspaces of the vector space V, and that A has the strong Lefschetz property. Hence, we have the following.

Theorem 4. The rank sequence of a vector space lattice is unimodal and symmetric.

A matroid is a combinatorial generalization of the concept of the independency of a vector space. For a matroid M on the ground set E, we can define a flat of a subset of E which is analogue of a space generated by some vectors, an independent set which is analogue of a linearly independent set of vectors, a basis for a matroid which is analogue of the basis for a vector space, and so on. The lattice of flats of a matroid M ordered by inclusion is called a geometric lattice. A vector space lattice is a special case of the geometric lattices. We try to generalize the method in the case of a vector space lattice to geometric lattice. For a matroid M on E, we can define F_{M} and A_{M} similarly to the case of a vector space lattice as follows:

$$
\begin{aligned}
F_{M} & =\sum_{B \in \mathcal{B}} \prod_{v \in B} x_{v}, \\
A_{M} & =\mathbb{K}\left[x_{e} \mid e \in E\right] / \operatorname{Ann}\left(F_{M}\right) .
\end{aligned}
$$

In [13], for a geometric lattice \mathcal{L}_{M} defined by a matroid M, it is shown that \mathcal{L}_{M} is modular if and only if we have a basis for A_{M} indexed by \mathcal{L}_{M}. Moreover, it is also shown that A_{M} has the strong Lefschetz property for a modular geometric lattice \mathcal{L}_{M}.
Theorem 5. The rank sequence of a modular geometric lattice is unimodal and symmetric.

If a geometric lattice \mathcal{L}_{M} is not modular, then the rank sequence is no longer symmetric. On the other hand, A_{M} has the symmetric sequence $\operatorname{dim} A_{0}, \operatorname{dim} A_{1}, \ldots, \operatorname{dim} A_{r}$. Thus, if \mathcal{L}_{M} is not modular, then A_{M} does not have a basis indexed by \mathcal{L}_{M}. Hence, the strong Lefschetz
property for A_{M} does not imply the unimodality nor symmetricity for the rank sequence of \mathcal{L}_{M} when \mathcal{L}_{M} is not modular. From algebraic interest, however, it remains the problem whether A_{M} has the strong Lefschetz property. The following is conjectured in [13].

Conjecture 6. For any matroid M, the algebra A_{M} has the strong Lefschetz property.

The poset $I(M)$ of independent sets of a matroid M ordered by inclusion is a ranked poset. Note that $I(M)$ is not a lattice while the poset \mathcal{L}_{M} of flats is a lattice. We consider the rank sequence of $I(M)$. The rank sequence is log-concave. In particular, the sequence is unimodal. This was known as Mason and Welsh conjecture, and was proved recently. This is shown in $[1,2,3,7,8]$. In $[1,2,3]$, Anari, Gharan, and Vinzant use the theory of log-concave polynomials. In $[7,8]$, Brändén and Huh use the hard Lefschetz theorem and the theory of Lorentzian polynomials.

Theorem 7. The rank sequence of $I(M)$ for a matroid M is logconcave.

To show that a sequence is unimodal and symmetric, there are various ways: the hard Lefschetz theorem, the strong Lefschetz property, log-concavity, and Lorentzian polynomials. In any cases, we can find the Hessian matrix

$$
H_{F}=\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} F\right)_{1 \leq i, j \leq n}
$$

or its analogue in each theory. We illustrate them below.
First, we see the Hessian matrix appearing in the theory of the \log-concavity. Recall that a sequence $a_{0}, a_{1}, \ldots, a_{n}$ is log-concave if $a_{i} \geq a_{i-1} a_{i+1}$ for $1 \leq i \leq n-1$. For a log-concave sequence $a_{0}, a_{1}, \ldots, a_{n}$ of positive numbers, we have

$$
\log a_{i} \geq \frac{\log a_{i-1}+\log a_{i+1}}{2}
$$

Hence, the function which maps $i \in\{0,1, \ldots, n\}$ to $\log a_{i} \in \mathbb{R}$ is concave. We generalize the log-concavity of a sequence to a polynomial function in multi variables. Let $F \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be a homogeneous polynomial of degree d. We say that F is \log-concave at \boldsymbol{a} if $\log F$ is concave at \boldsymbol{a}, and that F is strictly log-concave at \boldsymbol{a} if $\log F$ is strictly concave at \boldsymbol{a}. A Lorentzian polynomial is a stronger property of a log-concave polynomial. We say that F is Lorentzian if

$$
\left(\frac{\partial}{\partial x_{1}}\right)^{k_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{k_{n}} F
$$

is identically zero or log-concave at \boldsymbol{a} for any $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ with $\sum_{i=1}^{n} k_{i} \leq \operatorname{deg} F-2$. Recall that for a polynomial ϕ, the log-concavity
of ϕ is equivalent to the negetive definiteness of the Hessian matrix H_{ϕ}. Hence,

$$
\begin{aligned}
\left(H_{\log F}\right)_{i j} & =\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} \log F \\
& =\frac{\partial}{\partial x_{i}}\left(\frac{1}{F} \frac{\partial F}{\partial x_{j}}\right) \\
& =\frac{1}{F^{2}}\left(\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} F-\frac{\partial F}{\partial x_{i}} \frac{\partial F}{\partial x_{j}}\right) \\
& =-\frac{1}{F^{2}}\left(-F H_{F}+(\nabla F)(\nabla F)^{\top}\right),
\end{aligned}
$$

where ∇F is the gradient vector of F. The log-concavity tells us the signature of the Hessian matrix. To show it, we note the Cauchy's interlacing theorem: Let A be a real symmetric matrix of size $n \times n$ and $v \in \mathbb{R}$. Let $B=A+v v^{\top}$. Let $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$ and $\beta_{1} \geq$ $\beta_{2} \geq \cdots \geq \beta_{n}$ be the eigenvalues of A and B, respectively. Then we have $\alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \cdots \geq \beta_{n}$. If we take A and v as $-F H_{F}$ and ∇F, respectively, then we have the following.
Theorem 8. For a homogeneous polynomial F of degree d in n variables. Let $\boldsymbol{a} \in \mathbb{R}^{n}$ satisfies $F(\boldsymbol{a})>0$.
(1) If F is log-concave at \boldsymbol{a}, then $\left.H_{F}\right|_{x=a}$ has at most one positive eigenvalue.
(2) If F is strictly log-concave at \boldsymbol{a}, then $\left.H_{F}\right|_{\boldsymbol{x}=\boldsymbol{a}}$ has exactly $n-1$ negative eigenvalues and exactly one positive eigenvalue.
Next, we see an analogue of the Hessian matrices appearing in the theory of the strong Lefschetz property. Let $F \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be a homogeneous polynomial of degree d. We define A_{F} to be

$$
\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / \operatorname{Ann}(F) .
$$

It is known that A_{F} is a graded Artinian Gorenstein algebra, i.e., a Poincaré duality algebra with $\operatorname{dim} A_{k}<\infty$ for all k. Once we have some compact Kähler manifold such that the cohomology ring is isomorphic to A_{F}, the hard Lefschetz theorem implies the strong Lefschetz property for A_{F}. In general, for the algebra A_{F}, there might not exist such manifolds. Hence, we have to show the strong Lefschetz property for A_{F} by another method. We have a method using an analogue of the Hessian matrix to show the strong Lefschetz property. Let A_{k} be the homogeneous spaces of A_{F}, and Λ_{k} a basis for A_{k}. We define the matrix $H_{F}^{(k)}$ by

$$
H_{F}^{(k)}=\left(e_{i}\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) e_{j}\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) F\right)_{e_{i}, e_{j} \in \Lambda_{k}} .
$$

We call $H_{F}^{(k)}$ the k th Hessian matrix of F with respect to the basis Λ_{k}. If $\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for A_{1}, then the first Hessian matrix $H_{F}^{(1)}$ with
respect to the basis is a usual Hessian matrix H_{F}. The nondegeneracy of the Hessian matrices $H_{F}^{(k)}$ implies the strong Lefschetz property of A_{F}.
Theorem 9. The algebra A_{F} has the strong Lefschetz property if and only if $\operatorname{det} H_{F}^{(k)} \not \equiv 0$ for all k.

Through of this thesis, we consider the following polynomials:

- the generating functions F_{M} for basis,
- the generating functions P_{M} for independent sets,
- the generating functions \bar{P}_{M} for reduced independent sets for a matroid M. The goal of this thesis is to study the strictly logconcavity of them and the strong Lefschetz property for the graded Artinian Gorenstein algebra defined by them. We study the properties by considering the Hessian matrices of them. As an application, we show Conjecture 6 for some special case. This thesis is based on the papers $[\mathbf{1 6}, \mathbf{1 7}, \mathbf{2 5}, \mathbf{2 6}]$, and the results in $[\mathbf{1 6}, \mathbf{1 7}, \mathbf{2 5}, \mathbf{2 6}]$ are Theorems 10 to 22. We illustrate them below.

A matroid is a generalization of the concept of the independency of a vector space. A matroid defined by some vectors is called a vector matroid. A vector matroid is one of important classes of matroids. We also have another important class of matroids, defined from graphs. If we think cycles in a graph as dependent sets, then a graph has the structure of a matroid. A matroid defined from a graph Γ is called the graphic matroid $M(\Gamma)$ of the graph. An independent set of the graphic matroid $M(\Gamma)$ of a graph Γ corresponds to a tree, i.e., a subgraph without cycles, in the graph Γ. For a connected graph Γ, a basis for the graphic matroid $M(\Gamma)$ corresponds to a spanning tree. In $[\mathbf{1 7}, \mathbf{2 5}, \mathbf{2 6}]$, the authors consider the Kirchhoff polynomial F_{Γ}, i.e., the generating functions $F_{M(\Gamma)}$ for the graphic matroid $M(\Gamma)$. For simplicity, we call the Hessian matrix of the Kirchhoff polynomial of a graph the Hessian matrix of the graph. In the case of the complete graphs and complete bipartite graphs, we can calculate the exact values of the eigenvalues of the Hessian matrices of the graphs at $\boldsymbol{x}=(1,1, \ldots, 1)$, hence we have the signatures of the Hessian matrices of the graphs as Theorems 15 and 16. For any graph, we have the signature of the Hessian matrix on the positive orthant $\mathbb{R}_{>0}^{n}$ as Theorem 19.

To calculate the eigenvalues of the Hessian matrix of the complete graphs and complete bipartite graphs, we prepare formulas for the eigenvalues for some block matrix. If a cyclic group acts on a graph, then a matrix defined by the graph has a block decomposition such that each block is cyclic. The Hessian matrix of a graph has also such decomposition. In Theorems 10 to 12, as tools of calculation of the Hessian matrices of graphs, we give formulas for the determinants and the characteristic polynomials χ of three kinds of block matrices C, D and $M(A, \lambda, \boldsymbol{d})$. Let C be a block matrix of size $n l \times n l$ whose
blocks are cyclic matrices of size $n \times n$. Since each block is a cyclic matrix of the same size $n \times n$, we have the common eigenvectors $\boldsymbol{z}_{n, k}$ for $k=0,1, \ldots, n-1$. We obtain the matrices \bar{C}_{k} of size $l \times l$ from the block matrix C and eigenvectors $\boldsymbol{z}_{n . k}$ of cyclic matrices. We can reduce the calculation of the determinant and the characteristic polynomial for C to the calculation of ones for smaller matrix \bar{C}_{k} as Theorem 10 . See Chapter 4 for the details.
Theorem 10 (Theorem 4.1 in Chapter 4). Let $\left(w_{i}\right)_{1 \leq i \leq l} \in \mathbb{C}^{l}$ be an eigenvector of \bar{C}_{k} belonging to the eigenvalue λ. Then $\left(w_{i} \boldsymbol{z}_{n, k}\right)_{1 \leq i \leq l} \in$ $\mathbb{C}^{n l}$ is an eigenvector of C associated with λ. Hence

$$
\begin{aligned}
\chi_{C}(t) & =\prod_{k=0}^{n-1} \chi_{\bar{C}_{k}}(t), \\
\operatorname{det} C & =\prod_{k=0}^{n-1} \operatorname{det} \bar{C}_{k} .
\end{aligned}
$$

Let D be a block matrix $D=\left(D^{i j}\right)_{1 \leq i, j \leq l}$ such that $D^{i j}$ is a cyclic matrix of size $2 n \times 2 n$ for $1 \leq i, j \leq l-1, D^{l l}$ is a cyclic matrix of size $n \times n, D^{i l}$ is a vertical concatenation of a cyclic matrix of size $n \times n$ for $1 \leq i \leq l-1$, and $D^{l j}$ is a horizontal concatenation of a cyclic matrix of size $n \times n$ for $1 \leq j \leq l-1$. Similarly to the block matrix C, we can reduce the calculation of the determinant and the characteristic polynomial for D to the calculation of ones for smaller matrix \bar{D}_{k} obtained from the block matrix D and eigenvectors of each block as Theorem 11. See Chapter 4 for the details.
Theorem 11 (Theorem 4.2 in Chapter 4). The characteristic polynomial of D is

$$
\begin{aligned}
\chi_{D}(t) & =\left(\prod_{k: \text { even }} \chi_{\bar{D}_{k}}(t)\right)\left(\prod_{k: \text { odd }} \frac{1}{t} \chi_{\bar{D}_{k}}(t)\right) \\
& =\frac{1}{t^{n}} \prod_{k=0}^{2 n-1} \chi_{\bar{D}_{k}}(t) .
\end{aligned}
$$

Let A be a square matrix of size $l, \boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{l}\right)$, and $\lambda=$ $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$. Consider a block matrices $M(A, \lambda, \boldsymbol{d})$ defined by

$$
M(A, \lambda, \boldsymbol{d})=\left(a_{i j} J_{d_{i} d_{j}}\right)_{1 \leq i, j \leq l}+\operatorname{Diag}\left(\lambda_{1} I_{d_{1}}, \lambda_{2} I_{d_{2}}, \ldots, \lambda_{l} I_{d_{l}}\right),
$$

where $J_{m n}$ is the all one matrix of size $m \times n, I_{n}$ is the identity matrix of size $n \times n, \operatorname{Diag}\left(A_{1}, \ldots, A_{l}\right)$ is a block diagonal matrix with diagonal blocks A_{i}. In this case, we can reduce the calculation of the determinant and the characteristic polynomial for $M(A, \lambda, \boldsymbol{d})$ to the calculation of ones for smaller matrix $\bar{M}(A, \lambda, \boldsymbol{d})$ of size l defined by

$$
\bar{M}(A, \lambda, \boldsymbol{d})=\operatorname{diag}\left(d_{1}, \ldots, d_{l}\right) A+\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{l}\right),
$$

where $\operatorname{diag}\left(x_{1}, \ldots, x_{l}\right)$ is the diagonal matrix with entries x_{1}, \ldots, x_{l}. See Chapter 4 for the details.

Theorem 12 (Theorem 4.3 in Chapter 4). For a matrix A of size l, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ and $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{l}\right)$, we have

$$
\begin{aligned}
\chi_{M(A, \lambda, d)}(t) & =\chi_{\bar{M}(A, \lambda, d)}(t) \prod_{i=1}^{l}\left(t-\lambda_{i}\right)^{d_{i}-1} \\
\operatorname{det} M(A, \lambda, \boldsymbol{d}) & =\operatorname{det} \bar{M}(A, \lambda, \boldsymbol{d}) \prod_{i=1}^{l} \lambda_{i}^{d_{i}-1}
\end{aligned}
$$

The Hessian matrices of the graphs at $\boldsymbol{x}=(1,1, \ldots, 1)$ are matrices indexed by the edge sets of the graphs such that the entries depend on how to connect edges in the graphs. Consider the matrix $H=\left(h_{e e^{\prime}}\right)$ indexed by the edge set of the complete graph such that $h_{e e^{\prime}}=\alpha$ if $e=e^{\prime}, h_{e e^{\prime}}=\beta$ if e and e^{\prime} share one vertex, and $h_{e e^{\prime}}=\gamma$ if e and e^{\prime} do not share any vertices. Since the cyclic group of order n acts on the complete graph K_{n} with n vertices, the matrix H has a block decomposition with cyclic blocks. Thanks to Theorems 10 and 11, we can calculate the eigenvalues of the matrix H.

Theorem 13 (Theorem 4.4 in Chapter 4). The eigenvalues of H are

$$
\begin{aligned}
& \lambda_{1}=\alpha+(2 n-4) \beta+\frac{(n-2)(n-3)}{2} \gamma, \\
& \lambda_{2}=\alpha-2 \beta+\gamma, \\
& \lambda_{3}=\alpha+(n-4) \beta-(n-3) \gamma .
\end{aligned}
$$

The dimensions d_{λ} of the eigenspaces of H associate with the eigenvalues λ are

$$
d_{\lambda_{1}}=1, \quad d_{\lambda_{2}}=\binom{n}{2}-n, \quad d_{\lambda_{3}}=n-1 .
$$

Consider the matrix $H^{\prime}=\left(h_{e e^{\prime}}\right)$ indexed by the edge set of the complete bipartite graph $K_{X, Y}$ such that $h_{e e^{\prime}}=\alpha$ if $e=e^{\prime}, h_{e e^{\prime}}=\beta$ if e and e^{\prime} share one vertex in $X, h_{e e^{\prime}}=\gamma$ if e and e^{\prime} share one vertex in Y, and $h_{e e^{\prime}}=\delta$ if e and e^{\prime} do not share any vertices. Similarly to the case of the complete graphs, we can decompose the matrix into blocks by a group action. Thanks to Theorem 10, we can calculate the eigenvalues of the matrix H^{\prime}.

Theorem 14 (Theorem 4.5 in Chapter 4). The eigenvalues of H^{\prime} are

$$
\begin{aligned}
& \lambda_{1}=\alpha+(n-1) \beta+(m-1) \gamma+(m-1)(n-1) \delta, \\
& \lambda_{2}=\alpha+(n-1) \beta-\gamma-(n-1) \delta, \\
& \lambda_{3}=\alpha-\beta+(m-1) \gamma-(m-1) \delta, \\
& \lambda_{4}=\alpha-\beta-\gamma+\delta .
\end{aligned}
$$

The dimensions d_{λ} of the eigenspaces of H^{\prime} associate with the eigenvalues λ are

$$
d_{\lambda_{1}}=1, \quad d_{\lambda_{2}}=m-1, \quad d_{\lambda_{3}}=n-1, \quad d_{\lambda_{4}}=(m-1)(n-1) .
$$

The diagonal entries in the Hessian matrices $\left.H_{F_{\mathrm{T}}}\right|_{\boldsymbol{x}=(1,1, \ldots, 1)}$ are zero, and the $\left(e, e^{\prime}\right)$-entries are the numbers of spanning trees containing edges e and e^{\prime}. A formula to calculate the number of spanning trees from a matrix called the Laplacian matrix of the graph is known as the Matrix-Tree theorem. In the case of the complete graph K_{n}, the Hessian matrix is H for $\alpha=0, \beta=3 n^{n-4}$, and $\gamma=4 n^{n-4}$. Hence, we obtain the eigenvalues of the Hessian matrix of the complete graph by Theorem 13. Therefore, we have the signature of the Hessian matrix of the graph.

Theorem 15 (Corollary 5.5 in Chapter 5). The Hessian of the Kirchhoff polynomial of the complete graph K_{n} does not vanish for $n \geq 3$. Moreover, the matrix evaluated at $x_{e}=1$ for all e has exactly one positive eigenvalue.

In the case of the complete bipartite graphs $K_{X, Y}$ with $\# X=m$ and $\# Y=n$, the Hessian matrix is H^{\prime} for $\alpha=0, \beta=n(2 m+n-2)$, $\gamma=m(2 n+m-2)$, and $\delta=(m+n)(m+n-2)$. Hence, we obtain the eigenvalues of the Hessian matrix of the complete bipartite graph by Theorem 14. Therefore, we have the signature of the Hessian matrix of the graph.

Theorem 16 (Corollary 5.7 in Chapter 5). The Hessian of the Kirchhoff polynomial of the complete bipartite graph does not vanish for $\# X \geq 2$ and $\# Y \geq 2$. Moreover, the matrix evaluated at $x_{e}=1$ for all e has exactly one positive eigenvalue.

For the generating function $F_{K_{n}, k}$ for forests with k components in K_{n}, a generalization of the Kirchhoff polynomial of K_{n}, we can define the Hessian matrix of F similarly to the Hessian matrix of K_{n}. For the generating function $F_{K_{X, Y}, k}$ for forests with k components in $K_{X, Y}$, a generalization of the Kirchhoff polynomial of $K_{X, Y}$, we can define the Hessian matrix of F similarly to the Hessian matrix of $K_{X, Y}$. The $\left(e, e^{\prime}\right)$-entries of the Hessian matrix is the number of forests containing edges e and e^{\prime}. To calculate it by the Matrix-Tree theorem, Theorem 12 is used. Moreover in this case, we also calculate the eigenvalues the Hessian matrices by Theorems 13 and 14.

Theorem 17 (Theorem 5.4 in Chapter 5). Let $n \geq 3$ and $0<k \leq n-$ 2. The Hessian does not vanish. Moreover, the matrix $\left.H_{F_{K_{n}, k}}\right|_{x=(1,1, \ldots, 1)}$ has exactly one positive eigenvalue.

Theorem 18 (Theorem 5.6 in Chapter 5). Consider sets X and Y such that $X \cap Y=\emptyset, \# X \geq 2$ and $\# Y \geq 2$. For $0<k \leq \# X+\# Y-2$,
the Hessian does not vanish. Moreover, the matrix $\left.H_{F_{K_{X, Y}, k}}\right|_{\boldsymbol{x}=(1,1, \ldots, 1)}$ has exactly one positive eigenvalue.

For the Hessian matrices of the other graphs, it is difficult to calculate the eigenvalues of its Hessian. We have the following result. We can obtain Theorem 19 as a special case of Theorem 20. However, independently of Theorem 20, Theorem 19 is shown by theory of relative invariants of prehomogeneous vector spaces. See for Chapter 5.
Theorem 19 (Theorem 5.9 in Chapter 5). The Hessian of a graph does not vanish. Moreover, the matrix has exactly one positive eigenvalue.

In [16], the authors consider the polynomials F_{M}, P_{M}, and \bar{P}_{M} for a matroid M. The Kirchhoff polynomial of a graph is a basis generating polynomial for the graphic matroid of the graph. We consider the basis generating polynomials F_{M}, not only for graphic matroids, but also for all matroids M. We also consider the other two types of generating polynomials, called the independent set generating polynomials P_{M} and reduced independent set generating polynomials \bar{P}_{M}. Similarly to the case of the Kirchhoff polynomials, we have the following for the polynomials F_{M}, P_{M} and \bar{P}_{M}.
Theorem 20 (Theorem 6.1 in Chapter 6). Let M be a simple matroid on $[n]$ of rank $r \geq 2$. Then, we have
(1) The Hessian matrix of F_{M} evaluated $\boldsymbol{a} \in \mathbb{R}_{>0}^{n}$ has exactly one positive eigenvalue. Moreover, the Hessian does not vanish.
(2) The Hessian of P_{M} evaluated $(0, \boldsymbol{a}) \in\{0\} \times \mathbb{R}_{>0}^{n}$ is zero.
(3) If M is not a uniform matroid, then the Hessian matrix of \bar{P}_{M} evaluated $\boldsymbol{a} \in \mathbb{R}_{>0}^{n+1}$ has exactly one positive eigenvalue. Moreover, the Hessian does not vanish.

We apply Theorem 20 to theory of log-concavity and the strong Lefschetz property. By Theorem 20, we obtain that the polynomial F_{M} and \bar{P}_{M} is strictly log-concave on the positive orthant. To show Theorem 7 , the log-concavity of F_{M} and \bar{P}_{M} are shown in $[1,2,3,7,8]$. In [16], it is shown the strictness of the log-concavity of F_{M} and \bar{P}_{M} as follows.
Theorem 21 (Theorem 6.3 in Chapter 6). Let M be a simple matroid on $[n]$ of rank $r \geq 2$. Then, we have
(1) The polynomial F_{M} is strictly log-concave at $\boldsymbol{a} \in \mathbb{R}_{>0}^{n}$.
(2) If M is not a uniform matroid, then the polynomial \bar{P}_{M} is strictly log-concave at $\boldsymbol{a} \in \mathbb{R}_{>0}^{n+1}$.
By Theorem 20, we obtain algebraic properties for the graded Artinian Gorenstein algebras $A_{F_{M}}$ and $A_{\bar{P}_{M}}$ defined by F_{M} and \bar{P}_{M} as Theorem 22. In particular, $A_{F_{M}}$ and $A_{\bar{P}_{M}}^{M}$ have the strong Lefschetz property at degree one. By Theorem 22, Conjecture 6 holds for some special case.

Theorem 22 (Theorem 6.5 in Chapter 6). Let $L=a_{1} x_{1}+a_{2} x_{2}+$ $\cdots a_{n} x_{n}$ and $L^{\prime}=a_{0} x_{0}+L$, where $a_{i}>0$ for all i. For a simple matroid M on $[n]$ with rank $r \geq 2$, we have the following.
(1) $A_{F_{M}}$ has the strong Lefschetz property at degree one with Lefschetz element L, and $A_{F_{M}}$ satisfies the Hodge-Riemann relation at degree one with respect to L.
(2) $A_{P_{M}}$ does not satisfy the Hodge-Riemann relation at degree one with respect to L.
(3) If M is not uniform matroid, then $A_{\bar{P}_{M}}$ has the strong Lefschetz property at degree one with Lefschetz element L^{\prime}, and $A_{\bar{P}_{M}}$ satisfies the Hodge-Riemann relation at degree one with respect to L^{\prime}.

This thesis is organized as follows: In Chapter 1, we study the Hessian matrix relating to four topics, the log-concavity, the prehomogeneous vector spaces, the strong Lefschetz property, and the Lorentzian polynomials. In particular, we study the relation between the eigenvalues of the Hessian matrices and log-concavity, and study the form of Hessians for some functions, called the relative invariants, and study how the higher Hessians determine the strong Lefschetz property. Moreover we consider the Lorentzian polynomial, the Hodge-Riemann relation, and a relation between the strong Lefschetz property and them. In Chapter 2, first we recall definitions of graphs. We mainly study counting spanning trees or forests in a graph by using some matrices. Then, we study the generating polynomial for the spanning trees, called the Kirchhoff polynomial. In Chapter 3, first we recall definitions and example of matroids. We mainly study the generating polynomials for bases and independent sets of matroids, which are a generalization of the Kirchhoff polynomials. In Chapter 4, we study cyclic matrices, particularly, block cyclic matrices. We give formulas to calculate the eigenvalues, eigenvectors, and determinants. Moreover, we show the eigenvalues, eigenvectors, and determinants for several typical block cyclic matrices by using the formulas. Then, we calculate a block cyclic matrix arising from graphs. This section is based on the papers $[\mathbf{2 5}, \mathbf{2 6}]$. The details are omitted. See $[\mathbf{2 5}, \mathbf{2 6}]$ for the details. In Chapter 5, we calculate the Hessian matrices of generating polynomials for forests, that polynomials are a generalization of the Kirchhoff polynomials. We use the theory of graphs, log-concavity, and prehomogeneous vector spaces. This section is based on the papers $[\mathbf{1 7}, \mathbf{2 5}]$. The details are omitted. See $[\mathbf{1 7}, \mathbf{2 5}]$ for the details. In Chapter 6 , we study the Hessian matrices of the generating polynomials of matroids defined in Chapter 3, the strictly log-concavity of the generating polynomials, and graded Artinian Gorenstein algebras defined in Chapter 1. This section is based on the paper [16]. The details are omitted. See [16] for the details.

Acknowledgment. I am grateful to my supervisor, Professor Yasuhide Numata, for his kind advises and guidances. I am also grateful to Professor Satoshi Murai and Mr. Takahiro Nagaoka for many discussions and letting me know new things.

This work was partially supported by the Sasakawa Scientific Research Grant from The Japan Science Society.

Contents

Introduction 3
Chapter 1. Hessian matrices and higher Hessian matrices 19

1. Hessian matrices and log-concavity 19
2. Hessian matrices and prehomogeneous vector spaces 23
3. Higher Hessian matrices and the strong Lefschetz property 25
4. Hessian matrices and Lorentzian polynomials 28
Chapter 2. Graphs 33
5. Definitions 33
6. Counting spanning trees 36
7. Kirchhoff polynomials 38
Chapter 3. Matroids 41
8. Bases and independent sets 41
9. Classes of matroids 42
10. Generating polynomials 44
Chapter 4. Cyclic matrices 49
11. Block cyclic matrices 49
12. Block cyclic matrices arising from graphs 51
13. Proofs of Theorems 53
Chapter 5. Hessian matrices of graphs 59
14. Trees 60
15. Complete graphs 61
16. Complete bipartite graphs 62
17. The other graphs 63
Chapter 6. Hessian matrices and the strong Lefschetz property of matroids 67
18. Hessian matrices of matroids 67
19. The log-concavity of the generating polynomials for a matroid 69
20. The strong Lefschetz property of matroids 70
Bibliography 73

CHAPTER 1

Hessian matrices and higher Hessian matrices

As stated in Introduction, the goal of this thesis is to study the log-concavity of some polynomials and the strong Lefschetz property for the graded Artinian Gorenstein algebra defined by the polynomials by considering the Hessian matrices. In this chapter, we consider the Hessian matrices and their properties. Moreover, we consider the Hessian matrices and two more topics to use to study the log-concavity and the strong Lefschetz property.

Let us consider a homogeneous polynomial F of degree $r \geq 2$ in n variables with real coefficients. Let

$$
\nabla=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} \\
\vdots \\
\frac{\partial}{\partial x_{n}}
\end{array}\right), \quad \quad \nabla F=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} F \\
\vdots \\
\frac{\partial}{\partial x_{n}} F
\end{array}\right)
$$

and we define

$$
H_{F}=\nabla \nabla^{\top} F=\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} F\right)_{i, j}
$$

We call H_{F} and $\operatorname{det} H_{F}$ the Hessian matrix and Hessian of F, respectively.

In this chapter, we study Hessian matrices and higher Hessian matrices related to four topics. The polynomial $F=x_{1} x_{2} x_{3} x_{4}$ is an example through this chapter as Examples 1.6, 1.9, 1.17 and 1.21.

1. Hessian matrices and log-concavity

In this section, we study relations between Hessian matrices and log-concavity. Let

$$
G_{F}=(\nabla F)(\nabla F)^{\top}=\left(\frac{\partial F}{\partial x_{i}} \frac{\partial F}{\partial x_{j}}\right)_{i, j} .
$$

We say that F is log-concave at $\boldsymbol{a} \in \mathbb{R}^{n}$ if

$$
\left.\left(-F H_{F}+G_{F}\right)\right|_{x=a}
$$

is positive semidefinite. For an open convex set $X \subset \mathbb{R}^{n}$, we say that F is log-concave on X if F is log-concave for all $\boldsymbol{a} \in X$. We say that F is strictly log-concave at $\boldsymbol{a} \in \mathbb{R}^{n}$ if

$$
\left.\left(-F H_{F}+G_{F}\right)\right|_{x=a}
$$

is positive definite. For an open convex set $X \subset \mathbb{R}^{n}$, we say that F is strictly log-concave on X if F is strictly \log-concave for all $\boldsymbol{a} \in X$.
Remark 1.1. A polynomial F is \log-concave if and only if $\log F$ is concave. Hence, the original definition is the following: A polynomial F is log-concave if for $v, v^{\prime} \in \mathbb{R}_{\geq 0}^{n}$ and $\lambda \in[0,1]$, we have

$$
F\left(\lambda v+(1-\lambda) v^{\prime}\right) \geq F(v)^{\lambda} F\left(v^{\prime}\right)^{(1-\lambda)}
$$

A polynomial F is strictly log-concave if for $v, v^{\prime} \in \mathbb{R}_{\geq 0}^{n}$ and $\lambda \in(0,1)$, we have

$$
F\left(\lambda v+(1-\lambda) v^{\prime}\right)>F(v)^{\lambda} F\left(v^{\prime}\right)^{(1-\lambda)} .
$$

Recall that a polynomial (or a function) φ is concave if and only if the Hessian matrix H_{φ} of φ is negative semidefinite. Hence, a polynomial F is \log-concave if and only if $H_{\log F}$ is negative semidefinite. Indeed,

$$
\begin{aligned}
\left(H_{\log F}\right)_{i j} & =\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} \log F \\
& =\frac{\partial}{\partial x_{i}}\left(\frac{1}{F} \frac{\partial F}{\partial x_{j}}\right) \\
& =\frac{1}{F^{2}}\left(\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} F-\frac{\partial F}{\partial x_{i}} \frac{\partial F}{\partial x_{j}}\right) .
\end{aligned}
$$

Hence, if $F \neq 0$, then

$$
F^{2}\left(H_{\log _{F}}\right)=-\left(-F H_{F}+G_{F}\right) .
$$

Hence, the positive definiteness of $-F H_{F}+G_{F}$ means the negative definiteness of the Hessian matrix of $\log F$. Then so is the log-concavity of F.

One might think that the definition of the log-concavity of a polynomial F using the matrix $-F H_{F}+G_{F}$ is strange. The definition is useful to consider the signature of the Hessian matrix H_{F} of F by using, so-called, Cauchy's interlacing theorem. Roughly speaking,

Cauchy's interlacing theorem + log-concavity of F \Longrightarrow signature of H_{F}.

Proposition 1.2 (Cauchy's interlacing theorem [12]). Let $v \in \mathbb{R}^{n}$ be a column vector, and A a real symmetric square matrix of size n with eigenvalues $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$. Let $B=A+v v^{\top}$ with eigenvalues $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n}$. Then, we have

$$
\alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n} \geq \beta_{n} .
$$

By Cauchy's interlacing theorem, the log-concavity tells us the signature of the Hessian matrix.

Proposition 1.3. Let $\boldsymbol{a} \in \mathbb{R}^{n}$ satisfies $F(\boldsymbol{a})>0$.
(1) If F is log-concave at \boldsymbol{a}, then $\left.H_{F}\right|_{\boldsymbol{x}=\boldsymbol{a}}$ has at most one positive eigenvalue.
(2) If F is strictly log-concave at \boldsymbol{a}, then $\left.H_{F}\right|_{\boldsymbol{x}=\boldsymbol{a}}$ has exactly $n-1$ negative eigenvalues and exactly one positive eigenvalue.

We illustrate Proposition 1.3 with the polynomial $F=x_{1} x_{2} x_{3} x_{4}$.
Example 1.4. Let $F=x_{1} x_{2} x_{3} x_{4}$. Then, we have

$$
\begin{aligned}
H_{F} & =\left(\begin{array}{cccc}
0 & x_{3} x_{4} & x_{2} x_{4} & x_{2} x_{3} \\
x_{3} x_{4} & 0 & x_{1} x_{4} & x_{1} x_{3} \\
x_{2} x_{4} & x_{1} x_{4} & 0 & x_{1} x_{2} \\
x_{2} x_{3} & x_{1} x_{3} & x_{1} x_{2} & 0
\end{array}\right), \\
G_{F} & =\left(\begin{array}{cccc}
x_{2}^{2} x_{3}^{2} x_{4}^{2} & x_{1} x_{2} x_{3}^{2} x_{4}^{2} & x_{1} x_{2}^{2} x_{3} x_{4}^{2} & x_{1} x_{2}^{2} x_{3}^{2} x_{4} \\
x_{1} x_{2} x_{3}^{2} x_{4}^{2} & x_{1}^{2} x_{3}^{2} x_{4}^{2} & x_{1}^{2} x_{2} x_{3} x_{4}^{2} & x_{1}^{2} x_{2} x_{3}^{2} x_{4} \\
x_{1} x_{2}^{2} x_{3} x_{4}^{2} & x_{1}^{2} x_{2} x_{3} x_{4}^{2} & x_{1}^{2} x_{2}^{2} x_{4}^{2} & x_{1}^{2} x_{2}^{2} x_{3} x_{4} \\
x_{1} x_{2}^{2} x_{3}^{2} x_{4} & x_{1}^{2} x_{2} x_{3}^{2} x_{4} & x_{1}^{2} x_{2}^{2} x_{3} x_{4} & x_{1}^{2} x_{2}^{2} x_{3}^{2}
\end{array}\right) .
\end{aligned}
$$

Hence,

$$
-F H_{F}+G_{F}=\left(\begin{array}{cccc}
x_{2}^{2} x_{3}^{2} x_{4}^{2} & 0 & 0 & 0 \\
0 & x_{1}^{2} x_{3}^{2} x_{4}^{2} & 0 & 0 \\
0 & 0 & x_{1}^{2} x_{2}^{2} x_{4}^{2} & 0 \\
0 & 0 & 0 & x_{1}^{2} x_{2}^{2} x_{3}^{2}
\end{array}\right) .
$$

For $x_{i} \in \mathbb{R}$, the matrix $-F H_{F}+G_{F}$ is positive semi-definite. Hence, F is \log-concave on \mathbb{R}^{4}. If there exists i such that $x_{i}=0$, the monomial F is not strictly log-concave.

Let $x_{1}=x_{2}=0$ and $x_{3}=x_{4}=1$. Then

$$
\left.H_{F}\right|_{\boldsymbol{x}=(0,0,1,1)}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The eigenvalues are $1,0,0,-1$. We can verify that $F=x_{1} x_{2} x_{3} x_{4}$ is $\log -$ concave at $\boldsymbol{a}=(0,0,1,1)$, and $\left.H_{F}\right|_{\boldsymbol{x}=(0,0,1,1)}$ has at most one positive eigenvalue.

Let $\boldsymbol{a} \in \mathbb{R}_{>0}^{4}$. Then, the matrix $-F H_{F}+G_{F}$ is positive definite. Hence F is strictly log-concave at \boldsymbol{a}. For example, we consider the case where $\boldsymbol{a}=(1,1,1,1)$. Then

$$
\left.H_{F}\right|_{\boldsymbol{x}=(1,1,1,1)}=\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

The eigenvalues are $3,-1,-1,-1$. Moreover, it follows from the continuity of the determinants that $\left.H_{F}\right|_{\boldsymbol{x}=\boldsymbol{a}}$ for $\boldsymbol{a} \in \mathbb{R}_{>0}^{4}$ has exactly three negative eigenvalues and exactly one positive eigenvalue. We can verify
that $F=x_{1} x_{2} x_{3} x_{4}$ is strictly log-concave at $\boldsymbol{a} \in \mathbb{R}_{>0}^{4}$, and $\left.H_{F}\right|_{\boldsymbol{x}=\boldsymbol{a}}$ for $\boldsymbol{a} \in \mathbb{R}_{>0}^{4}$ has exactly one positive eigenvalue.

By Proposition 1.3, the log-concavity of F and the degeneracy of H_{F} imply the strictly log-concavity of F. Moreover, the calculation of $\operatorname{det}\left(-F H_{F}+G_{F}\right)$ reduces to calculation of $\operatorname{det} H_{F}$.

Proposition 1.5. For a homogeneous polynomial F of degree r in n variables, we have

$$
\operatorname{det}\left(-F H_{F}+G_{F}\right)=\frac{(-1)^{n-1}}{r-1} F^{n} \operatorname{det} H_{F} \text {. }
$$

The proof of Propositions 1.3 and 1.5 are in [17]. We illustrate Proposition 1.3 with the polynomial $F=x_{1} x_{2} x_{3} x_{4}$.

Example 1.6. Let $F=x_{1} x_{2} x_{3} x_{4}$. The degree r of F is 4 , and the number n of variables of F is 4 . Thus, it follows from Proposition 1.5 that

$$
\operatorname{det}\left(-F H_{F}+G_{F}\right)=-\frac{1}{3} F^{4} \operatorname{det} H_{F}
$$

In fact, we have

$$
\begin{aligned}
\operatorname{det}\left(-F H_{F}+G_{F}\right) & =\operatorname{det}\left(\begin{array}{cccc}
x_{2}^{2} x_{3}^{2} x_{4}^{2} & 0 & 0 & 0 \\
0 & x_{1}^{2} x_{3}^{2} x_{4}^{2} & 0 & 0 \\
0 & 0 & x_{1}^{2} x_{2}^{2} x_{4}^{2} & 0 \\
0 & 0 & 0 & x_{1}^{2} x_{2}^{2} x_{3}^{2}
\end{array}\right) \\
& =x_{1}^{6} x_{2}^{6} x_{3}^{6} x_{4}^{6} \\
& =F^{6} .
\end{aligned}
$$

On the other hand, let us calculate $\operatorname{det} H_{F}$. For $H_{F}=\left(h_{i j}\right)$ and $\sigma \in S_{4}$ such that $i=\sigma(i)$ for some i, we have

$$
\prod_{i=1}^{4} h_{i \sigma(i)}=0 .
$$

For $\sigma \in S_{4}$ such that $i \neq \sigma(i)$ for any i, we have

$$
\begin{aligned}
\prod_{i=1}^{4} h_{i \sigma(i)} & =\prod_{i=1}^{4} \frac{F}{x_{i} x_{\sigma(i)}} \\
& =\frac{\prod_{i=1}^{4} F}{\prod_{i=1}^{4} x_{i} \prod_{i=1}^{4} x_{\sigma(i)}} \\
& =\frac{F^{4}}{F \cdot F} \\
& =F^{2} .
\end{aligned}
$$

The permutations $[\sigma(1), \sigma(2), \sigma(3), \sigma(4)]$ such that $i \neq \sigma(i)$ for any i are the following:

$$
\begin{equation*}
[2,1,4,3],[3,4,1,2],[4,3,2,1] \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
[2,3,4,1],[2,4,1,3],[3,1,4,2],[3,4,2,1],[4,1,2,3],[4,3,1,2] . \tag{2}
\end{equation*}
$$

The signature of the permutations in (1) is 1 . The signature of the permutations in (2) is -1 . Hence, the Hessian det H_{F} is equal to $-3 F^{2}$. Therefore,

$$
-\frac{1}{3} F^{4} \operatorname{det} H_{F}=-\frac{1}{3} F^{4}\left(-3 F^{2}\right)=F^{6} .
$$

2. Hessian matrices and prehomogeneous vector spaces

In this section, for a special polynomial F called a relative invariant, we show the following identity

$$
\begin{equation*}
\operatorname{det} H_{F}=c^{\prime} F^{\frac{n(r-2)}{r}}, \tag{3}
\end{equation*}
$$

where c^{\prime} is non-zero. In other words, the Hessian of F can be realize as a power of F. To prove it, we recall the notion of prehomogeneous vector spaces developed by Kimura and Sato [20] and many authors.

Let G be a connected linear algebraic group over \mathbb{C}, V a finite dimensional vector space over \mathbb{C}, and ρ a \mathbb{C}-rational representation of G on V. We call the triplet (G, ρ, V) a prehomogeneous vector space with singular set S if S is a proper algebraic G-invariant subset of V and $V \backslash S$ is a single G-orbit. Let (G, ρ, V) be a prehomogeneous vector space. We say that (G, ρ, V) is irreducible if ρ is an irreducible representation. Let F be a rational function F from V to \mathbb{C}. A not identically zero function F is called a relative invariant (with respect to $\chi)$ of (G, ρ, V) if there exists a rational character $\chi \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ such that

$$
F(\rho(g) \boldsymbol{x})=\chi(g) F(\boldsymbol{x}) \quad(g \in G, \boldsymbol{x} \in V) .
$$

It is known that an irreducible prehomogeneous vector space (G, ρ, V) has at most one irreducible relative invariant F up to constant multiple. In particular, any relative invariant is in the form of $c F^{m}$ for $c \in \mathbb{C}$ and $m \in \mathbb{Z}$. We call F the relative invariant of (G, ρ, V).

The Hessian of any relative invariant is also a relative invariant. The proof is in [20].

Proposition 1.7. Let (G, ρ, V) be a prehomogeneous vector space of dimension n. If F is a relative invariant corresponding to a character χ, then $\operatorname{det} H_{F}$ is a relative invariant corresponding to the character $\tilde{\chi}$, where

$$
\begin{aligned}
\tilde{\chi}: G & \rightarrow \mathbb{C}^{*} \\
g & \mapsto(\chi(g))^{n} \operatorname{det}(\rho(g))^{-2} .
\end{aligned}
$$

In other words,

$$
\operatorname{det} H_{F}(\rho(g) \boldsymbol{x})=\left(\chi^{n} \operatorname{det}^{-2}\right)(g) \operatorname{det} H_{F}(\boldsymbol{x}) .
$$

We say that a prehomogeneous vector space (G, ρ, V) is regular if there exists a relative invariant F such that its Hessian $\operatorname{det} H_{F}$ is not identically zero on V. Then by Proposition 1.7, we have the following.

Proposition 1.8. Let (G, ρ, V) be a regular irreducible prehomogeneous vector space of dimension n. Assume that the degree of the relative invariant F is r. Then, the Hessian of F is in the form of

$$
\operatorname{det} H_{F}=c F^{\frac{n(r-2)}{r}},
$$

where $c \in \mathbb{C}^{*}$ is a constant.
Proposition 1.8 is the key of the proof of Theorem 5.9, which is the strictly log-concavity of the Kirchhoff polynomials of graphs.

In the following, we see a prehomogeneous vector space such that $F=x_{1} x_{2} x_{3} x_{4}$ is a relative invariant.

Example 1.9. Let $G=\left(\mathbb{C}^{*}\right)^{4}$ and $V=\mathbb{C}^{4}$. We define $\rho: G \rightarrow$ $G L(4, \mathbb{C})$ by

$$
\rho(a, b, c, d)=\operatorname{diag}(a, b, c, d),
$$

where $\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$ is the diagonal matrix with entries x_{1}, \ldots, x_{n}. For $C \subset\{1,2,3,4\}$, define

$$
V_{C}=\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \right\rvert\, x_{i} \neq 0 \Longleftrightarrow i \in C\right\}
$$

The G-orbits are

$$
\begin{aligned}
& V_{\{1,2,3,4\}}, \\
& V_{\{2,3,4\}}, V_{\{1,3,4\}}, V_{\{1,2,4\}}, V_{\{1,2,3\}}, \\
& V_{\{3,4\}}, V_{\{2,4\}}, V_{\{2,3\}}, V_{\{1,4\}}, V_{\{1,3\}}, V_{\{1,2\}}, \\
& V_{\{4\}}, V_{\{3\}}, V_{\{2\}}, V_{\{1\}}, \\
& V_{\emptyset} .
\end{aligned}
$$

If $C^{\prime} \subset C$, then $V_{C^{\prime}} \subset \overline{V_{C}}$. The orbit containing

$$
\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

is $\left(\mathbb{C}^{*}\right)^{4}$, whose closure $\overline{\left(\mathbb{C}^{*}\right)^{4}}$ is $V=\mathbb{C}^{4}$. Hence, the triplet (G, ρ, V) is a prehomogeneous vector space with singular set

$$
\left\{\left.\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) \right\rvert\, x y z w=0\right\}=V_{\{2,3,4\}} \cup V_{\{1,3,4\}} \cup V_{\{1,2,4\}} \cup V_{\{1,2,3\}} .
$$

Let $F: V \rightarrow \mathbb{C}$ be a map such that

$$
F(\boldsymbol{x})=x_{1} x_{2} x_{3} x_{4} .
$$

Define $\chi: G \rightarrow \mathbb{C}^{*}$ to be $\chi(\boldsymbol{a})=a_{1} a_{2} a_{3} a_{4}$ for $\boldsymbol{a} \in\left(\mathbb{C}^{*}\right)^{4}$. Then, $\chi=\operatorname{det} \circ \rho \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$. For $\boldsymbol{x} \in V$ and $\boldsymbol{a} \in G$, we have

$$
\begin{aligned}
F(\rho(\boldsymbol{a}) \boldsymbol{x}) & =\left(a_{1} x_{1}\right)\left(a_{2} x_{2}\right)\left(a_{3} x_{3}\right)\left(a_{4} x_{4}\right) \\
& =a_{1} a_{2} a_{3} a_{4} x_{1} x_{2} x_{3} x_{4} \\
& =\chi(\boldsymbol{a}) F(\boldsymbol{x}) .
\end{aligned}
$$

Therefore, $F=x_{1} x_{2} x_{3} x_{4}$ is a relative invariant with respect to χ. In this case, the triplet (G, ρ, V) is not irreducible. In spite of the fact, as in Example 1.6, the Hessian $\operatorname{det} H_{F}$ satisfies

$$
\operatorname{det} H_{F}=-3 F^{2}=-3 F^{\frac{4(4-2)}{4}}
$$

which appears in Proposition 1.8.

3. Higher Hessian matrices and the strong Lefschetz property

In this section, we study higher Hessian matrices, a generalizing of Hessian matrices, regarding to the strong Lefschetz property. The strong Lefschetz property is a ring theoretical abstraction of the hard Lefschetz theorem. The details are in [11].

We define higher Hessian matrices from Gorenstein algebras over a field \mathbb{K} of characteristic zero. The fundamental, for example the definition, of Gorenstein algebras is omitted here. See, e.g., [15] for the details. We, however, collect the facts which is used in our argument.

Let $A=\bigoplus_{k=0}^{s} A_{k}$ be a graded Artinian ring over \mathbb{K}. We say that A has standard grading if A_{1} generates A as an algebra. Through this thesis, we assume that a graded algebra has standard grading. We say that A is a Poincaré duality algebra with socle degree s if $A_{s} \cong \mathbb{K}$ and the higher pairing induced by the multiplication map $A_{k} \times A_{s-k} \rightarrow A_{s}$ is nondegenerate for all k. The map $A_{k} \times A_{s-k} \rightarrow A_{s}$ is called Poincaré duality. The following are known facts at least for experts. See, e.g., [13] for the details.
Proposition 1.10. Let $A=\bigoplus_{k=0}^{s} A_{k}$ be a graded Artinian ring over \mathbb{K}. The algebra A is a Poincaré duality algebra if and only if A is Gorenstein.

Proposition 1.11. Let $A=\bigoplus_{k=0}^{s} A_{k}$ be a graded Artinian ring over \mathbb{K}. The algebra A is a standard grading Gorenstein algebra with \mathbb{K} of characteristic zero if and only if there exists a homogeneous polynomial F such that

$$
A \simeq \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / \operatorname{Ann}(F)
$$

where

$$
\operatorname{Ann}(F)=\left\{P \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] \left\lvert\, P\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) F=0\right.\right\}
$$

Let $F \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be a hompgeneous polynomial of degree s. We define A_{F} to be

$$
\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / \operatorname{Ann}(F) .
$$

Obviously, the socle degree of A_{F} is s. Let A_{k} be the homogeneous spaces of A_{F}, and Λ_{k} a basis for A_{k}. We define the matrix $H_{F}^{(k)}$ by

$$
H_{F}^{(k)}=\left(e_{i}\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) e_{j}\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) F\right)_{e_{i}, e_{j} \in \Lambda_{k}} .
$$

We call $H_{F}^{(k)}$ the k th Hessian matrix of F with respect to the basis Λ_{k}. The determinant of $H_{F}^{(k)}$ is called the k th Hessian of F.

Remark 1.12. For an algebra $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right] / \operatorname{Ann}(F)$, if we can take a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for A_{1}, then the first Hessian matrix $H_{F}^{(1)}$ with respect to the basis is a usual Hessian matrix H_{F}.

For a graded \mathbb{K}-algebra $A=\bigoplus_{k=0}^{s} A_{k}$ with $A_{0}=\mathbb{K}$, the Hilbert function of A is the map

$$
k \mapsto h_{k}:=\operatorname{dim}_{\mathbb{K}} A_{k} .
$$

The Hilbert function is denoted as the vector $\left(h_{0}, h_{1}, \ldots, h_{s}\right)$. We say that the Hilbert function is unimodal if there exist i such that

$$
h_{0} \leq h_{1} \leq \cdots \leq h_{i} \geq h_{i+1} \geq \cdots \geq h_{s}
$$

We say that the Hilbert function is symmetric or palindromic if

$$
h_{k}=h_{s-k}
$$

for $k \in\left\{0,1, \ldots, \frac{s}{2}\right\}$. If A is Gorenstein, then the Hilbert function of A is symmetric.

Next, we recall the strong Lefschetz property for graded Artinian algebra over a field of characteristic zero. The strong Lefschetz property stems from the Hard Lefschetz theorem: Let (X, ω) be a compact Kähler manifold of $\operatorname{dim}_{\mathbb{C}} X=d$ with a Kähler form ω, and $H^{\bullet}(X, \mathbb{C})$ the cohomology ring of X. Then, for $k \in\{0,1, \ldots, d\}$, the map $[\omega]^{d-k}: H^{k}(M, \omega) \rightarrow H^{2 d-k}(M, \omega)$ is a linear isomorphism. The strong Lefschetz property is a generalization of the concept of the cohomology ring of a compact Kähler manifold. Let $A=\bigoplus_{k=0}^{s} A_{k}, A_{s} \neq \mathbf{0}$, be a
graded Artinian \mathbb{K}-algebra over a field $A_{0}=\mathbb{K}$ of characteristic zero. We say that A has the strong Lefschetz property if there exists an element $L \in A_{1}$ such that the multiplication map $\times L^{s-2 k}: A_{k} \rightarrow A_{s-k}$ is bijective for $k \in\left\{0,1, \ldots, \frac{s}{2}\right\}$. We call L a Lefschetz element with this property. We say that A has the strong Lefschetz property at degree k if there exists an element $L \in A_{1}$ such that the multiplication map $\times L^{s-2 k}: A_{k} \rightarrow A_{s-k}$ is bijective.

By definition of the strong Lefschetz property, we have the following.

Proposition 1.13. If A has the strong Lefschetz property, then the Hilbert function of A is unimodal and symmetric.

The following is a criterion for the strong Lefschetz property for a graded Artinian Gorenstein algebra by $[\mathbf{1 4 , 2 4}]$

Proposition 1.14 (Watanabe [24], Maeno-Watanabe [14]). Consider a graded Artinian Gorenstein algebra A_{F}. The algebra A_{F} has the strong Lefschetz property at degree k if and only if $\operatorname{det} H_{F}^{(k)}(\boldsymbol{a}) \neq 0$.

Remark 1.15. By Proposition 1.14, a strong Lefschetz element comes from an open dense space where the higher Hessians do not vanish. Thus, if the k-th Hessian does not vanish as a polynomial for each k, then the Artinian Gorenstein algebra A has the strong Lefschetz property. In other words, an algebra A has the strong Lefschetz property at degree k for all k if and only if A has the strong Lefschetz property.

If $\Delta_{k} \subset A_{k}$ spans A_{k} as a \mathbb{K}-vector space and

$$
\operatorname{det}\left(e_{i}\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) e_{j}\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) F\right)_{e_{i}, e_{j} \in \Delta_{k}} \neq 0
$$

then $\Delta_{k} \subset A_{k}$ is a basis for A_{k} and A has the strong Lefschetz property at degree k. Hence, the degeneracy of the usual Hessian implies the strong Lefschetz property at degree one.

Proposition 1.16. If $\operatorname{det} H_{F} \neq 0$, then A has the strong Lefschetz property at degree one.

We illustrate the story in Section 3 with the polynomial $F=$ $x_{1} x_{2} x_{3} x_{4}$.

Example 1.17. Let $F=x_{1} x_{2} x_{3} x_{4}$ and $A=\mathbb{K}\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / \operatorname{Ann}(F)=$ $A_{0} \oplus A_{1} \oplus A_{2} \oplus A_{3} \oplus A_{4}$. As in Example 1.6, the Hessian $\operatorname{det} H_{F}=$ $-3 F^{2} \neq 0$. Thus, it follows from Proposition 1.16 that the algebra A has the strong Lefschetz property at degree one. Moreover, $x_{1}, x_{2}, x_{3}, x_{4}$ form basis for A_{1}. Since $\left.\operatorname{det} H_{F}\right|_{x=(1,1,1,1)}=-\left.3 F^{2}\right|_{x=(1,1,1,1)}=-3 \neq 0$, it follows from Proposition 1.14 that A has the strong Lefschetz property at degree one with a Lefschetz element $L=x_{1}+x_{2}+x_{3}+x_{4}$. In
fact, the annihilator $\operatorname{Ann}(F)$ is generated by $\left\{x_{1}^{2}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}\right\}$. Therefore the square-free monomials form a basis for A as \mathbb{K}-vector space. Since

$$
\begin{aligned}
\times L^{2}: A_{1} & \rightarrow A_{3} \\
x_{1} & \mapsto 2 x_{1}\left(x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}\right), \\
x_{2} & \mapsto 2 x_{2}\left(x_{1} x_{3}+x_{1} x_{4}+x_{3} x_{4}\right), \\
x_{3} & \mapsto 2 x_{3}\left(x_{1} x_{2}+x_{1} x_{4}+x_{2} x_{4}\right), \\
x_{4} & \mapsto 2 x_{4}\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right),
\end{aligned}
$$

the representation matrix of the multiplication map with respect to the basis $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\left(x_{2} x_{3} x_{4}, x_{1} x_{3} x_{4}, x_{1} x_{2} x_{4}, x_{1} x_{2} x_{3}\right)$ is

$$
\left(\begin{array}{llll}
0 & 2 & 2 & 2 \\
2 & 0 & 2 & 2 \\
2 & 2 & 0 & 2 \\
2 & 2 & 2 & 0
\end{array}\right)
$$

Therefore the multiplication map is bijective. In this case, the algebra A has the strong Lefschetz property with a strong Lefschetz element $L=x_{1}+x_{2}+x_{3}+x_{4}$ since

$$
\begin{aligned}
& \times L^{4}: A_{0} \rightarrow A_{4}, x \mapsto x \times L^{4} \\
& \times L^{2}: A_{1} \rightarrow A_{3}, x \mapsto x \times L^{2} \\
& \times L^{0}: A_{2} \rightarrow A_{2}, x \mapsto x \times L^{0}=x
\end{aligned}
$$

are bijective. The Hilbert function of A is $(1,4,6,4,1)$.

4. Hessian matrices and Lorentzian polynomials

In this section, we study the relation between Hessian matrices and Lorentzian polynomials. The proofs of the propositions in this section are in [16]. Lorentzian polynomials are related to the strong Lefschetz property and the Hodge-Riemann relation.

We recall the Hodge-Riemann relations. The Hodge-Riemann relations imply the hard Lefschetz theorem. See $[\mathbf{1 0}, \mathbf{4}]$ for details. Since the strong Lefschetz property is an abstraction of the hard Lefschetz theorem, we can define the Hodge-Riemann relations for the strong Lefschetz property as follows: We consider $A=A_{F}=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / \operatorname{Ann}(F)=$ $\bigoplus_{k=0}^{s} A_{k}$. Define

$$
[D]=D\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) F
$$

for $D \in A_{s}$. Then, $[-]$ gives the isomorphism from A_{s} to \mathbb{R}. For $L=a_{1} x_{1}+\cdots+a_{n} x_{n}$, we define the bilinear from $Q_{L}^{k}: A_{k} \times A_{k} \rightarrow \mathbb{R}$ by $Q_{L}^{k}\left(\xi_{1}, \xi_{2}\right)=(-1)^{k}\left[\xi_{1} L^{s-2 k} \xi_{2}\right]$. We say that A satisfies the HodgeRiemann relation at degree k with respect to $L \in A_{1}$ if A has the strong

Lefschetz property at degree k with a Lefschetz element L and the bilinear form Q_{L}^{k} is positive definite on $\operatorname{ker}\left(\times L^{s-2 k+1}: A_{k} \rightarrow A_{s-k+1}\right)$.

If A_{F} has the Hodge-Riemann relation at degree one with some condition, then we obtain the signature of the Hessian matrix of F.

Proposition 1.18. Let $F \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ be a homogeneous polynomial, $L=a_{1} x_{1}+\cdots+a_{n} x_{n}$, and $A=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / \operatorname{Ann}(F)$. If $\frac{\partial}{\partial x_{1}} F, \ldots, \frac{\partial}{\partial x_{n}} F$ are \mathbb{R}-linearly independent, then the following are equivalent:

- The algebra A satisfies the Hodge-Riemann relation at degree one with respect to L.
- $\left.H_{F}\right|_{x=a}$ has signature $(+,-, \ldots,-)$.

Let F be a homogeneous polynomial of degree r in n variables with positive coefficients. We call that F is a Lorentzian polynomial if for any $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ with $\sum_{i=1}^{n} k_{i} \leq \operatorname{deg} F-2,\left(\frac{\partial}{\partial x_{1}}\right)^{k_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{k_{n}} F$ is identically zero or log-concave at any $\boldsymbol{a} \in \mathbb{R}_{>0}^{n}$. The Lorentzian polynomials are introduced and studied in [8]. The important instances of the Lorentzian polynomials are the generating functions for a matroid (cf. Proposition 3.2).

Generally, the Hodge-Riemann relations imply the strong Lefschetz property. If F is Lorentzian, then the Hodge-Riemann relation at degree one and the strong Lefschetz property at degree one are equivalent.

Proposition 1.19. Let F be Lorentzian, and $A=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / \operatorname{Ann}(F)$. For $L=a_{1} x_{1}+\cdots+a_{n} x_{n}$ with $\left.F\right|_{x=a}>0$, the following are equivalent:

- the algebra A has the strong Lefschetz property at degree one with a Lefschetz element L.
- the algebra A satisfies the Hodge-Riemann relation at degree one with respect to L.

Proposition 1.20 (Murai-Nagaoka-Yazawa [16]). Let $L=a_{1} x_{1}+$ $\cdots+a_{n} x_{n}$ with $a_{i}>0$. If F is Lorentzian, then $A=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / \operatorname{Ann}(F)$ satisfies the the Hodge-Riemann relation at degree one with respect to L.

Proposition 1.20 is the key of Theorem 6.3, which is one of our goals in this thesis. We illustrate Proposition 1.20 with the polynomial $F=x_{1} x_{2} x_{3} x_{4}$.

Example 1.21. Let $F=x_{1} x_{2} x_{3} x_{4}$. As in Example 1.6, the monomial F is \log-concave. Let $F^{\prime}=\frac{\partial}{\partial x_{4}} F=x_{1} x_{2} x_{3}$. Then

$$
H_{F^{\prime}}=\left(\begin{array}{cccc}
0 & x_{3} & x_{2} & 0 \\
x_{3} & 0 & x_{1} & 0 \\
x_{2} & x_{1} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
-F^{\prime} H_{F^{\prime}} & =\left(\begin{array}{cccc}
0 & -x_{1} x_{2} x_{3}^{2} & -x_{1} x_{2}^{2} x_{3} & 0 \\
-x_{1} x_{2} x_{3}^{2} & 0 & -x_{1}^{2} x_{2} x_{3} & 0 \\
-x_{1} x_{2}^{2} x_{3} & -x_{1}^{2} x_{2} x_{3} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
G_{F^{\prime}} & =\left(\begin{array}{c}
x_{2} x_{3} \\
x_{1} x_{3} \\
x_{1} x_{2} \\
0
\end{array}\right)\left(\begin{array}{llll}
x_{2} x_{3} & x_{1} x_{3} & x_{1} x_{2} & 0
\end{array}\right) \\
& =\left(\begin{array}{cccc}
x_{2}^{2} x_{3}^{2} & x_{1} x_{2} x_{3}^{2} & x_{1} x_{2}^{2} x_{3} & 0 \\
x_{1} x_{2} x_{3}^{2} & x_{1}^{2} x_{3}^{2} & x_{1}^{2} x_{2} x_{3} & 0 \\
x_{1} x_{2}^{2} x_{3} & x_{1}^{2} x_{2} x_{3} & x_{1}^{2} x_{2}^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Thus, we have

$$
-F^{\prime} H_{F^{\prime}}+G_{F^{\prime}}=\left(\begin{array}{cccc}
x_{2}^{2} x_{3}^{2} & 0 & 0 & 0 \\
0 & x_{1}^{2} x_{3}^{2} & 0 & 0 \\
0 & 0 & x_{1}^{2} x_{2}^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Hence, F^{\prime} is log-concave. Similarly, the monomial $\frac{\partial}{\partial x_{i}} F$ is also \log concave. Let $F^{\prime \prime}=\frac{\partial^{2}}{\partial x_{3} \partial x_{4}} F=x_{1} x_{2}$. Then

$$
\begin{aligned}
H_{F^{\prime \prime}} & =\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
-F^{\prime \prime} H_{F^{\prime \prime}} & =\left(\begin{array}{cccc}
0 & -x_{1} x_{2} & 0 & 0 \\
-x_{1} x_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
G_{F^{\prime \prime}} & =\left(\begin{array}{c}
x_{2} \\
x_{1} \\
0 \\
0
\end{array}\right)\left(\begin{array}{llll}
x_{2} & x_{1} & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cccc}
x_{2}^{2} & x_{1} x_{2} & 0 & 0 \\
x_{1} x_{2} & x_{1}^{2} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Thus, we have

$$
-F^{\prime \prime} H_{F^{\prime \prime}}+G_{F^{\prime \prime}}=\left(\begin{array}{cccc}
x_{2}^{2} & 0 & 0 & 0 \\
0 & x_{1}^{2} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Hence, $F^{\prime \prime}$ is log-concave. Similarly, the monomial $\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} F$ is also logconcave for $i \neq j$. If $i=j$, then $\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} F$ is identically zero. Therefore, F is a Lorentzian polynomial. Let $A=\mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right] / \operatorname{Ann}(F)$, and $L=$ $x_{1}+x_{2}+x_{3}+x_{4}$. Since F is Lorentzian, it follows from Proposition 1.20 that A satisfies the the Hodge-Riemann relation at degree one with respect to L. In fact, since

$$
L^{3}=\left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{3}=6\left(x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4}\right),
$$

we have

$$
L^{3} x_{1}=L^{3} x_{2}=L^{3} x_{3}=L^{3} x_{4}=6 x_{1} x_{2} x_{3} x_{4}
$$

Hence $P_{1}=x_{1}-x_{4}, P_{2}=x_{2}-x_{4}$, and $P_{3}=x_{3}-x_{4}$ form a basis for $\operatorname{ker}\left(\times L^{3}: A_{1} \rightarrow A_{4}\right)$. Let us consider $Q_{L}^{1}: A_{1} \times A_{1} \rightarrow \mathbb{R}$. Since

$$
L^{2}=2\left(x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}\right),
$$

we have

$$
L^{2} x_{i} x_{j}= \begin{cases}2 x_{1} x_{2} x_{3} x_{4}=2 F, & i \neq j \\ 0, & i=j\end{cases}
$$

Since

$$
Q_{L}^{1}\left(x_{i}, x_{j}\right)= \begin{cases}-[2 F]=-2, & i \neq j \\ 0, & i=j\end{cases}
$$

the representation matrix for Q_{L}^{1} with respect to the basis $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is

$$
-2\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
$$

The eigenvalues of this matrix are $-6,2,2,2$. The eigenspace associated to -6 is

$$
\left\{\left.\left(\begin{array}{l}
a \\
a \\
a \\
a
\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}
$$

This matrix is not positive semi-definite. Let us consider the restriction of Q_{L}^{1} to $\operatorname{ker}\left(\times L^{3}: A_{1} \rightarrow A_{4}\right)$. Since

$$
\begin{aligned}
p_{i} p_{j} & =\left(x_{i}-x_{4}\right)\left(x_{j}-x_{4}\right) \\
& = \begin{cases}-2 x_{i} x_{4}, & i=j, \\
x_{i} x_{j}-x_{i} x_{4}-x_{j} x_{4}, & i \neq j,\end{cases}
\end{aligned}
$$

we have

$$
L^{2} p_{i} p_{j}= \begin{cases}-4 F, & i=j, \\ -2 F, & i \neq j\end{cases}
$$

Since

$$
Q_{L}^{1}\left(p_{i}, p_{j}\right)=\left\{\begin{array}{lc}
-[-2 F]=2, & i \neq j \\
-[-4 F]=4, & i=j
\end{array}\right.
$$

the representation matrix for Q_{L}^{1} on $\operatorname{ker}\left(\times L^{3}: A_{1} \rightarrow A_{4}\right)$ with respect to the basis $\left(p_{1}, p_{2}, p_{3}\right)$ is

$$
2\left(\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right) .
$$

The eigenvalues of this matrix are $8,2,2$. Since this matrix is positive definite, the monomial F satisfies the the Hodge-Riemann relation at degree one with respect to L.

CHAPTER 2

Graphs

In this chapter, we provide basic terms of graphs, and count spanning trees. Using the Laplacian matrix of a graph is an algebraic way to count them. We see how to count them, and study the Kirchhoff polynomials. The Kirchhoff polynomial is an important instance of the basis generating polynomial for a matroid, which are one of main objects in this thesis.

1. Definitions

In this section, we recall some basic terms of graphs. See, e.g., [5,18$]$ for basics of graphs.

We call the pair $\Gamma=(V(\Gamma), E(\Gamma))$ of a set $V(\Gamma)$ and $E(\Gamma) \subset\binom{V(\Gamma)}{2}$ a (simple) graph, where $\binom{V}{2}=\{\{x, y\} \mid x, y \in V, x \neq y\}$. An element in $V(\Gamma)$ is called a vertex, and an element in $E(\Gamma)$ is called an edge. For $\{u, v\} \in E(\Gamma), u, v$ are called the ends of $\{u, v\}$. A simple graph is a graph which does not allow edges from a vertex v to v, called a loop, and multiple edges between 2 vertices, called multiple edges or parallel edges. If $\{x, y\} \in E(\Gamma)$, then we write $x \sim y$, and say that x and y are adjacent. If $\{x, y\} \notin E(\Gamma)$, then we write $x \nsim y$. Let Γ, Γ^{\prime} be graphs. If $V\left(\Gamma^{\prime}\right) \subset V(\Gamma)$ and $E\left(\Gamma^{\prime}\right) \subset E(\Gamma)$, then Γ^{\prime} is called subgraph of Γ, written $\Gamma^{\prime} \subset \Gamma$. For a vertex $v \in V(\Gamma)$, define $d(v)=\#\left\{v^{\prime} \in V(\Gamma) \mid v \sim v^{\prime}\right\}$. We call $d(v)$ the degree of the vertex v.

For distinct vertices $u, u_{1}, \ldots, u_{n-1}, v$, let

$$
\begin{aligned}
V(P) & =\left\{u, u_{1}, \ldots, u_{n-1}, v\right\}, \\
E(P) & =\left\{\left\{u, u_{1}\right\},\left\{u_{1}, u_{2}\right\}, \ldots,\left\{u_{n-1}, v\right\}\right\} .
\end{aligned}
$$

Then P is called a path from u to v. We say that a graph is connected if there exists a path between any two vertices. A connected graph such that the degrees of all vertices are two is called a cycle. The cycle with n vertices is denoted by C_{n}. We say that a graph is a forest if any subgraph of the graph is not a cycle. A connected forest is called a tree. By definition, a path is a tree. We call a subgraph T of Γ a spanning tree in Γ if T is a tree and $V(T)=V(\Gamma)$. For a graph Γ, B_{Γ} denote the collection of spanning trees in Γ. If a graph Γ is not connected, then $B_{\Gamma}=\emptyset$. In general, a spanning tree in Γ with n vertices has $n-1$ edges. A graph satisfying $E(\Gamma)=\binom{V(\Gamma)}{2}$ is called a
complete graph. The complete graph with n vartices is denoted by K_{n}. Let $V(\Gamma)=X_{1} \sqcup \cdots \sqcup X_{k}$. We call the graph Γ a k-partite graph with a partition $V(\Gamma)=X_{1} \sqcup \cdots \sqcup X_{k}$ if the following condition is satisfied for $i \in\{1,2, \ldots, k\}$:

$$
x, x^{\prime} \in X_{i} \Longrightarrow x \nsim x^{\prime} .
$$

Let $\Gamma=\left(X_{1} \sqcup \cdots \sqcup X_{k}, E(\Gamma)\right)$ be a k-partite graph. We call Γ a complete k-partite graph, written $K_{X_{1}, \ldots, X_{k}}$, if the following condition is satisfied:

$$
i \neq j, x_{i} \in X_{i}, x_{j} \in X_{j} \Longrightarrow x_{i} \sim x_{j}
$$

The complete k-partite graph $\Gamma=\left(X_{1} \sqcup \cdots \sqcup X_{k}, E(\Gamma)\right)$ with $\# X_{1}=$ $m_{1}, \ldots, \# X_{k}=m_{k}$ is denoted by $K_{m_{1}, \ldots, m_{k}}$ For a graph Γ, define $V\left(\Gamma^{*}\right)=E(\Gamma), E\left(\Gamma^{*}\right)=\left\{\left\{e, e^{\prime}\right\} \mid e, e^{\prime} \in E(\Gamma), e \neq e^{\prime}, e \cap e^{\prime} \neq \emptyset\right\}$. The graph Γ^{*} is called the line graph of Γ.

Let $\Gamma=(V(\Gamma), E(\Gamma))$ be a graph and $w: E(\Gamma) \rightarrow \mathbb{Z}_{\leq 0}$. We say that $(V(\Gamma), E(\Gamma), w)$ is a weighted graph. We regard a weighted graph with weight $w(e)=1$ for all e as a simple graph. For a weighted graph $\Gamma=(V, E, w)$, the matrix $A_{\Gamma}=\left(a_{i j}\right)$ and the matrix $D_{\Gamma}=\left(d_{i j}\right)$ with the index set $V \times V$ defined by

$$
\begin{aligned}
& a_{i j}= \begin{cases}w(\{i, j\}) & i \sim j, \\
0 & i \nsim j,\end{cases} \\
& d_{i j}= \begin{cases}\sum_{k \sim i} w(\{i, k\}) & i=j, \\
0 & i \neq j\end{cases}
\end{aligned}
$$

are called the adjacency matrix and degree matrix of Γ, respectively. If all weights of the edges of Γ are one, then $\sum_{k \sim i} w(\{i, k\})$ is equal to the degree $d(i)$ of $i \in V$. Let $E \subset V \times V$. We say that (V, E) is a directed graph. For a weighted directed graph $\Gamma=(V, E, w)$, the matrix $J_{\Gamma}=\left(j_{v,(x, y)}\right)$ with the index set $V \times E$ defined by

$$
j_{v,(x, y)}= \begin{cases}\sqrt{w((x, y))} & v=x \\ -\sqrt{w((x, y))} & v=y \\ 0 & \text { otherwise }\end{cases}
$$

is called the directed incidence matrix of Γ.
Example 2.1. Let us consider the following graphs. Assume that each weight of an edge of each graph is one.

The following matrices are the adjacency matrices of $C_{4}, K_{2,2}, K_{4}$, respectively:

$$
\begin{aligned}
A_{C_{4}}= & \begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right), \\
A_{K_{2,2}}= & \begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\left(\begin{array}{lllll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right), \\
A_{K_{4}}= & \begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

The following matrices are the degree matrices of $C_{4}, K_{2,2}, K_{4}$, respectively:

$$
\begin{aligned}
& D_{C_{4}}= \begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right), \\
& D_{K_{2,2}}= \begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\left(\begin{array}{lllll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right), \\
& D_{K_{4}}= v_{1} \\
& v_{3} \\
& v_{4}
\end{aligned}\left(\begin{array}{lllll}
3 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right) ., ~ .
$$

The following matrices are the directed incidence matrices of $C_{4}, K_{2,2}, K_{4}$ with some orientation, respectively:

$$
J_{C_{4}}=\begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4}
\end{aligned}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right),
$$

$$
\begin{aligned}
& J_{K_{2,2}}= \begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & -1 & 0 & -1 \\
-1 & 0 & -1 & 0
\end{array}\right), \\
& J_{K_{4}}=\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\left(\begin{array}{cccccc}
-1 & 0 & 0 & -1 & 1 & 0 \\
1 & -1 & 0 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 & -1
\end{array}\right) .
\end{aligned}
$$

Two graphs Γ and Γ^{\prime} are isomorphic if and only if there exists a permutation matrix P such that $A_{\Gamma} P=P A_{\Gamma^{\prime}}$. Indeed, C_{4} and $K_{2,2}$ are isomorphic, and if we take P as

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right),
$$

then $A_{C_{4}} P=P A_{K_{2,2}}$. Therefore, the eigenvalues of the adjacency matrices of two graphs which are isomorphic to each other are the same. On the other hand, there exists nonisomorphic graphs such that the eigenvalues of their adjacency matrices are the same.

2. Counting spanning trees

Consider a weighted graph Γ. Let J_{Γ} be the directed incidence matrix with respect to some orientation of Γ. A matrix L_{Γ} with the index set $V \times V$ and a matrix L_{Γ}^{\prime} with the index set $E \times E$ defined by

$$
L_{\Gamma}=J_{\Gamma}\left(J_{\Gamma}\right)^{\top}, \quad L_{\Gamma}^{\prime}=\left(J_{\Gamma}\right)^{\top} J_{\Gamma}
$$

are called the Laplacian and edge Laplacian of Γ, respectively. The matrices L_{Γ} and L_{Γ}^{\prime} are independent of the orientation of Γ. In fact, it is known that

$$
L_{\Gamma}=D_{\Gamma}-A_{\Gamma}, \quad \quad L_{\Gamma}^{\prime}=D_{\Gamma^{*}}-A_{\Gamma^{*}}
$$

Note that L_{Γ}^{\prime} is a Laplacian of the line graph Γ^{*}. More precisely, we have $J_{\Gamma}^{\top}=J_{\Gamma^{*}}$.

Let Γ has n vertices. For J_{Γ}, define \widetilde{J}_{Γ} to be the matrix forgot the last row of J_{Γ}. Let $w_{1}, w_{2}, \ldots, w_{n-1}$ form an orthonormal basis of the vector space spanned by the row vectors of \widetilde{J}_{Γ}. A matrix K_{Γ} with the index set $E \times E$ defined by

$$
K_{\Gamma}=\sum_{i=1}^{n-1}\left(w_{i}\right)^{\top} w_{i}
$$

is called the graph correlation kernel.

Remark 2.2. To my best of knowledge, I can not find the name of the matrix L_{Γ}^{\prime} and K_{Γ}. In this thesis, we call L_{Γ}^{\prime} and K_{Γ} edge Laplacian and graph correlation kernel, respectively. However, note that these terms are not common.

Let $\tau(\Gamma)$ be the number of spanning trees in a simple graph Γ. For $F \subset E(\Gamma), \tau(\Gamma, F)$ denotes the number of spanning trees in a simple graph Γ containing F. The Laplacian and graph correlation kernel play an important role in counting spanning trees. The following is known as Matrix-Tree Theorem. See, e.g, [5].

Proposition 2.3. For a simple graph Γ, any cofactor of the Laplacian L_{Γ} is equal to $\tau(\Gamma)$. In other words, for a graph $\Gamma=(V, E)$ with $\# V=n$,

$$
\tau(\Gamma)=(-1)^{i+j} \operatorname{det}\left(L_{\Gamma}^{(i j)}\right)
$$

for any $1 \leq i, j \leq n$.
Submatrices of the graph correlation kernels tell us the ratios of forests in the spanning trees in a graph.

Proposition 2.4. Let $\Gamma=(V, E)$ be a simple graph and F a subset of E. Then, the ratio $\frac{\tau(\Gamma, F)}{\tau(\Gamma)}$ is $\operatorname{det} K_{\Gamma}(F)$, where $K_{\Gamma}(F)$ is the submatrix of K_{Γ} corresponding to the index set $F \times F$.

As corollary to Propositions 2.3 and 2.4 , we have the following.
Corollary 2.5. Let Γ be a simple graph with $\# V(\Gamma) \geq 2$.
(1) If F is the edges of a spanning tree, then

$$
\frac{1}{\operatorname{det} K_{\Gamma}(F)}=\tau(\Gamma)
$$

(2) For $F \subset E(\Gamma)$,

$$
\operatorname{det}\left(L_{\Gamma}^{(11)}\right) \operatorname{det} K_{\Gamma}(F)=\tau(\Gamma, F) .
$$

We illustrate Proposition 2.3 with the complete graphs.
Example 2.6. Let $n \geq 2$. The Laplacian of K_{n} of size $n \times n$ is the following:

$$
L_{K_{n}}=\left(\begin{array}{cccc}
n-1 & -1 & \cdots & -1 \\
-1 & n-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & -1 \\
-1 & \cdots & -1 & n-1
\end{array}\right)
$$

The $(1,1)$-cofactor of $L_{K_{n}}$ of size $(n-1) \times(n-1)$ is the following:

$$
L_{K_{n}}^{(11)}=\left(\begin{array}{cccc}
n-1 & -1 & \cdots & -1 \\
-1 & n-1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & -1 \\
-1 & \cdots & -1 & n-1
\end{array}\right)
$$

By Proposition 2.3, we have $\tau\left(K_{n}\right)=n^{n-2}$
The following are the number of the spanning trees including some forests. These consequences can be obtained from the graph correlation kernels of the complete graphs.

Example 2.7. Let F be a forest of K_{n} with k connected components. By Corollary 2.5, the number of spanning trees in K_{n} containing F is $n^{k-2} \prod_{i=1}^{k} j_{i}$, where j_{i} is the number of vertices of each connected component of F.

3. Kirchhoff polynomials

In this section, we consider a weighted graph. For a weighted graph, "Matrix-Tree theorem", which is a generalization of Proposition 2.3 holds.

Proposition 2.8. Let Γ be a weighted connected graph with weight w. We associate the weight $w(\{i, j\})=x_{i j}=x_{j i}$ with $\{i, j\} \in E(\Gamma)$. Any cofactor of the weighted Laplacian L_{Γ}^{\prime} is equal to the generating function of the spanning trees in Γ. In other words, for a graph $\Gamma=$ (V, E) with $\# V=n$,

$$
\sum_{T \in B_{\Gamma}\{i j\} \in E(T)} \prod_{i j} x_{i j}=(-1)^{i+j} \operatorname{det}\left(L_{\Gamma}^{(i j)}\right)
$$

for any $1 \leq i, j \leq n$.
We call the left hand side of the equation in Proposition 2.8 the Kirchhoff polynomial. Since any spanning trees in Γ with $n+1$ vertices have n edges, the Kirchhoff polynomial of Γ are homogeneous polynomial of degree n. Moreover, the monomials in the Kirchhoff polynomial are square-free. For a graph which is not connected, we define the Kirchhoff polynomial for the graph to be the product of the Kirchhoff polynomial for each connected component of the graph.

Let Γ be a graph, e an edge with ends v and v^{\prime} of Γ. We define the deletion $\Gamma \backslash e$ to be the graph $(V(\Gamma), E(\Gamma) \backslash\{e\})$. We define the contraction Γ / e to be the graph obtained by removing the edge e from $E(\Gamma)$ and by putting v in v^{\prime}. Note that the deletion of a simple graph is a simple graph. The contraction of a simple graph, however, may be not simple. For edges e, e^{\prime} of Γ, we have

- $(\Gamma \backslash e) \backslash e^{\prime}=\left(\Gamma \backslash e^{\prime}\right) \backslash e$.
- $(\Gamma / e) / e^{\prime}=\left(\Gamma / e^{\prime}\right) / e$.

We write $\Gamma \backslash e, e^{\prime}$ and $\Gamma / e, e^{\prime}$ to denote $(\Gamma \backslash e) \backslash e^{\prime}$ and $(\Gamma / e) / e^{\prime}$, respectively.

Kirchhoff polynomials satisfy the deletion-contraction formula. The formula provides a way to calculate the Kirchhoff polynomial recursively.

Proposition 2.9. Let F_{Γ} be the Kirchhoff polynomial of a graph Γ. Then, we have

$$
F_{\Gamma}=F_{\Gamma \backslash e}+x_{e} F_{\Gamma / e} .
$$

We see the Kirchhoff polynomial of a tree with five vertices.
Example 2.10. Let us consider a tree T with 5 vertices, where
$V(T)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$,
$E(T)=\left\{e_{1}=\left\{v_{1}, v_{2}\right\}, e_{2}=\left\{v_{2}, v_{3}\right\}, e_{3}=\left\{v_{3}, v_{4}\right\}, e_{4}=\left\{v_{4}, v_{5}\right\}\right\}$.
The adjacency matrix A_{T} and degree matrix D_{T} are

$$
A_{T}=\begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4} \\
& v_{5}
\end{aligned}\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \quad D_{T}=\begin{aligned}
& v_{1} \\
& v_{2} \\
& v_{3} \\
& v_{4} \\
& v_{5}
\end{aligned}\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

respectively. Thus, the Laplacian L_{T} is

$$
L_{T}=D_{T}-A_{T}=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

The (4,4)-cofactor of the Laplacian L_{T} is

$$
(-1)^{4+4} \operatorname{det}\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)=1
$$

It follows from Proposition 2.3 that the number of spanning tree in T is one. In fact, itself T is the spanning tree in T. We associate x_{i} to the edge $e_{i}=\left\{v_{i}, v_{i+1}\right\} \in E(T)$. The weighted adjacency matrix A_{T}^{\prime}
and weighted degree matrix D_{T}^{\prime} are

$$
\begin{aligned}
& A_{T}^{\prime}= \begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\left(\begin{array}{ccccc}
0 & x_{1} & 0 & 0 & 0 \\
x_{1} & 0 & x_{2} & 0 & 0 \\
0 & x_{2} & 0 & x_{3} & 0 \\
0 & 0 & x_{3} & 0 & x_{4} \\
0 & 0 & 0 & x_{4} & 0
\end{array}\right) \\
& D_{1}^{\prime}=\begin{array}{l}
v_{2} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\left(\begin{array}{cccccc}
x_{1} & 0 & 0 & 0 & & \\
0 & x_{1}+x_{2} & 0 & 0 & 0 \\
0 & 0 & x_{2}+x_{3} & 0 & 0 \\
0 & 0 & 0 & x_{3}+x_{4} & 0 \\
0 & 0 & 0 & 0 & x_{4}
\end{array}\right)
\end{aligned}
$$

respectively. Thus, the weighted Laplacian L_{T}^{\prime} is

$$
L_{T}^{\prime}=D_{T}^{\prime}-A_{T}^{\prime}=\left(\begin{array}{ccccc}
x_{1} & -x_{1} & 0 & 0 & 0 \\
-x_{1} & x_{1}+x_{2} & -x_{2} & 0 & 0 \\
0 & -x_{2} & x_{2}+x_{3} & -x_{3} & 0 \\
0 & 0 & -x_{3} & x_{3}+x_{4} & -x_{4} \\
0 & 0 & 0 & -x_{4} & x_{4}
\end{array}\right)
$$

The (4,4)-cofactor of the weighted Laplacian L_{T}^{\prime} is

$$
\begin{aligned}
& (-1)^{4+4} \operatorname{det}\left(\begin{array}{cccc}
x_{1} & -x_{1} & 0 & 0 \\
-x_{1} & x_{1}+x_{2} & -x_{2} & 0 \\
0 & -x_{2} & x_{2}+x_{3} & -x_{3} \\
0 & 0 & -x_{3} & x_{3}+x_{4}
\end{array}\right) \\
& =x_{1} \operatorname{det}\left(\begin{array}{ccc}
x_{1}+x_{2} & -x_{2} & 0 \\
-x_{2} & x_{2}+x_{3} & -x_{3} \\
0 & -x_{3} & x_{3}+x_{4}
\end{array}\right) \\
& \quad-\left(-x_{1}\right) \operatorname{det}\left(\begin{array}{ccc}
-x_{1} & 0 & 0 \\
-x_{2} & x_{2}+x_{3} & -x_{3} \\
0 & -x_{3} & x_{3}+x_{4}
\end{array}\right) \\
& =x_{1} x_{2} x_{3} x_{4} .
\end{aligned}
$$

It follows from Proposition 2.8 that the monomial $x_{1} x_{2} x_{3} x_{4}$ is the generating function for the spanning trees in T. In fact, since itself T is the spanning tree in T, we have

$$
\sum_{T^{\prime} \in B_{T}} \prod_{i \in E\left(T^{\prime}\right)} x_{i}=\prod_{i \in E(T)} x_{i}=x_{1} x_{2} x_{3} x_{4} .
$$

Therefore, the monomial $x_{1} x_{2} x_{3} x_{4}$ is the Kirchhoff polynomial of a tree with 5 vertices.

CHAPTER 3

Matroids

As stated in Introduction, we mainly consider three generating polynomials, the generating functions F_{M} for basis, the generating functions P_{M} for independent sets, and the generating functions \bar{P}_{M} for reduced independent sets, for a matroid M. In this chapter, we provide some basic terms and study the generating polynomials for a matroid. We study the Hessian matrices of them in Chapter 5.

1. Bases and independent sets

First we recall basic terms of matroids. Here, we note that matroids have several different equivalent definitions. The definition here is by bases for matroids. See [19] for the details.

We call a pair (E, \mathcal{B}) a matroid if a finite set E and nonempty collection \mathcal{B} of subsets of E satisfies the following property, called the basis exchange property:

- If B_{1} and B_{2} are in \mathcal{B} and $x \in B_{1} \backslash B_{2}$, then there is an element $y \in B_{2} \backslash B_{1}$ such that $\{y\} \cup\left(B_{1} \backslash\{x\}\right) \in \mathcal{B}$.
We call each $B \in \mathcal{B}$ a basis for M. We call an element $e \in E$ a loop of M if $\{e\}$ is not contained by any basis for M. We call an element $e \in E$ a coloop of M if $\{e\}$ is contained by each basis for M.

The following is directly proved from the basis exchange property.
Proposition 3.1. All bases of a matroid M have the same cardinality.
We say that a matroid M has rank r if the number of elements of a basis of M is r. The rank of M is denoted by rank M.

Let $M=(E, \mathcal{B})$ be a matroid. We call each subset of a basis for M an independent set of M and call each subset of E which is not contained in any basis a dependent set of M. We write $\mathcal{I}(M)$ for the set of independent sets and $I_{k}(M)$ for the cardinality of the set of independent sets with k elements. A minimal dependent set of M is called a circuit of M. A circuit with n elements is called an n circuit. A loop is a 1-circuit. We define $\operatorname{girth}(M)$ to be the minimum cardinality of its circuit. We call girth (M) the girth of M. Equivalently, $\operatorname{girth}(M)=\min \left\{k \left\lvert\, I_{k}(M) \neq\binom{ n}{k}\right.\right\}$.

We call a 2 -circuit a parallel. Let M be a matroid on E. Let E_{0} be the set of loops, and $E^{\prime}=E \backslash E_{0}$. We define a binary relation $\|$ on E^{\prime}
by

$$
i \| j \Longleftrightarrow i=j \text { or }\{i, j\} \text { is a parallel }
$$

for $i, j \in E^{\prime}$. Then, we have the following:

- $i \| i$.
- If $i \| j$, then $j \| i$.
- If $i \| j$ and $j \| k$, then $i \| k$.

Therefore, $\|$ is an equivalent relation on E^{\prime}. We decompose E^{\prime} into the equivalent classes $E^{\prime}=E_{1} \sqcup \cdots \sqcup E_{s}$. The decomposition $E=$ $E_{0} \sqcup E_{1} \sqcup \cdots \sqcup E_{s}$ is called parallel class decomposition of M. We call E_{1}, \ldots, E_{s} parallel classes of M.

We say that two matroids $M=(E, \mathcal{B})$ and $M^{\prime}=\left(E^{\prime}, \mathcal{B}^{\prime}\right)$ are isomorphic, written $M \cong M^{\prime}$, if there is a bijection ψ from E to E^{\prime} such that B is a basis for M if and only if $\psi(B)$ is a basis for M^{\prime}.

2. Classes of matroids

Let us see important instances of matroids.
Simple matroid. We say that a matroid M is simple if there is neither a loop nor a parallel. For a matroid $M=(E, \mathcal{B}(M))$, we define the matroid \bar{M} by deleting all loops and deleting all but one element in each parallel class, namely, choose a representative of equivalence classes, in the matroid M. We call the operation simplification.

Vector matroid. Let A be a matrix of size $m \times n$ over a field \mathbb{K}. Let E be the column index set, and \mathcal{B} the set of maximal subsets B of E such that the multiset of columns labeled by B is linearly independent in the vector space \mathbb{K}^{m}. Then $M[A]=(E, \mathcal{B})$ is a matroid. We call $M[A]=(E, \mathcal{B})$ a vector matroid. The rank of matroid is a the rank of A. Thus, if $A \in G L(n, \mathbb{K})$, then we have $\operatorname{rank} M[A]=n$ and $B \in \mathcal{B}$ is the index set of a basis for \mathbb{K}^{m}. For example, consider the following matrix A :

$$
A=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 2 \\
0 & 1 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

Then, $E=\{1,2,3,4,5\}$ and $\mathcal{B}=\{\{2,3,4\},\{3,4,5\}\}$. We can see that $\{1\}$, correspond to the 0 -vector, is a loop, $\{2,5\}$ is a parallel, and $\{2,3,4,5\}$ is a 4 -circuit. We have $\operatorname{rank} M[A]=3$. The girth of $M[A]$ is 4 .

Uniform matroid. Let E be a finite set with n elements. For $0 \leq r \leq n$, let \mathcal{B}_{r} be the collection of subsets of E such that subsets have r elements. Then, $U_{r, n}=\left(E, \mathcal{B}_{r}\right)$ is a matroid of rank r. These matroids are called uniform matroids. We say that $U_{n, n}$ is the free matroid of rank n. We call $U_{0,0}$ the empty matroid. For the uniform matroid $U_{r, n}$, the matroid is not simple if and only if $r \leq 1$. In the case
where $r=0$, for all $i \in E, i$ is a loop. In the case where $r=1$, for $i, j \in E, i \neq j, i$ and j are parallel. The girth of $U_{r, n}$ is $r+1$.

Graphic matroid. For a finite graph $\Gamma=(V(\Gamma), E(\Gamma))$, let \mathcal{B}_{Γ} be the set of all maximal forests in Γ. Then $M(\Gamma)=\left(E(\Gamma), \mathcal{B}_{\Gamma}\right)$ is a matroid. These matroids are called graphic matroids. If Γ is connected, then \mathcal{B}_{Γ} is the set B_{Γ} of spanning trees in Γ. Note that if M is a graphic matroid of non-connected graph, then there exists a connected graph Γ such that $M(\Gamma)$ is isomorphic to M. You can see that for a graphic matroid $M(\Gamma)=\left(E(\Gamma), \mathcal{B}_{\Gamma}\right)$, a loop of $M(\Gamma)$ corresponds to a loop of Γ, and an n-circuit of $M(\Gamma)$ corresponds to an n-cycle in Γ, and $\operatorname{girth}(M(\Gamma))$ corresponds to the girth of Γ. Thus, $M(\Gamma)$ is simple if and only if Γ is a simple graph. Let $\omega(\Gamma)$ be the number of connected components of Γ. The rank $M(\Gamma)$ is $\# V(\Gamma)-\omega(\Gamma)$. In particular, if Γ is connected graph, then $\operatorname{rank} M(\Gamma)=\# V(\Gamma)-1$. Note that in [19], $M(\Gamma)$ is called a cycle matroid. A matroid that is isomorphic to the cycle matroid of a graph is called a graphic matroid. In this thesis, we call both of matroids graphic matroids. Let us see some examples: Let B_{n} be the n-bouquet, one vertex and n loops. Let G_{n} be the n multiple edges graph, two vertecies and n parallel edges. Let C_{n} be the n-cycle. Let T_{n+1} be the tree with $n+1$ vertices. Then, we have

$$
M\left(B_{n}\right) \cong U_{0, n}, \quad M\left(G_{n}\right) \cong U_{1, n}, \quad M\left(C_{n}\right) \cong U_{n-1, n}, \quad M\left(T_{n+1}\right) \cong U_{n, n} .
$$

A uniform matroid is not always a graphic matroid. In fact, $U_{2, n}$ is not graphic for $n \geq 4$.

Representable matroid. We say that M is a \mathbb{K}-representable matroid if M is isomorphic to the vector matroid of a matrix over a field \mathbb{K}. A matroid that is representable over some field called representable. For example, uniform matroids are representable for some field. Let $v_{1}, v_{2}, \ldots, v_{n}$ be vectors of \mathbb{R}^{n}. Let E be the label of the vectors, and \mathcal{B} be the set of subsets of E which is corresponding to independent vectors in general position in \mathbb{R}^{r}. Then (E, \mathcal{B}) is a uniform matroid. Graphic matroids are also representable every field. The incidence matrix represents the graphic matroid. In fact, $M(\Gamma) \cong M\left[J_{\Gamma}\right]$ with arbitrary orientation. There are matroids which are not representable. See $[19]$ for the details.

Submatroid. For $E^{\prime} \subset E$, we define \mathcal{B}^{\prime} by $\mathcal{B}^{\prime}=\left\{B \in \mathcal{B} \mid B \subset E^{\prime}\right\}$. Then $M^{\prime}=\left(E^{\prime}, \mathcal{B}^{\prime}\right)$ is a matroid. We call M^{\prime} a submatroid of M.

Contraction. Let $M=(E, \mathcal{B})$ be a matroid. For a non-loop element e in E, let $\mathcal{B}(M / e)=\{B \backslash\{e\} \mid e \in B \in \mathcal{B}(M)\}$. Then $M / e=(E \backslash\{e\}, \mathcal{B}(M / e))$ is a matroid. We call M / e the contraction of M with respect to e. The contraction of M is a submatroid of M.

Deletion. Let $M=(E, \mathcal{B})$ be a matroid. For $X \subset E$, let $\mathcal{B}\left(\left.M\right|_{X}\right)=\{B \in \mathcal{I}(M) \mid B \subset X, \# B=\operatorname{rank}(X)\}$. Then $\left.M\right|_{X}=(E \backslash$
$\left.X, \mathcal{B}\left(\left.M\right|_{X}\right)\right)$ is a matroid. We call $\left.M\right|_{X}$ the restriction of M to X. In particular, for $e \in E$, we write $M \backslash e=\left.M\right|_{E \backslash\{e\}}$ and call it the deletion of e from M. The deletion of M is a submatroid of M.

Truncated matroid. Let $M=(E, \mathcal{B})$ be a matroid. Let

$$
\mathcal{B}(T M)=\{I \in \mathcal{I}(M) \mid \# I=\operatorname{rank}(M)-1\} .
$$

Then, $T M=(E, \mathcal{B}(T M))$ is a matroid. We define $T^{k} M=T\left(T^{k-1} M\right)$ for $k>1$, inductively. For $k=0$, we define $T^{k} M=M$. We call $T^{k} M$ a truncated matroid of M. The truncation of a uniform matroid is a uniform matroid. In fact, $T^{k} U_{r, n}=U_{r-k, n}$. Note that truncated matroids of a graphic matroid is not always graphic matroid.

3. Generating polynomials

In this section, we study the generating polynomials for a matroid, which are main objects in this thesis.

Let $[n]$ be the set $\{1,2, \ldots, n\}$. For a matroid $M=([n], \mathcal{B})$ of rank r, we define

$$
\begin{aligned}
& F_{M}=F_{M}(\boldsymbol{x})=\sum_{B \in \mathcal{B}} \prod_{i \in B} x_{i} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], \\
& P_{M}=P_{M}(\boldsymbol{x})=\sum_{I \in \mathcal{I}(M)}\left(\prod_{i \in I} x_{i}\right) x_{0}^{n-|I|} \in \mathbb{Z}\left[x_{0}, x_{1}, \ldots, x_{n}\right], \\
& \bar{P}_{M}=\bar{P}_{M}(\boldsymbol{x})=\left(\frac{\partial}{\partial x_{0}}\right)^{n-r} P_{M}(\boldsymbol{x}) \in \mathbb{Z}\left[x_{0}, x_{1}, \ldots, x_{n}\right] .
\end{aligned}
$$

We call them the basis generating polynomial, independent set generating polynomial, reduced independent set generating polynomial of M, respectively. By definition,

$$
P_{M}=P_{M}(\boldsymbol{x})=\sum_{i=0}^{\operatorname{rank}(M)} x_{0}^{n-\operatorname{rank}\left(T^{i} M\right)} F_{T^{i} M}(\boldsymbol{x}) .
$$

It is known that the generating polynomials are Lorentzian.
Proposition 3.2 (Anari-Gharan-Vinzant [3, 2, 1], Brändén-Huh [7, 8]). The generating polynomials F_{M}, P_{M}, and \bar{P}_{M} of a matroid M for any matroid with rank $M \geq 2$ are Lorentzian.

Since Lorentzian property implies the log-concavity, we have the following.

Proposition 3.3. The generating polynomials F_{M}, P_{M}, and \bar{P}_{M} of a matroid M for any matroid with rank $M \geq 2$ are log-concave on the positive orthant.

Let us see some example of the generating polynomials in Examples 3.4 to 3.6.

Example 3.4. Let $M=U_{4,4}=([4], \mathcal{B})$, namely, the matroid M is the free matroid on [4] of rank 4. Then, we have $\mathcal{B}=\{\{1,2,3,4\}\}$ and $\mathcal{I}(M)=2^{[4]}$. Hence,

$$
\begin{aligned}
F_{M} & =\sum_{B \in \mathcal{B}} \prod_{i \in B} x_{i}=x_{1} x_{2} x_{3} x_{4}, \\
P_{M} & =\sum_{I \in \mathcal{I}(M)}\left(\prod_{i \in I} x_{i}\right) x_{0}^{4-|I|} \\
& =x_{1} x_{2} x_{3} x_{4}+x_{0} x_{1} x_{2} x_{3}+x_{0} x_{1} x_{2} x_{4}+x_{0} x_{1} x_{3} x_{4}+x_{0} x_{2} x_{3} x_{4} \\
& +x_{0}^{2} x_{1} x_{2}+x_{0}^{2} x_{1} x_{3}+x_{0}^{2} x_{1} x_{4}+x_{0}^{2} x_{2} x_{3}+x_{0}^{2} x_{2} x_{4}+x_{0}^{2} x_{3} x_{4} \\
& +x_{0}^{3} x_{1}+x_{0}^{3} x_{2}+x_{0}^{3} x_{3}+x_{0}^{3} x_{4}+x_{0}^{4}, \\
\bar{P}_{M} & =\left(\frac{\partial}{\partial x_{0}}\right)^{4-4} P_{M}=P_{M} .
\end{aligned}
$$

Example 3.5. If $M=U_{r, n}$ on [n], then

$$
\begin{aligned}
F_{M} & =e_{r}\left(x_{1}, \ldots, x_{n}\right) \\
P_{M} & =\sum_{k=n-r}^{n} x_{0}^{k} e_{n-k}\left(x_{1}, \ldots, x_{n}\right), \\
\bar{P}_{M} & =\sum_{k=n-r}^{n} x_{0}^{k-(n-r)} e_{n-k}\left(x_{1}, \ldots, x_{n}\right) \\
& =\sum_{k=0}^{r} x_{0}^{k} e_{r-k}\left(x_{1}, \ldots, x_{n}\right),
\end{aligned}
$$

where $e_{r}\left(x_{1}, \ldots, x_{n}\right)$ is the elementary symmetric polynomial of degree r in n variables, and $e_{0}\left(x_{1}, \ldots, x_{n}\right)=1$.

Example 3.6. Let M be the graphic matroid of a connected graph Γ with n vertices and m edges. The rank of $M(\Gamma)$ is $n-1$. Then, we have

$$
\begin{aligned}
F_{M} & =\text { the Kirchhoff polynomial of } \Gamma(\text { of degree } n-1), \\
P_{M} & =\sum_{k=0}^{n-1} \sum_{\substack{F: \text { forest } \\
\# E(F)=k}} x_{0}^{m-k} \prod_{i \in E(F)} x_{i}, \\
\bar{P}_{M} & =\sum_{k=0}^{n-1} \sum_{\substack{F: \text { forest } \\
\# E(F)=k}} x_{0}^{m-k-(m-n+1)} \prod_{i \in E(F)} x_{i} \\
& =\sum_{k=0}^{n-1} \sum_{\substack{F: \text { forest } \\
\# E(F)=k}} x_{0}^{n-k-1} \prod_{i \in E(F)} x_{i}
\end{aligned}
$$

where $\prod_{i \in \emptyset} x_{i}=1$.
We give some properties of the generating polynomials for our goals in this thesis.

Generating polynomials satisfy the deletion-contraction formula. These formulae in Proposition 3.7 are useful to the inductive proofs.

Proposition 3.7. For any $e \in E$ which is not a loop or a coloop, we have

$$
\begin{aligned}
F_{M} & =F_{M \backslash e}+x_{e} F_{M / e}, \\
P_{M} & =P_{M \backslash e}+x_{e} P_{M / e}, \\
\bar{P}_{M} & =\bar{P}_{M \backslash e}+x_{e} \bar{P}_{M / e} .
\end{aligned}
$$

In particular, if matroid M_{0} is obtained by deleting $e_{1}, \ldots, e_{k} \in E$ from M, then we have

$$
\begin{aligned}
F_{M_{0}} & =\left.F_{M}\right|_{x_{e_{1}}=\cdots=x_{e_{k}}=0}, \\
P_{M_{0}} & =\left.P_{M}\right|_{x_{e_{1}}=\cdots=x_{e_{k}}=0}, \\
\bar{P}_{M_{0}} & =\left.\bar{P}_{M}\right|_{x_{e_{1}}=\cdots=x_{e_{k}}=} .
\end{aligned}
$$

As the partial derivation of the generating polynomials, we can easily find the following.

Proposition 3.8. Let M be a matroid on [n] of rank r.

- If $i \in[n]$ is a loop, then $\frac{\partial}{\partial x_{i}} F_{M}=\frac{\partial}{\partial x_{i}} P_{M}=0$.
- If $i \in[n]$ is not a loop, then $\frac{\partial}{\partial x_{i}} F_{M}=F_{M / i}$ and $\frac{\partial}{\partial x_{i}} P_{M}=P_{M / i}$.
- If $i_{1}, i_{2} \in[n]$ are parallel, then $\frac{\partial}{\partial x_{i_{1}}} F_{M}=\frac{\partial}{\partial x_{i_{2}}} F_{M}$ and $\frac{\partial}{\partial x_{i_{1}}} P_{M}=$ $\frac{\partial}{\partial x_{i_{2}}} P_{M}$.
Proposition 3.9. Let M be a matroid on $[n]$. If $[n]=E_{0} \sqcup E_{1} \sqcup \cdots \sqcup E_{s}$ is the parallel class decomposition, then

$$
F_{M}=F_{\bar{M}}\left(\sum_{i \in E_{1}} x_{i}, \ldots, \sum_{i \in E_{s}} x_{i}\right)
$$

and

$$
P_{M}=x_{0}^{n-s} P_{\bar{M}}\left(x_{0}, \sum_{i \in E_{1}} x_{i}, \ldots, \sum_{i \in E_{s}} x_{i}\right),
$$

where E_{0} is the set of loops and we consider that \bar{M} is a matroid on [s] such that i corresponds to an element in E_{i} for $i=1,2, \ldots, s$.

Proposition 3.9 will be use in the proof of Theorem 6.1.
Proposition 3.10 (Murai-Nagaoka-Yazawa [16]). Let M be a simple matroid on $[n]$ of rank $r \geq 2$.

- $\frac{\partial}{\partial x_{1}} F_{M}, \ldots, \frac{\partial}{\partial x_{n}} F_{M}$ are \mathbb{R}-linearly independent.
- If $M \neq U_{r, n}$ then $\frac{\partial}{\partial x_{0}} \bar{P}_{M}, \frac{\partial}{\partial x_{1}} \bar{P}_{M}, \ldots, \frac{\partial}{\partial x_{n}} \bar{P}_{M}$ are \mathbb{R}-linearly independent.

Proposition 3.10 means that the generating polynomials for a matroid satisfy the hypothesis of Proposition 1.18. This fact is the key of the proof of Theorem 6.1, which is one of our goals in this thesis.

CHAPTER 4

Cyclic matrices

In this chapter, we study cyclic matrices, in particular, block cyclic matrices. The theorems in this chapter give formulae of the eigenvalues and the determinants of some matrices. We apply the theorems to the matrices defined by graphs in Chapter 5 .

A cyclic matrix is a matrix $C=\left(c_{i, j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$ such that $c_{i, j}=$ $c_{i+1, j+1}$ for $1 \leq i \leq m, 1 \leq j \leq n$. Note that we take the convention that every subscript less than 1 or greater than n should be shifted into the correct range. Let C be a cyclic matrix of size n. One can see that

$$
\boldsymbol{z}_{n, k}=\left(\begin{array}{c}
1 \\
\zeta_{n}^{k} \\
\zeta_{n}^{2 k} \\
\vdots \\
\zeta_{n}^{(n-1) k}
\end{array}\right)
$$

is an eigenvector of C for $0 \leq k \leq n-1$, where ζ_{n} is the nth primitive root. Let $C^{(1)}$ be the first row of C. Then the characteristic polynomial $\chi_{C}(t)$ and the determinant $\operatorname{det} C$ of C are

$$
\begin{aligned}
\chi_{C}(t) & =\prod_{k=0}^{n-1}\left(t-C^{(1)} \boldsymbol{z}_{n, k}\right), \\
\operatorname{det} C & =\prod_{k=0}^{n-1} C^{(1)} \boldsymbol{z}_{n, k} .
\end{aligned}
$$

1. Block cyclic matrices

We now consider the block cyclic matrices. A block cyclic matrix is a block matrix such that each block is cyclic. A cyclic matrix is a block cyclic matrix with one block, and an $m \times n$ matrix is a block cyclic matrix with $m \times n$ blocks, we regard each entry as a block. We study the three types of block cyclic matrices. Let I_{n} be the identity matrix of size n, and $J_{m n}$ the all-one matrix of size $m \times n$. Let $l \in \mathbb{Z}$, $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{l}\right)$, and $\delta=d_{1}+d_{2}+\cdots+d_{l}$. Let $C^{i j}$ be a cyclic matrix of size $d_{i} \times d_{j}$ for $1 \leq i, j \leq l$.

Type I. The case where $\boldsymbol{d}=(n, \ldots, n)$ i.e., a block matrix whose blocks are $n \times n$ cyclic matrices. Let C be $\left(C^{i j}\right)_{1 \leq i, j \leq l}, C^{i j}$ an $n \times n$ matrix for each i, j, and $c_{i j}^{(k)}$ an eigenvalue of $C^{i j}$ associated with an
eigenvector $\boldsymbol{z}_{n, k}$. For C and $0 \leq k \leq n-1$, we define the $l \times l$ matrix \bar{C}_{k} by

$$
\bar{C}_{k}=\left(c_{i j}^{(k)}\right)_{1 \leq i, j \leq l}
$$

Theorem 4.1 (Yazawa [25]). Let $\left(w_{i}\right)_{1 \leq i \leq l} \in \mathbb{C}^{l}$ be an eigenvector of \bar{C}_{k} belonging to the eigenvalue λ. Then $\left(w_{i} \boldsymbol{z}_{n, k}\right)_{1 \leq i \leq l} \in \mathbb{C}^{n l}$ is an eigenvector of C associated with λ. Hence

$$
\begin{aligned}
\chi_{C}(t) & =\prod_{k=0}^{n-1} \chi_{\bar{C}_{k}}(t) \\
\operatorname{det} C & =\prod_{k=0}^{n-1} \operatorname{det} \bar{C}_{k}
\end{aligned}
$$

We apply Theorem 4.1 to the matrix defined by the complete bipartite graph in Theorem 4.5.

Type II. The case where $\boldsymbol{d}=(2 n, 2 n, \ldots, 2 n, n)$. Let D be the block matrix $D=\left(D^{i j}\right)_{1 \leq i, j \leq l}$ defined by

$$
D^{i j}= \begin{cases}\text { a } 2 n \times 2 n \text { cyclic matrix } & 1 \leq i, j \leq l-1, \\
\text { an } n \times n \text { cyclic matrix } & i=j=l, \\
\binom{X_{i}}{X_{i}} & j=l, \\
\left(\begin{array}{ll}
Y_{j} & Y_{j}
\end{array}\right) & i=l,\end{cases}
$$

where X_{i} and Y_{j} are $n \times n$ cyclic matrices.
For $0 \leq k \leq 2 n-1$, we define the $l \times l$ matrix $\bar{D}_{k}=\left(d_{i j}^{k}\right)_{1 \leq i, j \leq l}$ as follows: If k is even, then we define

$$
d_{i j}^{k}= \begin{cases}\left(D^{i j}\right)^{(1)} \boldsymbol{z}_{2 n, k} & \text { if } 1 \leq j \leq l-1, \\ \left(D^{i j}\right)^{(1)} \boldsymbol{z}_{n, \frac{k}{2}} & \text { if } j=l .\end{cases}
$$

If k is odd, then

$$
d_{i j}^{k}= \begin{cases}\left(D^{i j}\right)^{(1)} \boldsymbol{z}_{2 n, k} & \text { if } 1 \leq j \leq l-1, \\ 0 & \text { if } j=l .\end{cases}
$$

Theorem 4.2 (Yazawa [25]). The characteristic polynomial of D is

$$
\begin{aligned}
\chi_{D}(t) & =\left(\prod_{k: \text { even }} \chi_{\bar{D}_{k}}(t)\right)\left(\prod_{k: \text { odd }} \frac{1}{t} \chi_{\bar{D}_{k}}(t)\right) \\
& =\frac{1}{t^{n}} \prod_{k=0}^{2 n-1} \chi_{\bar{D}_{k}}(t)
\end{aligned}
$$

We apply Theorems 4.1 and 4.2 to the matrix defined by the complete graph in Theorem 4.4.

Type III. The case where $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{l}\right)$. The block size are more general but the entries in each block are at most two numbers. For a square matrix A of size $l, \boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{l}\right)$, and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$, we define

$$
\begin{aligned}
T(A, \boldsymbol{d}) & =\left(a_{i j} J_{d_{i} d_{j}}\right)_{1 \leq i, j \leq l}, \\
D(\lambda, \boldsymbol{d}) & =\left(\begin{array}{lllc}
\lambda_{1} I_{d_{1}} & \lambda_{2} I_{d_{2}} & & \mathbf{0} \\
& & \ddots & \\
\mathbf{0} & & & \lambda_{l} I_{d_{l}}
\end{array}\right) .
\end{aligned}
$$

We define the square matrix $M(A, \lambda, \boldsymbol{d})$ of size $d_{1}+\cdots+d_{l}$ by

$$
M(A, \lambda, \boldsymbol{d})=T(A, \boldsymbol{d})+D(\lambda, \boldsymbol{d})
$$

We also define the square matrix $\bar{M}(A, \lambda, \boldsymbol{d})$ of size l by

$$
\bar{M}(A, \lambda, \boldsymbol{d})=\operatorname{diag}\left(d_{1}, \ldots, d_{l}\right) A+\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{l}\right) .
$$

Theorem 4.3 (Yazawa [25]). For a matrix A of size l, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ and $\boldsymbol{d}=\left(d_{1}, d_{2}, \ldots, d_{l}\right)$, we have

$$
\begin{aligned}
\chi_{M(A, \lambda, \boldsymbol{d})}(t) & =\chi_{\bar{M}(A, \lambda, \boldsymbol{d})}(t) \prod_{i=1}^{l}\left(t-\lambda_{i}\right)^{d_{i}-1} \\
\operatorname{det} M(A, \lambda, \boldsymbol{d}) & =\operatorname{det} \bar{M}(A, \lambda, \boldsymbol{d}) \prod_{i=1}^{l} \lambda_{i}^{d_{i}-1}
\end{aligned}
$$

Theorems 4.1 to 4.3 claim that a block cyclic matrix can reduce to a smaller size matrix. The details and proofs of Theorems 4.1 to 4.3 are in [25].

2. Block cyclic matrices arising from graphs

The block cyclic matrices are often appeared in a situation that a cyclic group action on an object. We consider
(1) the cyclic group C_{n} of order n action on the graph K_{n},
(2) $C_{m} \times C_{n}$ action on the graph $K_{m, n}$.

First, we consider (1). Let $V=\{0,1, \ldots, n-1\}$ and E be the vertex set and the edge set of the complete graph K_{n}, respectively. Let $H=\left(h_{e, e^{\prime}}\right)_{e, e^{\prime} \in E}$ be the matrix defined by

$$
h_{e, e^{\prime}}= \begin{cases}\alpha, & \#\left(e \cap e^{\prime}\right)=2 \\ \beta, & \#\left(e \cap e^{\prime}\right)=1 \\ \gamma, & \#\left(e \cap e^{\prime}\right)=0\end{cases}
$$

The index set of the matrices are the edges set of graphs, and the entries are determined by how to connect index edges. Consider the following action from the cyclic group C_{n} generated by σ on V :

$$
\sigma(i)=i+1 \quad(\bmod n)
$$

The action induces an action on E by the following:

$$
\sigma(\{i, j\})=\{i+1, j+1\} .
$$

The orbit decomposition of the edge set gives the block decomposition of H. Moreover, we can arrange the indexes such that each block of H is cyclic. The behavior of the action C_{n} on the edge set of K_{n} depends on the parity of n. If n is odd, then the matrix H is a block cyclic matrix of type I. If n is even, then the matrix H is a block cyclic matrix of type II. We get the same consequence in either case as Theorem 4.4. We prove it in the next section.

Theorem 4.4 (Yazawa [26]). The eigenvalues of H are

$$
\begin{aligned}
& \lambda_{1}=\alpha+(2 n-4) \beta+\frac{(n-2)(n-3)}{2} \gamma, \\
& \lambda_{2}=\alpha-2 \beta+\gamma, \\
& \lambda_{3}=\alpha+(n-4) \beta-(n-3) \gamma .
\end{aligned}
$$

The dimensions d_{λ} of the eigenspaces of H associate with the eigenvalues λ are

$$
d_{\lambda_{1}}=1, \quad d_{\lambda_{2}}=\binom{n}{2}-n, \quad \quad d_{\lambda_{3}}=n-1 .
$$

We apply Theorem 4.4 to Theorem 5.4, which is concerned with the Hessian matrix of the complete graph.

Next, we consider (2). Let $V=X \sqcup Y$ and E be the vertex set and the edge set of the complete bipartite graph $K_{X, Y}$, respectively. Let $X=\{1, \ldots, m\}$, and $Y=\{\overline{1}, \ldots, \bar{n}\}$. Let $H=\left(h_{e, e^{\prime}}\right)_{e, e^{\prime} \in E}$ be the matrix defined by

$$
h_{e, e^{\prime}}= \begin{cases}\alpha, & e=e^{\prime}, \\ \beta, & e \cap e^{\prime} \in X, \\ \gamma, & e \cap e^{\prime} \in Y, \\ \delta, & e \cap e^{\prime}=\emptyset\end{cases}
$$

The definition of the matrix H is similar to the matrix H in (1), the index set are the edges, and the entries are determined by how to connect index edges. Consider the following action from the direct product group $C_{m} \times C_{n}$ of the cyclic groups C_{m} and C_{n} generated by σ and σ^{\prime}, respectively, on $V=X \sqcup Y$:

$$
\sigma(i)=i+1 \quad(\bmod n), \quad \sigma^{\prime}(\bar{i})=\overline{i+1} \quad(\bmod m) .
$$

The action induces an action on E by the following:

$$
\left(\sigma, \sigma^{\prime}\right)(\{i, \bar{j}\})=\{i+1, \overline{j+1}\} .
$$

The orbit decomposition of the edge set gives the block decomposition of H. Moreover, we can arrange the indexes such that each block of H is cyclic, and the entries in each block of H are at most two. Therefore, the matrix H is a block matrix of type III, which $\boldsymbol{d}=\{n, n, \ldots, n\}$ and $l=m$. We prove it in the next section.

Theorem 4.5 (Yazawa [26]). The eigenvalues of H are

$$
\begin{aligned}
& \lambda_{1}=\alpha+(n-1) \beta+(m-1) \gamma+(m-1)(n-1) \delta, \\
& \lambda_{2}=\alpha+(n-1) \beta-\gamma-(n-1) \delta, \\
& \lambda_{3}=\alpha-\beta+(m-1) \gamma-(m-1) \delta, \\
& \lambda_{4}=\alpha-\beta-\gamma+\delta .
\end{aligned}
$$

The dimensions d_{λ} of the eigenspaces of H associate with the eigenvalues λ are

$$
d_{\lambda_{1}}=1, \quad d_{\lambda_{2}}=m-1, \quad d_{\lambda_{3}}=n-1, \quad d_{\lambda_{4}}=(m-1)(n-1) .
$$

We apply Theorem 4.5 to Theorem 5.6 , which is concerned with the Hessian matrix of the complete graph.

3. Proofs of Theorems

A special case of Theorems 4.4 and 4.5 was shown in [25]. The case is for spanning trees. As the generalization of them to the case of forests, Theorems 4.4 and 4.5 was given in [26]. Since direct analogue of the proof in [25] works, the details of proof was omitted in [26]. In this section, we completes Theorems 4.4 and 4.5.
3.1. Proof of Theorem 4.4. We prove Theorem 4.4. Let $V=$ $\{0,1, \ldots, n-1\}$ and E be the vertex set and the edge set of the complete graph K_{n}, respectively. Let C_{n} be the cyclic group generated by σ. The proof differs depending on whether n is odd or even.

First, let n be odd and $n=2 l+1$. Let $e_{i}=\{0, i\} \in E$ for $1 \leq i \leq l$. We can see that

$$
E=\bigsqcup_{i=1}^{l}\left\{\sigma^{k}\left(e_{i}\right) \mid 0 \leq k \leq n-1\right\} .
$$

In other words, the edges e_{i} are a complete set of representative of E. For $1 \leq i, j \leq l$, we define

$$
\begin{aligned}
C^{i j} & =\left(h_{\sigma^{k}\left(e_{i}\right), \sigma^{k^{\prime}}\left(e_{j}\right)}\right)_{0 \leq k, k^{\prime} \leq n-1}, \\
C & =\left(C^{i j}\right)_{1 \leq i, j \leq l},
\end{aligned}
$$

where $h_{\bullet, \bullet}$ are entries in H. By the way of construction of the matrix C, we can see that C is a matrix rearranged from H, and C is a block cyclic matrix of type I. For $0 \leq k \leq n-1$, let

$$
\bar{C}_{k}=\left(\left(C^{i j}\right)^{(1)} \boldsymbol{z}_{n, k}\right)_{1 \leq i, j \leq l},
$$

where the notations, $C^{(1)}$ and $\boldsymbol{z}_{n, k}$, are in the first of this chapter. We separate in the case $k \neq 0$ and $k=0$.

Lemma 4.6. Let $1 \leq k \leq n-1$. Then

$$
\bar{C}_{k}-(\alpha-2 \beta+\gamma) I_{l}=\left((\beta-\gamma) \xi_{i} \xi_{j}^{\prime}\right)_{1 \leq i, j \leq l}
$$

where $\xi_{i}=1+\zeta_{n}^{i k}$ and $\xi_{j}^{\prime}=1+\zeta_{n}^{-j k}$ for all i, j. Moreover the rank of $\bar{C}_{k}-(\alpha-2 \beta+\gamma) I_{l}$ is one.

Proof. Let us fix k and compute $\left(C^{i j}\right)^{(1)} \boldsymbol{z}_{n, k}$. In this case,

$$
\left(C_{i j}\right)(1)=\left(h_{e_{i}, \sigma^{0}\left(e_{j}\right)}, h_{e_{i}, \sigma^{1}\left(e_{j}\right)}, \ldots, h_{e_{i}, \sigma^{n-1}\left(e_{j}\right)}\right) .
$$

First we consider the case where $e_{i} \neq e_{j}$. The edges e_{i} and $\sigma^{l}\left(e_{j}\right)$ share their vertices if and only if $l=0, l=i, j+l=0$, and $j+l=i$. Since $e_{i} \neq e_{j}$, we have $e_{i} \neq \sigma^{l}\left(e_{j}\right)$ for any l. Hence if $l \in\{0, i,-j, i-j\}$, then

$$
h_{e_{i}, \sigma^{l}\left(e_{j}\right)}=\beta \text {, }
$$

and if $l \notin\{0, i,-j, i-j\}$, then

$$
h_{e_{i}, \sigma^{l}\left(e_{j}\right)}=\gamma .
$$

Therefore

$$
\begin{aligned}
\left(C^{i j}\right)^{(1)} \boldsymbol{z}_{n, k} & =\beta\left(\sum_{l \in\{0, i,-j, i-j\}} \zeta_{n}^{k l}\right)+\gamma\left(\sum_{l \notin\{0, i,-j, i-j\}} \zeta_{n}^{k l}\right) \\
& =(\beta-\gamma)\left(1+\zeta_{n}^{k i}+\zeta_{n}^{-k j}+\zeta_{n}^{k(i-j)}\right) \\
& =(\beta-\gamma) \xi_{i} \zeta_{j}^{\prime} .
\end{aligned}
$$

Next we consider the case where $e_{i}=e_{j}$. The edges e_{i} and $\sigma^{l}\left(e_{i}\right)$ share their vertices if and only if $l=0, l=i$ and $l+i=0$. If $l=0$, then

$$
h_{e_{i}, e_{i}}=\alpha,
$$

if $l=i$ or $l=-i$, then

$$
h_{e_{i}, \sigma^{l}\left(e_{i}\right)}=\beta
$$

Hence if $l \notin\{0, i,-i\}$, then

$$
h_{e_{i}, \sigma^{l}\left(e_{i}\right)}=\gamma .
$$

Therefore

$$
\begin{aligned}
\left(C^{i j}\right)^{(1)} \boldsymbol{z}_{n, k} & =\alpha+\beta\left(\sum_{l \in\{i,-i\}} \zeta_{n}^{k l}\right)+\gamma\left(\sum_{l \notin\{0, i,-i\}} \zeta_{n}^{k l}\right) \\
& =(\alpha-\gamma)+(\beta-\gamma)\left(\zeta_{n}^{k i}+\zeta_{n}^{-k i}\right) \\
& =(\alpha-\gamma)+(\beta-\gamma)\left(\zeta_{n}^{k i}+\zeta_{n}^{-k i}\right)+2(\beta-\gamma)-2(\beta-\gamma) \\
& =(\alpha-\gamma)-2(\beta-\gamma)+(\beta-\gamma)\left(2+\zeta_{n}^{k i}+\zeta_{n}^{-k i}\right) \\
& =(\alpha-2 \beta+\gamma)+(\beta-\gamma) \xi_{i} \xi_{i}^{\prime} .
\end{aligned}
$$

We have

$$
\begin{aligned}
\bar{C}_{k}-(\alpha-2 \beta+\gamma) I_{l} & =\left((\beta-\gamma) \xi_{i} \xi_{j}^{\prime}\right)_{1 \leq i, j \leq l} \\
& =(\beta-\gamma)\left(\begin{array}{c}
\xi_{1} \\
\vdots \\
\xi_{l}
\end{array}\right)\left(\begin{array}{lll}
\xi_{1}^{\prime} & \cdots & \xi_{l}^{\prime}
\end{array}\right) .
\end{aligned}
$$

Hence the rank of $\bar{C}_{k}-(\alpha-2 \beta+\gamma) I_{l}$ is one.
Proposition 4.7. For $1 \leq k \leq n-1$, the eigenvalues of \bar{C}_{k} are $\lambda_{1}=$ $\alpha-2 \beta+\gamma$ and $\lambda_{2}=\alpha+(n-4) \beta-(n-3) \gamma$. The dimensions d_{λ} of the eigenspaces of \bar{C}_{k} associate with the eigenvalues λ are $d_{\lambda_{1}}=l-1$ and $d_{\lambda_{2}}=1$.

Proof. The trace of \bar{C}_{k} is

$$
\begin{aligned}
\sum_{i=1}^{l}\left((\alpha-2 \beta+\gamma)+(\beta-\gamma) \xi_{i} \xi_{i}^{\prime}\right) & =l(\alpha-2 \beta+\gamma)+(\beta-\gamma) \sum_{i=1}^{l} \xi_{i} \xi_{i}^{\prime} \\
& =l(\alpha-2 \beta+\gamma)+(\beta-\gamma)(2 l-1) \\
& =l \alpha-\beta-(l-1) \gamma
\end{aligned}
$$

Note that $l=\frac{n-1}{2}$. The other eigenvalue of \bar{C}_{k} is

$$
l \alpha-\beta-(l-1) \gamma-(l-1)(\alpha-2 \beta+\gamma)=\alpha+(n-4) \beta-(n-3) \gamma .
$$

Therefore it follows from Lemma 4.6 that the eigenvalues of \bar{C}_{k} are $\lambda_{1}=\alpha-2 \beta+\gamma$ and $\lambda_{2}=\alpha+(n-4) \beta-(n-3) \gamma$. The dimensions d_{λ} of the eigenspaces of \bar{C}_{k} associate with the eigenvalues λ are $d_{\lambda_{1}}=l-1$ and $d_{\lambda_{2}}=1$.

Similarly, we obtain the result in the case where $k=0$.
Proposition 4.8. The eigenvalues of \bar{C}_{0} are $\lambda_{1}=\alpha-2 \beta+\gamma$ and $\lambda_{2}=\alpha+(2 n-4) \beta+\frac{(n-2)(n-3)}{2} \gamma$. The dimensions d_{λ} of the eigenspaces of \bar{C}_{0} associate with the eigenvalues λ are $d_{\lambda_{1}}=l-1$ and $d_{\lambda_{2}}=1$.

Since the matrix C is a block cyclic matrix of type I, we obtain Theorem 4.4 in the case where n is odd by Theorem 4.1 and Propositions 4.7 and 4.8 .

Next we consider the case where n is even. Let $n=2 l$. Let $e_{i}=$ $\{0, i\}$ for $1 \leq i \leq l$. We can see that

$$
E=\left(\bigsqcup_{i=1}^{l-1}\left\{\sigma^{k}\left(e_{i}\right) \mid 0 \leq k \leq n-1\right\}\right) \sqcup\left\{\sigma^{k}\left(e_{l}\right) \mid 0 \leq k \leq l\right\} .
$$

In other words, the edges e_{i} are a complete set of representative of E. We define the matrix $D^{i j}$ by

$$
\begin{aligned}
& D^{i j}= \begin{cases}\left(h_{\sigma^{k}\left(e_{i}\right), \sigma^{k^{\prime}}\left(e_{j}\right)}\right)_{0 \leq k, k^{\prime} \leq n-1} & \text { for } 1 \leq i, j \leq l-1, \\
\left(h_{\sigma^{k}\left(e_{i}\right), \sigma^{k^{\prime}}\left(e_{j}\right)}\right)_{0 \leq k \leq n-1}^{0 \leq k^{\prime} \leq l} \\
\left(h_{\sigma^{k}\left(e_{e}\right), \sigma^{k^{\prime}}\left(e_{j}\right)}\right)_{0 \leq k \leq l}^{0 \leq k^{\prime} \leq n-1} \\
\left(h_{\sigma^{k}\left(e_{i}\right), \sigma^{k^{\prime}}\left(e_{j}\right)}\right)_{0 \leq k, k^{\prime} \leq l} & \text { for } 1 \leq i \leq l-1, j=l, \\
& \text { for } i=l, 1 \leq j \leq l-1,\end{cases} \\
& D \text { for } i=j=l, \\
&\left.D^{i j}\right)_{1 \leq i, j \leq l} .
\end{aligned}
$$

By the way of construction of the matrix D, we can see that D is a matrix rearranged from H, and D is a block cyclic matrix of type II. we define the $l \times l$ matrix $\bar{D}_{k}=\left(d_{i j}^{k}\right)_{1 \leq i, j \leq l}$ as follows: If k is even, then we define

$$
d_{i j}^{k}= \begin{cases}\left(D^{i j}\right)^{(1)} \boldsymbol{z}_{n, k} & \text { if } 1 \leq j \leq l-1, \\ \left(D^{i j}\right)^{(1)} \boldsymbol{z}_{l, \frac{k}{2}} & \text { if } j=l .\end{cases}
$$

If k is odd, then we define

$$
d_{i j}^{k}= \begin{cases}\left(D^{i j}\right)^{(1)} \boldsymbol{z}_{n, k} & \text { if } 1 \leq j \leq l-1, \\ 0 & \text { if } j=l .\end{cases}
$$

We separate in the cases $k \neq 0$ and $k=0$.
Lemma 4.9. Let $1 \leq k \leq 2 n-1$. Then

$$
\bar{D}_{k}-(\alpha-2 \beta+\gamma) I_{l}=\left(-\xi_{i} \xi_{j}^{\prime}\right)_{1 \leq i, j \leq l}
$$

where

$$
\xi_{i}=1+\zeta_{n}^{i k}, \quad \xi_{j}^{\prime}= \begin{cases}1+\zeta_{n}^{-j k} & \text { if } 1 \leq j \leq l-1, \\ \frac{1}{2}\left(1+\zeta_{n}^{-l k}\right) & \text { if } j=l .\end{cases}
$$

for all i, j. Moreover the rank of $\bar{D}_{k}-(\alpha-2 \beta+\gamma) I_{l}$ is one.
Proposition 4.10. Let $1 \leq k \leq 2 n-1$ and k be odd. The eigenvalues of \bar{D}_{k} are $\lambda_{1}=\alpha-2 \beta+\gamma, \lambda_{2}=\alpha+(2 n-4) \beta+\frac{(n-2)(n-3)}{2} \gamma$ and $\lambda_{3}=0$. The dimensions d_{λ} of the eigenspaces of \bar{D}_{k} associate with the eigenvalues λ are $d_{\lambda_{1}}=l-2, d_{\lambda_{1}}=1$ and $d_{\lambda_{1}}=1$.

Let $1 \leq k \leq 2 n-1$ and k be even. The eigenvalues of \bar{D}_{k} are $\lambda_{1}=\alpha-2 \beta+\gamma$ and $\lambda_{2}=\alpha+(2 n-4) \beta+\frac{(n-2)(n-3)}{2} \gamma$. The dimensions d_{λ}
of the eigenspaces of \bar{D}_{k} associate with the eigenvalues λ are $d_{\lambda_{1}}=l-1$ and $d_{\lambda_{2}}=1$.

We can show Lemma 4.9 and Proposition 4.10 as same as Lemma 4.6 and Proposition 4.7, respectively. We can also show Proposition 4.11 as same as Proposition 4.8.

Proposition 4.11. The eigenvalues of \bar{D}_{0} are $\lambda_{1}=\alpha-2 \beta+\gamma$ and $\lambda_{2}=\alpha+(2 n-4) \beta+\frac{(n-2)(n-3)}{2} \gamma$. The dimensions d_{λ} of the eigenspaces of \bar{D}_{0} associate with the eigenvalues λ are $d_{\lambda_{1}}=l-1$ and $d_{\lambda_{2}}=1$.

Since the matrix D is a block cyclic matrix of type II, we obtain Theorem 4.4 in the case where n is even by Theorem 4.2 and Propositions 4.10 and 4.11. We complete to show Theorem 4.4.
3.2. Proof of Theorem 4.5. We prove Theorem 4.5. Let $V=$ $X \sqcup Y$ and E be the vertex set and the edge set of the complete bipartite graph $K_{X, Y}$, respectively. Let $X=\{1, \ldots, m\}$, and $Y=\{\overline{1}, \ldots, \bar{n}\}$. Let $C_{m} \times C_{n}$ be the direct product group of the cyclic groups C_{m} and C_{n} of order m and n generated by σ and σ^{\prime}, respectively. Let $e_{i}=\{i, \overline{1}\}$ for $1 \leq i \leq m$. We can see that

$$
E=\bigsqcup_{i=1}^{m}\left\{\sigma^{\prime k}\left(e_{i}\right) \mid 0 \leq k \leq n-1\right\} .
$$

In other words, the edges e_{i} are a complete set of representative of E. We define

$$
\begin{aligned}
C^{i j} & =\left(h_{\sigma^{\prime k}\left(e_{i}\right), \sigma^{\prime k^{\prime}}\left(e_{j}\right)}\right)_{0 \leq k, k^{\prime} \leq n-1} \\
C & =\left(C^{i j}\right)_{1 \leq i . j \leq m}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& C^{i i}=(\alpha-\beta) I_{m}+\beta J_{m m}, \\
& C^{i j}=(\gamma-\delta) I_{m}+\delta J_{m m}
\end{aligned}
$$

for all i and $i \neq j$. For $0 \leq k \leq n-1$, let

$$
\bar{C}_{k}=\left(\left(C^{i j}\right)^{(1)} \boldsymbol{z}_{n, k}\right)_{1 \leq i, j \leq l}
$$

Then,

$$
\begin{aligned}
& \bar{C}_{0}=(\alpha-\gamma) I_{m}+(\gamma+(m-1) \beta) J_{m m}, \\
& \bar{C}_{k}=(\alpha-\beta-\gamma+\delta) I_{m}+(\gamma-\delta) J_{m m}
\end{aligned}
$$

By Theorem 4.1 and the following well-known fact, we obtain Theorem 4.5.

Lemma 4.12. Let C be the cyclic matrix of size n defined by

$$
C^{i i}=(a-b) I_{n}+b J_{n n} .
$$

Then, the eigenvalues are $a+(n-1) b$ and $a-b$. The following vectors

$$
\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
\vdots \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0 \\
\vdots \\
0
\end{array}\right), \cdots,\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
\vdots \\
0 \\
-1
\end{array}\right)
$$

are eigenvectors associate with $a+(n-1) b, a-b, \ldots$, and $a-b$, respectively. Hence, the dimensions of the eigenspaces of C associate with $a+(n-1) b$ and $a-b$ are 1 and $n-1$, respectively.

CHAPTER 5

Hessian matrices of graphs

In this chapter, we consider the generating function for forests in a graph. Then, we compute the Hessian matrix of the generating function. Surprisingly, any Hessian matricies of graphs has exactly one positive eigenvalue, and theirs determinants do not vanish with some values.

Let Γ be a finite connected simple graph. For $1 \leq k \leq \# V(\Gamma)-1$, we define \mathcal{F}_{Γ}^{k} to be the collection of the edges of the k components forests in Γ. In other words,

$$
\mathcal{F}_{\Gamma}^{k}=\{E(F) \mid F \text { is a forest in } \Gamma \text { with } k \text { components }\} .
$$

We define a polynomial $F_{\Gamma, k} \in \mathbb{R}\left[x_{i j} \mid\{i, j\} \in E(\Gamma)\right] /\left(x_{i j}-x_{j i}\right)$ of \mathcal{F}_{Γ}^{k} by

$$
F_{\Gamma, k}=\sum_{E(F) \in \mathcal{F}_{\Gamma}^{k}} \prod_{\{i, j\} \in E(F)} x_{i j} .
$$

One can see that in the case where $k=1$, an element in \mathcal{F}_{Γ}^{k} is the edges of a spanning tree in Γ, and the $F_{\Gamma, k}$ is the Kirchhoff polynomial of Γ. Let $M(\Gamma)$ be the graphic matroid on $E(\Gamma)$ of a finite connected graph Γ. Then, $\left(E(\Gamma), \mathcal{F}_{\Gamma}^{k}\right)$ is a truncated matroid $T^{k} M(\Gamma)$ of $M(\Gamma)$. Therefore, the polynomial $F_{\Gamma, k}$ is the basis generating polynomial of $T^{k} M(\Gamma)$. Note that a truncated matroid of a graphic matroid is not always a graphic matroid. Obviously, the polynomial $F_{\Gamma, k}$ is a homogeneous polynomial of degree $\# V(\Gamma)-k$, and each term of $F_{\Gamma, k}$ is square-free.

We define the Hessian matrix $H_{F_{\Gamma, k}}$ of $F_{\Gamma, k}$ by

$$
H_{F_{\Gamma, k}}=\left(\frac{\partial}{\partial x_{e}} \frac{\partial}{\partial x_{e^{\prime}}} F_{\Gamma, k}\right)_{e, e^{\prime} \in E(\Gamma)} .
$$

The matrices $H_{F_{\Gamma, k}}$ are called the Hessian matrices of Γ, and the determinant det $H_{F_{\Gamma, k}}$ is called the Hessian of Γ. The matrix $H_{F_{\Gamma, \# V(\Gamma)-1}}$ is always the zero matrix since $F_{\Gamma, \# V(\Gamma)-1}$ is a homogeneous polynomial of degree one. We define $\widetilde{H}_{F_{\Gamma}, k}$ to be the special value of $H_{F_{\Gamma, k}}$ at $x_{e}=1$ for all e. The matrix $\widetilde{H}_{F_{\Gamma}, k}$ gives us combinatorial way to compute $H_{F_{\Gamma, k}}$ and information whether the Hessian of a graph vanishes or not. The $\left(e, e^{\prime}\right)$-entry in $\widetilde{H}_{F_{\Gamma, k}}$ is the number of k components forests including the edges e and e^{\prime}.

It is too complicated to compute the Hessian matrices of graphs directly. There, however, are some graphs can calculate the Hessian matrices directly. In Sections 1 to 3, we compute directly the Hessian matrices of trees, the complete and complete bipartite graphs. In Section 4, there are a theoretical results for the Hessian matrices of all graphs.

1. Trees

We consider the Hessian matrix of the tree T_{n} with $n \geq 2$ vertices. Note that trees with the same number of vertices have the same generating polynomial $F_{T, k}$. Let $\{1,2, \ldots, n\}$ be the edge set. Then, we have

$$
F_{T_{n}, n-k+1}=e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for $2 \leq k \leq n+1$, where $e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the symmetric polynomial of degree k in n variables. Since

$$
\left.\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} e_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right|_{x_{m}=1}=\binom{n-2}{k-2}
$$

for $i \neq j$. Therefore, we have

$$
\widetilde{H}_{F_{T_{n}, n-k+1}}=\binom{n-2}{k-2}\left(J_{n n}-I_{n}\right) .
$$

By Lemma 4.12, the eigenvalues of $\widetilde{H}_{F_{T_{n}, n-k+1}}$ are

$$
(n-1)\binom{n-2}{k-2},-\binom{n-2}{k-2}, \ldots,-\binom{n-2}{k-2}
$$

To summarize it, we obtain the following.
Proposition 5.1. Let $n \geq 2$ and $2 \leq k \leq n+1$. The matrix $\widetilde{H}_{F_{T_{n}, n-k+1}}$ has exactly one positive eigenvalue. Moreover, the Hessian does not vanish.

Since $F_{T_{n}, 1}$ is the Kirchhoff polynomial of T_{n}, we have the following.
Corollary 5.2. The Hessian of the Kirchhoff polynomial of T_{n} does not vanish for $n \geq 2$. Moreover, the matrix evaluated at x_{e} for all e has exactly one positive eigenvalue.

Remark 5.3. Proposition 5.1 is shown in [13] in more general situation, the higher Hessians of the elementary symmetric polynomial do not vanish.

2. Complete graphs

Here, we compute the Hessian matricies of the complete graph K_{n}. Let us take a look at some examples. Consider the complete graph K_{4} with the vertex set $V=\{1,2,3,4\}$. Then,

$$
\begin{aligned}
F_{K_{4}, 3} & =x_{12}+x_{13}+x_{14}+x_{23}+x_{24}+x_{34}, \\
F_{K_{4}, 2} & =x_{12} x_{13}+x_{12} x_{14}+x_{12} x_{23}+x_{12} x_{24}+x_{12} x_{34} \\
& +x_{13} x_{14}+x_{13} x_{23}+x_{13} x_{24}+x_{13} x_{34}+x_{14} x_{23} \\
& +x_{14} x_{24}+x_{14} x_{34}+x_{23} x_{24}+x_{23} x_{34}+x_{24} x_{34}, \\
F_{K_{4}, 1} & =x_{12} x_{13} x_{24}+x_{12} x_{13} x_{14}+x_{13} x_{14} x_{23}+x_{12} x_{14} x_{23} \\
& +x_{14} x_{23} x_{24}+x_{12} x_{14} x_{34}+x_{13} x_{23} x_{34}+x_{13} x_{23} x_{24} \\
& +x_{12} x_{23} x_{24}+x_{14} x_{23} x_{34}+x_{12} x_{13} x_{34}+x_{13} x_{14} x_{24} \\
& +x_{13} x_{24} x_{34}+x_{12} x_{24} x_{34}+x_{13} x_{24} x_{34}+x_{14} x_{24} x_{34} .
\end{aligned}
$$

In the case of $F_{K_{4}, 3}$, the Hessian matrix is zero matrix since the degree of $F_{K_{4}, 3}$ is one. In the case of $F_{K_{4}, 2}$, we have

$$
\widetilde{H}_{F_{K_{4}, 2}}=\left(\begin{array}{cccccc}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0
\end{array}\right) .
$$

The eigenvalues of $\widetilde{H}_{F_{K_{4}, 2}}$ are $5,-1,-1,-1,-1,-1$. In the case of $F_{K_{4}, 1}$, we have

$$
\widetilde{H}_{F_{K_{4}, 1}}=\left(\begin{array}{llllll}
0 & 3 & 4 & 3 & 3 & 3 \\
3 & 0 & 3 & 4 & 3 & 3 \\
4 & 3 & 0 & 3 & 3 & 3 \\
3 & 4 & 3 & 0 & 3 & 3 \\
3 & 3 & 3 & 3 & 0 & 4 \\
3 & 3 & 3 & 3 & 4 & 0
\end{array}\right) .
$$

The eigenvalues of $\widetilde{H}_{F_{K_{4}, 1}}$ are $16,-2,-2,-4,-4,-4$. We can see that the Hessian matrices have exactly one positive eigenvalue and are nondegenerate.

Theorem 5.4 (Yazawa [26]). Let $n \geq 3$ and $0<k \leq n-2$. The matrix $\widetilde{H}_{F_{K_{n}, k}}$ has exactly one positive eigenvalue. Moreover, the Hessian does not vanish.

Since $F_{K_{n}, 1}$ is the Kirchhoff polynomial of K_{n}, we have the following.
Corollary 5.5 (Yazawa [25]). The Hessian of the Kirchhoff polynomial of the complete graph K_{n} does not vanish for $n \geq 3$. Moreover, the matrix evaluated at $x_{e}=1$ for all e has exactly one positive eigenvalue.

Let us prove Theorem 5.4. We calculate eigenvalues of $\widetilde{H}_{F_{K_{n}, k}}$. For $e \neq e^{\prime}$, the $\left(e, e^{\prime}\right)$-entry in $\widetilde{H}_{F_{K_{n}, k}}$ is the number of k components forests including the edges e and e^{\prime}. The diagonals are zero since each term of $F_{K_{n}, k}$ is square-free. Let $\widetilde{H}_{F_{K_{n}, k}}=\left(h_{e, e^{\prime}}\right)_{e, e^{\prime} \in E}$. By Example 2.7, we have the following:

$$
h_{e, e^{\prime}}= \begin{cases}0, & \#\left(e \cap e^{\prime}\right)=2 \\ 3 n^{n-4}, & \#\left(e \cap e^{\prime}\right)=1 \\ 4 n^{n-4}, & \#\left(e \cap e^{\prime}\right)=0\end{cases}
$$

This matrix is the same of the matrix H in Section 2 of Theorem 4.4 where $\alpha=0, \beta=3 n^{n-4}$, and $\gamma=4 n^{n-4}$. By Theorem 4.4, we obtain Theorem 5.4. See $[\mathbf{2 6}, \mathbf{2 5}]$ for the concrete values of the eigenvalues.

3. Complete bipartite graphs

We consider the Hessian matrix of the complete bipartite graph. Let us take a look at some examples. Consider the complete graph K_{4} with the vertex set $V=\{1,2,3,4\}$. Let $X=\{1,2\}$ and $Y=\{\overline{1}, \overline{2}\}$. Let $K_{X, Y}$ be the complete bipartite graph with the vertex sets X and Y. Then,

$$
\begin{aligned}
& F_{K_{X, Y}, 3}=x_{1 \overline{1}}+x_{1 \overline{2}}+x_{2 \overline{1}}+x_{2 \overline{2}}, \\
& F_{K_{X, Y}, 2}=x_{1 \overline{1}} x_{1 \overline{2}}+x_{1 \overline{1}} x_{2 \overline{1}}+x_{1 \overline{1}} x_{2 \overline{2}}+x_{1 \overline{2}} x_{2 \overline{1}}+x_{1 \overline{2}} x_{2 \overline{2}}+x_{2 \overline{1}} x_{2 \overline{2}}, \\
& F_{K_{X, Y}, 1}=x_{1 \overline{1}} x_{1 \overline{2}} x_{2 \overline{1}}+x_{1 \overline{1}} x_{1 \overline{2}} x_{2 \overline{2}}+x_{1 \overline{1}} x_{2 \overline{1}} x_{2 \overline{2}}+x_{1 \overline{2}} x_{2 \overline{1}} x_{2 \overline{2}} .
\end{aligned}
$$

In the case of $F_{K_{X, Y}, 3}$, the Hessian matrix is zero matrix since the degree of $F_{K_{X, Y}, 3}$ is one. In the case of $F_{K_{X, Y}, 2}$, we have

$$
\widetilde{H}_{F_{K_{X, Y}, 2}}=\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) .
$$

The eigenvalues of $\widetilde{H}_{F_{K_{X, Y}, 2}}$ are $3,-1,-1,-1$. In the case of $F_{K_{X, Y} 1}$, we have

$$
\widetilde{H}_{F_{K_{X, Y}, 1}}=\left(\begin{array}{llll}
0 & 2 & 2 & 2 \\
2 & 0 & 2 & 2 \\
2 & 2 & 0 & 2 \\
2 & 2 & 2 & 0
\end{array}\right) .
$$

The eigenvalues of $\widetilde{H}_{F_{K_{X, Y}, 1}}$ are $6,-2,-2,-2$. We can see that the Hessian matrices have exactly one positive eigenvalue and are nondegenerate.

Theorem 5.6 (Yazawa [26]). Consider sets X and Y such that $X \cap$ $Y=\emptyset$, $\# X \geq 2$ and $\# Y \geq 2$. For $0<k \leq \# X+\# Y-2$, the matrix
$\widetilde{H}_{F_{K_{X, Y}, k}}$ has exactly one positive eigenvalue. Moreover, the Hessian does not vanish.

Since $F_{K_{X, Y}, 1}$ is the Kirchhoff polynomial of $K_{X, Y}$, we have the following.

Corollary 5.7 (Yazawa [25]). The Hessian of the Kirchhoff polynomial of the complete bipartite graph does not vanish for $\# X \geq 2$ and $\# Y \geq$ 2. Moreover, the matrix evaluated at $x_{e}=1$ for all e has exactly one positive eigenvalue.

Let us prove Theorem 5.6. Fix

$$
\begin{aligned}
X & =\{1,2, \ldots, m\}, \\
Y & =\{\overline{1}, \overline{2}, \ldots, \bar{n}\},
\end{aligned}
$$

and $m, n \geq 2$. We calculate eigenvalues of $\widetilde{H}_{F_{K_{X, Y}, k}}$. For $e \neq e^{\prime}$, the $\left(e, e^{\prime}\right)$-entry in $\widetilde{H}_{F_{K_{n}, k}}$ is the number of k components forests including the edges e and e^{\prime}. To the best of my knowledge, there is no explicit formula as Example 2.7 for the complete bipartite graph. Thus, we just put letters to these numbers. Define

$$
\begin{aligned}
& P=\left\{F \in \mathcal{F}_{X, Y}^{k} \mid\{1, \overline{1}\},\{1, \overline{2}\} \in E(F)\right\}, \\
& Q=\left\{F \in \mathcal{F}_{X, Y}^{k} \mid\{1, \overline{1}\},\{\overline{1}, 2\} \in E(F)\right\}, \\
& R=\left\{F \in \mathcal{F}_{X, Y}^{k} \mid\{1, \overline{1}\},\{2, \overline{2}\} \in E(F)\right\},
\end{aligned}
$$

and

$$
p=\# P, \quad q=\# Q, \quad r=\# R .
$$

Let $\widetilde{H}_{F_{X, Y, k}}=\left(h_{e, e^{\prime}}\right)$. Since there is an automorphism of $K_{X, Y}$, we have

$$
h_{e, e^{\prime}}= \begin{cases}0, & e=e^{\prime}, \\ p, & e \cap e^{\prime} \in X, \\ q, & e \cap e^{\prime} \in Y, \\ r, & e \cap e^{\prime}=\emptyset\end{cases}
$$

This matrix is the same of the matrix H in Section 2 of Theorem 4.5, where $\alpha=0, \beta=p, \gamma=q$, and $\delta=r$. By Theorem 4.5, we obtain the eigenvalues of $K_{X, Y}$. Then, we need to calculate the signature of the eigenvalues. See $[\mathbf{2 6}, \mathbf{2 5}]$ for the concrete values of the eigenvalues. We will find that Theorem 5.6 holds in $[\mathbf{2 6}, \mathbf{2 5}]$.

4. The other graphs

For general graphs, we obtain similar results to Proposition 5.1, Corollaries 5.2, 5.5 and 5.7, and Theorems 5.4 and 5.6.

Theorem 5.8 (Murai-Nagaoka-Yazawa [16]). Let Γ be a graph. The matrix $\widetilde{H}_{F_{\Gamma, k}}$ has exactly one positive eigenvalue. Moreover, the Hessian does not vanish.

Since $F_{\Gamma, 1}$ is the Kirchhoff polynomial of Γ, we have the following.
Theorem 5.9 (Nagaoka-Yazawa [17]). The Hessian of the Kirchhoff polynomial of a graph does not vanish. Moreover, the matrix evaluated at $x_{e}=1$ for all e has exactly one positive eigenvalue.

We study more precisely Theorem 5.8 in Chapter 6 .
Theorem 5.8 implies Theorem 5.9 directly. In [17], Theorem 5.9, however, was shown by completely different way. In the rest of this section, we see crucial idea of the proof. See $[\mathbf{1 7}]$ for the details.

We know that if the Kirchhoff polynomial is strictly log-concave on the positive orthant, then the Hessian matrix of the Kirchhoff polynomial evaluated positive real numbers has exactly one positive eigenvalue and does not vanish (Proposition 1.3). By Propositions 1.5 and 3.3, we only have to prove that $H_{F_{\Gamma, 1}}$ evaluated positive real numbers does not have zero eigenvalues. The following are key idea for the proof:

- We can reduce general graph to the complete graph since any graph is a subgraph of the complete graph with the same number of vertices.
- The Kirchhoff polynomial of the complete graph is the relative invariant of a regular irreducible prehomogeneous vector space. Here, we prove only the latter. Consider the complete graph K_{n+1} and assign each edge $\{i, j\}$ to a variable $x_{i j}$. Note that $x_{i j}=x_{j i}$. the entries in Laplacian $L_{K_{n+1}}=\left(\ell_{i j}\right)_{1 \leq i, j \leq r+1}$ is

$$
\ell_{i j}= \begin{cases}\left(\sum_{k=1}^{n+1} x_{i k}\right)-x_{i i} & (\text { if } i=j) \\ -x_{i j} & \text { (otherwise) } .\end{cases}
$$

Hence we have

$$
\left\{L_{K_{n+1}}^{(11)} \mid x_{i j} \in \mathbb{C}\right\}=\operatorname{Sym}(n, \mathbb{C})
$$

where $\operatorname{Sym}(n, \mathbb{C})$ is the set of symmetric matrix of size $n \times n$ over \mathbb{C}. By definition of the Kirchhoff polynomial, we have

$$
F_{K_{n+1}}=\operatorname{det}: \operatorname{Sym}(n, \mathbb{C}) \rightarrow \mathbb{C}
$$

Let ρ be the representation of $G L_{n}(\mathbb{C})$ on $\operatorname{Sym}(n, \mathbb{C})$ such that

$$
\rho(P) X=P X P^{\top}
$$

for $P \in G L_{n}(\mathbb{C})$ and $X \in \operatorname{Sym}(n, \mathbb{C})$.
Proposition 5.10 (Sato-Kimura $[20])$. The triplet $\left(G L_{n}(\mathbb{C}), \rho, \operatorname{Sym}(n, \mathbb{C})\right)$ is a regular irreducible prehomogeneous vector space. Moreover, the relative invariant is given by det $: \operatorname{Sym}(n, \mathbb{C}) \rightarrow \mathbb{C}^{*}$.

By Proposition 5.10, we obtain

$$
\operatorname{det} H_{F_{K_{n+1}, 1}}=c\left(F_{K_{n+1}, 1}\right)^{a},
$$

where $c \neq 0$ and $a=\binom{n+1}{2}-n-1$. Since the Kirchhoff polynomial has positive coefficients, the matrix $H_{F_{\Gamma, 1}}$ evaluated positive real numbers does not have zero eigenvalues.

CHAPTER 6

Hessian matrices and the strong Lefschetz property of matroids

In Chapter 5, we defined the forest generating polynomial $F_{\Gamma, k}$. Recall that the bases of a graphic matroid of $M(\Gamma)$ is the edge set of spanning trees in Γ. Thus, the polynomial $F_{\Gamma, 1}$, the Kirchhoff polynomial, is the basis generating polynomial of $M(\Gamma)$, and the polynomial $F_{\Gamma, 1}$ for $k>1$ is the basis generating polynomial of the truncated matroid $T^{k-1} M(\Gamma)$. We see that the Hessian matrix of $F_{\Gamma, k}$ evaluated $x_{e}=1$ has exactly one positive eigenvalues and the Hessian does not vanish as Proposition 5.1, Corollaries 5.2, 5.5 and 5.7, and Theorems 5.4, 5.6, 5.8 and 5.9. This means that the Hessian matrices evaluated $x_{e}=1$ of the basis generating polynomials F_{M} of the truncated matroids M of graphic matroids has exactly one positive eigenvalues and the Hessian does not vanish. In this chapter, we consider the basis generating polynomial F_{M}, independent set generating polynomial P_{M}, and reduced independent set generating polynomial \bar{P}_{M} for all matroid M.

1. Hessian matrices of matroids

In this section, we consider the Hessian matrices of the basis generating polynomial F_{M}, independent set generating polynomial P_{M}, and reduced independent set generating polynomial \bar{P}_{M}.

For a simple matroid, the Hessian matrices of F_{M} and \bar{P}_{M} are similar results to Proposition 5.1, Corollaries 5.2, 5.5 and 5.7, and Theorems 5.4, 5.6, 5.8 and 5.9, namely, the matrices has exactly one positive eigenvalue, and the Hessians do not vanish. Note that the Hessian vanishes for a non simple matroid since each of the Hessian matrices of F_{M}, P_{M}, and \bar{P}_{M} has the same rows corresponding to parallel edges.

Theorem 6.1 (Murai-Nagaoka-Yazawa [16]). Let M be a simple matroid on [n] of rank $r \geq 2$. Then, we have
(1) The Hessian matrix of F_{M} evaluated $\boldsymbol{a} \in \mathbb{R}_{>0}^{n}$ has exactly one positive eigenvalue. Moreover, the Hessian does not vanish.
(2) The Hessian of P_{M} evaluated $(0, \boldsymbol{a}) \in\{0\} \times \mathbb{R}_{>0}^{n}$ is zero.
(3) If M is not a uniform matroid, then the Hessian matrix of \bar{P}_{M} evaluated $\boldsymbol{a} \in \mathbb{R}_{>0}^{n+1}$ has exactly one positive eigenvalue. Moreover, the Hessian does not vanish.

We see crucial ideas of the proof of Theorem 6.1. See [16] for the details. The key for the proof is the relations among Lorentzian polynomials, the strong Lefschetz property, and the Hodge-Riemann relations.

First, we see crucial ideas the proof of (1) and (3). We prove by induction on the rank of matroids. Since F_{M} and P_{M} satisfy the deletioncontraction formula (Proposition 3.7), the induction on works. We consider the first step of the induction. By Proposition 3.10, F_{M} and \bar{P}_{M} satisfy the hypothesis of Proposition 1.18. If F satisfies the HodgeRiemann relation at degree one with respect to L, then the Hessian matrix has signature $(+.-, \ldots,-)$. We know that F_{M} and \bar{P}_{M} are Lorentzian (Proposition 3.2). For a Lorentzian polynomial F, A_{F} has the strong Lefschetz property at degree one with the Lefschetz element L is equivalent to A_{F} satisfies the Hodge-Riemann relation at degree one with respect to L (Proposition 1.19).

By Proposition 3.9, we can see that (2) holds.
We illustrate Theorem 6.1 with the graphic matroid of the complete graph on four vartices.

Example 6.2. Let us consider the graphic matroid $M=M\left(K_{4}\right)$. Assume that [6] is the edge set of K_{4}. Then, we have

$$
\begin{aligned}
F_{M} & =x_{1} x_{5} x_{6}+x_{1} x_{5} x_{4}+x_{5} x_{4} x_{2}+x_{1} x_{4} x_{2}+x_{4} x_{2} x_{6}+x_{1} x_{4} x_{3} \\
& +x_{5} x_{2} x_{3}+x_{5} x_{2} x_{6}+x_{1} x_{2} x_{6}+x_{4} x_{2} x_{3}+x_{1} x_{5} x_{3}+x_{5} x_{4} x_{6} \\
& +x_{5} x_{6} x_{3}+x_{1} x_{6} x_{3}+x_{1} x_{2} x_{3}+x_{4} x_{6} x_{3}, \\
P_{M} & =x_{0}^{3} F_{M}+x_{0}^{4}\left(x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{1} x_{5}+x_{1} x_{6}+x_{2} x_{3}+x_{2} x_{4}\right. \\
& \left.+x_{2} x_{5}+x_{2} x_{6}+x_{3} x_{4}+x_{3} x_{5}+x_{3} x_{6}+x_{4} x_{5}+x_{4} x_{6}+x_{5} x_{6}\right) \\
& +x_{0}^{5}\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)+x_{0}^{6} \\
\bar{P}_{M} & =F_{M}+x_{0}\left(x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{1} x_{5}+x_{1} x_{6}+x_{2} x_{3}+x_{2} x_{4}\right. \\
& \left.+x_{2} x_{5}+x_{2} x_{6}+x_{3} x_{4}+x_{3} x_{5}+x_{3} x_{6}+x_{4} x_{5}+x_{4} x_{6}+x_{5} x_{6}\right) \\
& +x_{0}^{2}\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)+x_{0}^{3} .
\end{aligned}
$$

By Theorem 5.9, the signature of the Hessian matrix $H_{F_{M}}$ evaluated positive real numbers is $(+,-, \ldots,-)$. By Proposition 1.14, $A_{F_{M}}$ has the strong Lefschetz property at degree one with Lefschetz element $L=a_{1} x_{1}+a_{2} x_{2}+\cdots a_{n} x_{n}$, where $a_{i}>0$ for all i.

Since P_{M} is divisible by x_{0}^{3}, the Hessian matrix of P_{M} substituting $x_{0}=0$ is the zero matrix.

The Hessian matrix of \bar{P}_{M} is

$$
H_{\bar{P}_{M}}=\left(\begin{array}{cccc}
a_{00} & a_{01} & \cdots & a_{06} \\
a_{10} & & & \\
\vdots & & H_{F_{M}}+x_{0} J_{6,6}-\operatorname{diag}\left(x_{0}, \ldots, x_{0}\right) &
\end{array}\right)
$$

where $a_{00}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}$ and $a_{0 i}=a_{i 0}=x_{0}+x_{1}+x_{2}+$ $x_{3}+x_{4}+x_{5}+x_{6}-x_{i}$. Then, the Hessian matrix of \bar{P}_{M} evaluated one for all x_{i} is

$$
\left(\begin{array}{lllllll}
7 & 6 & 6 & 6 & 6 & 6 & 6 \\
6 & 0 & 4 & 5 & 4 & 4 & 4 \\
6 & 4 & 0 & 4 & 5 & 4 & 4 \\
6 & 5 & 4 & 0 & 4 & 4 & 4 \\
6 & 4 & 5 & 4 & 0 & 4 & 4 \\
6 & 4 & 4 & 4 & 4 & 0 & 5 \\
6 & 4 & 4 & 4 & 4 & 5 & 0
\end{array}\right)
$$

The eigenvalues are $\sqrt{265}+14,-3,-3,-5,-5,-5$, and $-\sqrt{265}+14$. We used the mathematical software Sage [23] to calculate the eigenvalues. You can see that the matrix has exactly one positive eigenvalue and 6 negative eigenvalues.

2. The log-concavity of the generating polynomials for a matroid

In this section, we discuss the strictly log-concavity of the generating polynomials F_{M} and \bar{P}_{M}. This section is one of our goals.

By Propositions 3.2 and 3.3, the generating polynomials F_{M} and \bar{P}_{M} are Lorentzian, and hence, F_{M} and \bar{P}_{M} are log-concave. By Theorem 6.1, the Hessians of F_{M} and \bar{P}_{M} are non-degenerate. By Proposition 1.5, we obtain the strictly log-concavity of F_{M} and \bar{P}_{M}. See [16] for the details.

Theorem 6.3 (Murai-Nagaoka-Yazawa [16]). Let M be a simple matroid on $[n]$ of rank $r \geq 2$. Then, we have
(1) The polynomial F_{M} is strictly log-concave at $\boldsymbol{a} \in \mathbb{R}_{>0}^{n}$.
(2) If M is not a uniform matroid, then the polynomial \bar{P}_{M} is strictly log-concave at $\boldsymbol{a} \in \mathbb{R}_{>0}^{n+1}$.
Actually, the reduced independent set generating polynomials for the uniform matroids are also strictly log-concave on the positive orthant. Since the reduced independent set generating polynomial for the uniform matroid $U_{r, n}$ is

$$
\sum_{k=0}^{r} x_{0}^{k} e_{r-k}\left(x_{1}, \ldots, x_{n}\right)=e_{r}\left(x_{0}, x_{1}, \ldots, x_{n}\right)
$$

and the elementary symmetric polynomials are the basis generating polynomials for the uniform matroids, it follows from (1) of Theorem 6.3 that the strictly log-concavity of the reduced independent set generating polynomials for the uniform matroids.

Corollary 6.4. Let M be a simple matroid on $[n]$ of rank $r \geq 2$. Then the polynomial \bar{P}_{M} is strictly log-concave at $\boldsymbol{a} \in \mathbb{R}_{>0}^{n+1}$.

Note that the proofs of Theorems 6.1 and 6.3 in [16] exclude to consider the reduced independent set generating polynomials for the uniform matroids for a technical reason.

3. The strong Lefschetz property of matroids

In this section, we consider the strong Lefschetz property and the Hodge-Riemann relation at degree one for the graded Artinian Gorenstein algebras defined by F_{M}, P_{M} and \bar{P}_{M}.

For a matroid M on $[n]$, we defined algebras as follows:

$$
\begin{aligned}
A_{F_{M}} & =\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \operatorname{Ann}\left(F_{M}\right), \\
A_{P_{M}} & =\mathbb{R}\left[x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right] / \operatorname{Ann}\left(P_{M}\right), \\
A_{\bar{P}_{M}} & =\mathbb{R}\left[x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right] / \operatorname{Ann}\left(\bar{P}_{M}\right) .
\end{aligned}
$$

By Proposition 1.14 and Theorem 6.1, we have the following.
Theorem 6.5 (Murai-Nagaoka-Yazawa [16]). Let $L=a_{1} x_{1}+a_{2} x_{2}+$ $\cdots a_{n} x_{n}$ and $L^{\prime}=a_{0} x_{0}+L$, where $a_{i}>0$ for all i. For a simple matroid M on $[n]$ with rank $r \geq 2$, we have the following.
(1) $A_{F_{M}}$ has the strong Lefschetz property at degree one with Lefschetz element L, and $A_{F_{M}}$ satisfies the Hodge-Riemann relation at degree one with respect to L.
(2) $A_{P_{M}}$ does not satisfy the Hodge-Riemann relation at degree one with respect to L.
(3) If M is not uniform matroid, then $A_{\bar{P}_{M}}$ has the strong Lefschetz property at degree one with Lefschetz element L^{\prime}, and $A_{\bar{P}_{M}}$ satisfies the Hodge-Riemann relation at degree one with respect to L^{\prime}.

Let A_{F} be a graded Artinian Gorenstein algebra, where the top degree is at most 4. If the first Hessian does not vanish, then A_{F} has the strong Lefschetz property. Therefore, we have the following.

Corollary 6.6. We have the following:

- Let M be a matroid with rank ≤ 4. The algebra $A_{F_{M}}$ has the strong Lefschetz property.
- Let M be a matroid with rank ≤ 3. The algebra $A_{\bar{P}_{M}}$ has the strong Lefschetz property.

Remark 6.7. Let $f_{r, n}$ denote the number of labeled matroid on $[n]$ of rank r. Then we have the following:

- $f_{0, n}=1$.
- $f_{n, n}=1$.
- $f_{1, n}=2^{n}-1$.
- $f_{r, n}=f_{n-r, n}$, for $0 \leq r \leq n$.

Table 1 is a table of $f_{r, n}$ with $n \leq 8$. See [9] for more details.

Table 1. The number of labeled matroids

$r \backslash n$	0	1	2	3	4	5	6	7	8
0	1	1	1	1	1	1	1	1	1
1		1	3	7	15	31	63	127	255
2			1	7	36	171	813	4012	20891
3				1	15	171	2053	33442	1022217
4					1	31	813	33442	8520812
5						1	63	4012	1022217
6							1	127	20891
7							1	255	
8									1
	1	2	5	16	68	406	3807	75164	10607540

Table 2. The number of isomorphism classes of matroids

$r \backslash n$	0	1	2	3	4	5	6	7	8	9
0	1	1	1	1	1	1	1	1	1	1
1		1	2	3	4	5	6	7	8	9
2			1	3	7	13	23	37	58	87
3				1	4	13	38	108	325	1275
4					1	5	23	108	940	190214
5						1	6	37	325	190214
6							1	7	58	1275
7								1	8	87
8									1	9
9										1
	1	2	4	8	17	38	98	306	1724	383172

Remark 6.8. Let $f_{r, n}^{\prime}$ denote the number of isomorphism classes of matroids on $[n]$ of rank r. Then we have the following:

- $f_{0, n}^{\prime}=1$.
- $f_{n, n}^{\prime}=1$.
- $f_{1, n}^{\prime}=n$.
- $f_{r, n}^{\prime}=f_{n-r, n}$, for $0 \leq r \leq n$.

Table 2 is a table of $f_{r, n}^{\prime}$ with $n \leq 8$. See [19] for more details.

Bibliography

[1] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant, Logconcave polynomials III: Mason's Ultra-Log-Concavity Conjecture for Independent Sets of Matroids, arXiv:1811.01600, URL https://arxiv.org/abs/ 1811.01600.
[2] , Log-concave polynomials II: High-dimensional walks and an FPRAS for counting bases of a matroid, STOC'19-Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, 2019, pp. 1-12, URL https://doi.org/10.1145/3313276.3316385. MR 4003314
[3] Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant, Log-concave polynomials, entropy, and a deterministic approximation algorithm for counting bases of matroids, 59th Annual IEEE Symposium on Foundations of Computer Science-FOCS 2018, IEEE Computer Soc., Los Alamitos, CA, 2018, pp. 35-46, URL https://doi.org/10.1109/FOCS.2018.00013. MR 3899575
[4] Gottfried Barthel, Ludger Kaup, J.-P. Brasselet, and Karl-Heinz Fieseler, Hodge-Riemann relations for polytopes: a geometric approach, Singularity theory, World Sci. Publ., Hackensack, NJ, 2007, pp. 379-410, URL https: //doi.org/10.1142/9789812707499_0014. MR 2342920
[5] Norman Biggs, Algebraic graph theory, second ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. MR 1271140
[6] Louis J. Billera and Carl W. Lee, A proof of the sufficiency of McMullen's conditions for f-vectors of simplicial convex polytopes, J. Combin. Theory Ser. A 31 (1981), no. 3, 237-255, URL https://doi.org/10.1016/0097-3165(81) 90058-3. MR 635368
[7] Petter Brändén and June Huh, Hodge-Riemann relations for Potts model partition functions, arXiv:1811.01696, URL https://arxiv.org/abs/1811.01696.
[8] , Lorentzian polynomials, Ann. of Math. (2) 192 (2020), no. 3, 821-891, URL https://doi.org/10.4007/annals.2020.192.3.4. MR 4172622
[9] W. M. B. Dukes, Counting and probability in matroid theory, Ph.D. thesis, Trinity College Dublin, 2000.
[10] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley \& Sons, Inc., New York, 1994, Reprint of the 1978 original, URL https://doi.org/10.1002/9781118032527. MR 1288523
[11] Tadahito Harima, Toshiaki Maeno, Hideaki Morita, Yasuhide Numata, Akihito Wachi, and Junzo Watanabe, The Lefschetz properties, Lecture Notes in Mathematics, vol. 2080, Springer, Heidelberg, 2013, URL https://doi.org/ 10.1007/978-3-642-38206-2. MR 3112920
[12] Roger A. Horn and Charles R. Johnson, Matrix analysis, second ed., Cambridge University Press, Cambridge, 2013. MR 2978290
[13] Toshiaki Maeno and Yasuhide Numata, Sperner property and finitedimensional Gorenstein algebras associated to matroids, J. Commut. Algebra 8 (2016), no. 4, 549-570, URL https://doi.org/10.1216/JCA-2016-8-4-549. MR 3566530
[14] Toshiaki Maeno and Junzo Watanabe, Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials, Illinois J. Math. 53 (2009), no. 2, 591-603, URL http://projecteuclid.org/euclid.ijm/ 1266934795. MR 2594646
[15] Hideyuki Matsumura, Commutative ring theory, second ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989, Translated from the Japanese by M. Reid. MR 1011461
[16] Satoshi Murai, Takahiro Nagaoka, and Akiko Yazawa, Strictness of the logconcavity of generating polynomials of matroids, J. Combin. Theory Ser. A 181 (2021), Paper No. 105351, 22, URL https://doi.org/10.1016/j.jcta. 2020.105351. MR 4223331
[17] Takahiro Nagaoka and Akiko Yazawa, Strict log-concavity of the Kirchhoff polynomial and its applications to the strong Lefschetz property, J. Algebra 577 (2021), 175-202, URL https://doi.org/10.1016/j.jalgebra. 2021. 01.037. MR 4234203
[18] Nobuaki Obata, Spectral analysis of growing graphs, SpringerBriefs in Mathematical Physics, vol. 20, Springer, Singapore, 2017, A quantum probability point of view, URL https://doi.org/10.1007/978-981-10-3506-7. MR 3617953
[19] James Oxley, Matroid theory, second ed., Oxford Graduate Texts in Mathematics, vol. 21, Oxford University Press, Oxford, 2011, URL https://doi. org/10.1093/acprof:oso/9780198566946.001.0001. MR 2849819
[20] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1-155, URL http://projecteuclid.org/euclid.nmj/1118796150. MR 0430336
[21] Richard P. Stanley, The number of faces of a simplicial convex polytope, Adv. in Math. 35 (1980), no. 3, 236-238, URL https://doi.org/10.1016/ 0001-8708(80)90050-X. MR 563925
[22] _, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980), no. 2, 168-184, URL https: //doi.org/10.1137/0601021. MR 578321
[23] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 9.5), 2022, https://www.sagemath.org.
[24] Junzo Watanabe, A remark on the Hessian of homogeneous polynomials, The curves seminar at Queen's, vol. XIII, Queen's Papers in Pure and Appl. Math., vol. 119, Queen's Univ., Kingston, ON, 2000, pp. 171-178.
[25] Akiko Yazawa, The eigenvalues of Hessian matrices of the complete and complete bipartite graphs, J. Algebraic Combin. 54 (2021), no. 4, 1137-1157, URL https://doi.org/10.1007/s10801-021-01041-x. MR 4348920
[26] , The eigenvalues of the Hessian matrices of the generating functions for trees with k components, Linear Algebra Appl. 631 (2021), 48-66, URL https://doi.org/10.1016/j.laa.2021.08.017. MR 4308087

