Ricci tensor of Hopf hypersurfaces in a complex space form

Mayuko Kon*

(Communicated by Ramesh Sharma)

ABSTRACT

We classify Hopf hypersurfaces in a non-flat complex space form whose Ricci tensor S satisfies $g((\nabla_X S)X, \xi) = 0$ for any vector field X tangent to ξ , where ξ is the structure vector field. We also classify real hypersurfaces with transversal Killing Ricci tensor satisfying $S\xi = \beta\xi$ for some function β .

Keywords: Ricci tensor; real hypersurface; complex space form; transversal Killing tensor. *AMS Subject Classification (2010):* Primary: 53B25 ; Secondary: 53C55; 53C25.

1. Introduction

For real hypersurfaces in a complex space form $M_n(4c)$ of constant holomorphic sectional curvature $4c \neq 0$, it is an interesting problem to determine real hypersurfaces satisfying an additional condition on the Ricci tensor.

Ki [3] showed that there are no real hypersurfaces with parallel Ricci tensor, $\nabla S = 0$, in $M_n(4c)$, $n \ge 3$. Several conditions that weaken the condition $\nabla S = 0$ are studied (cf., [4], [11]). On the other hand, when the structure vector field ξ is principal, then the real hypersurface is said to be Hopf. For Hopf hypersurfaces, fundamental formulas are well-organized form, and it was considered to be a natural condition. So kinds of classification theorems are given under this assumption (see, for example, [10]). If the Ricci tensor *S* satisfies $g((\nabla_X S)Y, Z) = 0$ for any vector field *X*, *Y* and *Z* orthogonal to ξ , then it is said to be η -parallel (Suh [11]). Suh and Maeda classified Hopf hypersurfaces of $M_n(4c)$ with η -parallel Ricci tensor ([11], [9]). In [8], Maeda gave a classification of Hopf hypersurfaces in $\mathbb{C}P^n$ with $\nabla_{\xi}S = 0$.

When *S* satisfies $g((\nabla_X S)X, \xi) = 0$ for any *X* orthogonal to ξ , we call *S* the *transversal* η -*Killing* Ricci tensor. In section 3, we classify Hopf hypersurfaces whose Ricci tensor *S* is transversal η -Killing.

In [6] and [7], the author showed that If $(\nabla_X S)Y$ is proportional (resp. perpendicular) to the structure vector field ξ for any vector fields X and Y orthogonal to ξ , then M is a Hopf hypersurface (resp. ruled real hypersurface), under an assumption that $S\xi = \beta\xi$, β being a function. On the other hand, for an almost contact metric manifold (M, ϕ, η, ξ, g) , Cho [2] considered a condition that a (1,1)-tensor field T on M a *transversal Killing tensor field*, that is, it satisfies $(\nabla_X T)X = 0$ for any vector fields X to ξ .

Combining these with the results in section 3, we classify real hypersurfaces of $M_n(4c)$ whose Ricci tensor S is a transversal Killing tensor field and satisfies $S\xi = \beta\xi$ for some function β , in section 4. We notice that any Hopf hypersurfaces and ruled real hypersurfaces satisfy the condition that $S\xi = \beta\xi$, β beging a function.

The author would like to express her sincere gratitude to the referee for valuable suggestions and comments.

2. Preliminaries

Let $M_n(4c)$ denote the complex space from of complex dimension n (real dimension 2n) of constant holomorphic sectional curvature 4c. For the sake of simplicity, if c > 0, we only use c = +1 and call it the complex projective space $\mathbb{C}P^n$, and if c < 0, we just consider c = -1, so that we call it the complex hyperbolic space $\mathbb{C}H^n$. Throughout this paper, we suppose that $c \neq 0$. We denote by J the almost complex structure of $M_n(4c)$. The Hermitian metric of $M_n(4c)$ will be denoted by G.

Received: 04-May-2018, Accepted: 19-September-2018

^{*} Corresponding author

Let *M* be a real (2n - 1)-dimensional hypersurface immersed in $M_n(4c)$. We denote by *g* the Riemannian metric induced on *M* from *G*. We take the unit normal vector field *N* of *M* in $M_n(4c)$. For any vector field *X* tangent to *M*, we define ϕ , η and ξ by

$$JX = \phi X + \eta(X)N, \qquad JN = -\xi,$$

where ϕX is the tangential part of JX, ϕ is a tensor field of type (1,1), η is a 1-form, and ξ is the unit vector field on M. Then they satisfy

$$\phi^2 X = -X + \eta(X)\xi, \quad \phi\xi = 0, \quad \eta(\phi X) = 0$$

for any vector field X tangent to M. Moreover, we have

$$g(\phi X, Y) + g(X, \phi Y) = 0, \quad \eta(X) = g(X, \xi),$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y).$$

Thus (ϕ, ξ, η, g) defines an almost contact metric structure on *M*.

We denote by ∇ the operator of covariant differentiation in $M_n(4c)$, and by ∇ the one in M determined by the induced metric. Then the *Gauss and Weingarten formulas* are given respectively by

$$\tilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)N, \qquad \tilde{\nabla}_X N = -AX$$

for any vector fields *X* and *Y* tangent to *M*. We call *A* the *shape operator* of *M*. If the shape operator *A* of *M* satisfies $A\xi = \alpha\xi$ for some functions α , then *M* is said to be *Hopf*. We use the following (cf. [10])

Lemma 2.1. Let *M* be a Hopf hypersurface of $M_n(4c)$, $n \ge 2$, $c \ne 0$. If a vector field *X* is orthogonal to ξ and $AX = \lambda X$, then

$$(2\lambda - \alpha)A\phi X = (\lambda\alpha + 2c)\phi X$$

where $\alpha = g(A\xi, \xi)$, and α is constant.

For the almost contact metric structure on M, we have

$$\nabla_X \xi = \phi A X,$$
 $(\nabla_X \phi) Y = \eta(Y) A X - g(A X, Y) \xi.$

We denote by R the Riemannian curvature tensor field of M. Then the equation of Gauss is given by

$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z\} + g(AY,Z)AX - g(AX,Z)AY,$$

and the equation of Codazzi by

$$(\nabla_X A)Y - (\nabla_Y A)X = c\{\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi\}.$$

From the equation of Gauss, the Ricci tensor S of M satisfies

$$g(SX,Y) = (2n+1)cg(X,Y) - 3c\eta(X)\eta(Y) + \text{Tr}Ag(AX,Y) - g(AX,AY),$$
(2.1)

where TrA is the trace of A. By (2.1), we have

$$(\nabla_X S)Y = -3cg(\phi AX, Y)\xi - 3c\eta(Y)\phi AX + (X \operatorname{Tr} A)AY + \operatorname{Tr} A(\nabla_X A)Y - A(\nabla_X A)Y - (\nabla_X A)AY.$$
(2.2)

We use the following results to prove our theorem (see [1], [5], [10], [12], [13]).

Theorem A. Let M be a real hypersurface of $M_n(4c)$. Then the principal curvatures of M are constant and ξ is principal, if and only if, M is an open subset of a homogeneous hypersurfaces.

Theorem B. Let M be a homogeneous real hypersurface of $\mathbb{C}P^n$. Then M is congruent to one of the following:

- (A₁) a geodesic sphere of radius r, where $0 < r < \pi/2$,
- (A_2) a tube of radius r over a totally geodesic $\mathbb{C}P^k$ $(1 \le k \le n-2)$, where $0 < r < \pi/2$,
- (B) A tube of radius r around a complex hyperquadric $\mathbb{C}Q^{n-1}$, where $0 < r < \pi/4$.
- (C) a tube of radius r over a $\mathbb{C}P^1 \times \mathbb{C}P^{\frac{n-1}{2}}$, where $0 < r < \pi/4$ and $n \geq 5$ is odd,
- (D) a tube of radius r over a complex Grassmann $G_{2,5}(\mathbb{C})$, where $0 < r < \pi/4$ and n = 9,
- (E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5), where $0 < r < \pi/4$ and n = 15.

The principal curvatures are as follows.

	(A_1)	(A_2)	(B)	(C, D, E)
λ_1	$\cot r$	$\cot r$	$\cot(r-\pi/4)$	$\cot(r-\pi/4)$
λ_2		$-\tan r$	$\cot(r+\pi/4)$	$\cot(r+\pi/4)$
λ_3				$\cot r$
λ_4				$-\tan r$
α	$2\cot(2r)$	$2\cot(2r)$	$2\cot(2r)$	$2\cot(2r)$

The multiplicity $m(\mu)$ of each principal curvature μ of a homogeneous real hypersurface is as follows.

	(A_1)	(A_2)	(B)	(C)	(D)	(E)
λ_1	2n - 2	2n - 2k - 2	n-1	2	4	6
λ_2		2k	n-1	2	4	6
λ_3				n-3	4	8
λ_4				n-3	4	8
α	1	1	1	1	1	1

Theorem C. Let *M* be a Hopf hypersurface of $\mathbb{C}H^n$, $n \ge 2$. If all principal curvatures are constant, then *M* is locally congruent to one of the following:

 (A_0) A horosphere,

 $(A_{1,0})$ A geodesic sphere of radius $r (0 < r < \infty)$,

- $(A_{1,1})$ A tube of radius r around a totally geodesic $\mathbb{C}H^{n-1}(c)$, where $0 < r < \infty$,
 - (A_2) A tube of radius r around a totally geodesic $\mathbb{C}H^l(c)$ $(1 \le l \le n-2)$, where $0 < r < \infty$,
 - (B) A tube of radius r around a totally real totally geodesic $\mathbb{R}H^n(c/4)$, where $0 < r < \infty$.

The principal curvatures of these real hypersurfaces are given as follows:

	(A_0)	$(A_{1,0})$	$(A_{1,1})$	(A_2)	(B)
λ_1	1	$\coth r$	$\tanh r$	$\coth r$	$\coth r$
λ_2				$\tanh r$	$\tanh r$
α	2	$2 \coth(2r)$	$2 \coth(2r)$	$2 \coth(2r)$	$2 \tanh(2r)$

3. The covariant derivative of the Ricci tensor

Let *M* be Hopf hypersurface of a complex space form $M_n(4c)$, $c \neq 0$. Then the shape operator *A* satisfies $Ae_i = a_ie_i$, $1 \leq i \leq 2n - 2$, with respect to a suitable orthonormal frame $\{e_1, \dots, e_{2n-2}, \xi\}$. We remark that if $A_ie_i = a_ie_i$, then

$$(2a_i - \alpha)A\phi e_i = (a_i\alpha + 2c)\phi e_i, \tag{3.1}$$

by Lemma 2.1. In the following, we put $A\phi e_i = \bar{a_i}\phi e_i$. Then we have

$$2a_i\bar{a_i} - a_i\alpha - \bar{a_i}\alpha - 2c = 0. \tag{3.2}$$

Lemma 3.1. Let M be a Hopf hypersurface of $M_n(4c)$. The Ricci tensor S of M is transversal η -Killing if and only if

$$(a_i - a_j)(-3c + \alpha \operatorname{Tr} A - \alpha^2 - a_i a_j)g(\phi e_i, e_j) = 0$$
(3.3)

for $i, j = 1, \cdots, 2n - 2$.

Proof. By (2.2), when *M* is a Hopf hypersurface of $M_n(4c)$, we obtain

$$g((\nabla_{e_i}S)e_j,\xi)$$

= $-3ca_ig(\phi e_i, e_j) + (\operatorname{Tr} A - \alpha - a_j)g((\nabla_i A)e_j,\xi)$
= $-3ca_ig(\phi e_i, e_j) + a_i(\operatorname{Tr} A - \alpha - a_j)(\alpha - a_j)g(\phi e_i, e_j)$
= $a_i(-3c + \alpha \operatorname{Tr} A - a_j \operatorname{Tr} A - \alpha^2 + a_j^2)g(\phi e_i, e_j).$

So we have

$$0 = g((\nabla_{e_i}S)e_j,\xi) + g((\nabla_{e_j}S)e_i,\xi)$$

= $(a_i - a_j)(-3c + \alpha \operatorname{Tr} A - \alpha^2 - a_ia_j)g(\phi e_i, e_j)$

First we suppose that $g((\nabla_X S)X,\xi) = 0$ for any X orthogonal to ξ . Since $g((\nabla_{X+Y}S)(X+Y),\xi) = 0$ for any X and Y orthogonal to ξ , we have

$$g((\nabla_X S)Y,\xi) + g((\nabla_Y S)X,\xi) = 0.$$

So we have (3.3).

Next we suppose that the Ricci tensor S satisfies (3.3). Then we obtain

$$g((\nabla_{e_i}S)e_j,\xi) + g((\nabla_{e_j}S)e_i,\xi)$$

= $(a_i - a_j)(-3c + \alpha \operatorname{Tr} A - \alpha^2 - a_ia_j)g(\phi e_i, e_j) = 0$

for any *i* and *j*. Thus we get $g((\nabla_{e_i}S)e_i,\xi) = 0$. Any vector field *X* orthogonal to ξ is represented as $X = \sum_i X_i e_i$. Using $g((\nabla_{e_i}S)e_j,\xi) = -g((\nabla_{e_j}S)e_i,\xi)$, we have

$$g((\nabla_X S)X,\xi)$$

= $\sum_{i,j} X_i X_j g((\nabla_{e_i} S)e_j,\xi)$
= $\sum_i X_i^2 g((\nabla_{e_i} S)e_i,\xi) = 0.$

So we have our result.

Lemma 3.2. Let *M* be a Hopf hypersurface of $M_n(4c)$. If the Ricci tensor *S* of *M* is transversal η -Killing, then *M* has at most 5 distinct constant principal curvatures.

Proof. From Lemma 3.1, putting $e_i = \phi e_i$ in (3.3), we have $a_i = \bar{a_i}$ or

$$-3c + \alpha \operatorname{Tr} A - \alpha^2 - a_i \bar{a_i} = 0.$$
(3.4)

If $a_i = \bar{a_i}$, by (3.2), we see that a_i is a solution of the equation

$$x^2 - \alpha x - c = 0. (3.5)$$

Since α is constant, a_i is also constant.

When $a_i \neq \bar{a_i}$, from (3.1), we have $2a_i = \alpha$ or $\bar{a_i} = \frac{a_i \alpha + 2c}{2a_i - \alpha}$. If $2a_i = \alpha$ for some a_i , again from (3.1), we have $a_i \alpha + 2c = 0$, from which we see that $\alpha^2 = -4c$ and c < 0. Then *M* has 2 constant principal curvatures (see [1]). In the following, we suppose $2a_i \neq \alpha$ for any *i*. From (3.4) and $\bar{a_i} = \frac{a_i \alpha + 2c}{2a_i - \alpha}$, we see that a_i is a solution of the

$$x^{2}\alpha - 2(-4c + \alpha \operatorname{Tr} A - \alpha^{2})x + \alpha(-3c + \alpha \operatorname{Tr} A - \alpha^{2}) = 0.$$
(3.6)

We remark that $\bar{a_i}$ is also the solution of the above equation since (3.2) and (3.4) is symmetric with respect to a_i and $\bar{a_i}$.

Therefore, we see that the shape operator *A* has at most 5 distinct principal curvatures. We put λ_1 and $\lambda_2 = \overline{\lambda_1}$ are solutions of (3.6), whose multiplicity is *k*, respectively. We suppose λ_3 , λ_4 are solutions of (3.5) with multiplicity *l* and *m*, respectively. Then we have

$$\operatorname{Tr} A = k(\lambda_1 + \overline{\lambda_1}) + l\lambda_3 + m\lambda_4 + \alpha.$$

following

When $\alpha \neq 0$, since λ_1 and $\overline{\lambda_1}$ are solutions of (3.6), we have

$$\lambda_1 + \bar{\lambda_1} = \frac{2(-4c + \alpha \operatorname{Tr} A - \alpha^2)}{\alpha}$$

From these equations, we obtain

$$\alpha(1-2k)\operatorname{Tr} A = (l\lambda_3 + m\lambda_4)\alpha - 8kc - 2k\alpha^2 + \alpha^2.$$

Since $\alpha(1-2k) \neq 0$, we see that Tr *A* is constant. By (3.6), λ_1 and $\overline{\lambda_1}$ are also constant. Hence all principal curvatures are constant.

Finally we consider the case that $\alpha = 0$. If $a_i \neq \bar{a_i}$, then a_i and $\bar{a_i}$ are solutions of (3.6). So we have $a_i = \bar{a_i} = 0$. This is a contradiction. So we have $a_i = \bar{a_i}$ for all a_i . Then the principal curvatures are \sqrt{c} and 0 with multiplicities 2n - 2 and 1, respectively.

Using these lemmas, we prove the following theorem.

Theorem 3.1. Let *M* be a Hopf hypersurface of a complex projective space $\mathbb{C}P^n$. If the Ricci tensor *S* of *M* satisfies $g((\nabla_X S)X,\xi) = 0$ for any *X* orthogonal to ξ , then *M* is locally congruent to one of the following:

- (A_1) a geodesic sphere of radius r, where $0 < r < \pi/2$,
- (A_2) a tube of radius r over a totally geodesic $\mathbb{C}P^k$ $(1 \le k \le n-2)$, where $0 < r < \pi/2$,
- (C) a tube of radius r over a $\mathbb{C}P^1 \times \mathbb{C}P^{\frac{n-1}{2}}$, where $\cot^2 2r = 5/(2n-6)$ and $n \geq 5$ is odd,
- (D) a tube of radius r over a complex Grassmann $G_{2,5}(\mathbb{C})$, where $\cot^2 2r = 9/8$ and n = 9,
- (E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5), where $\cot^2 2r = 13/16$ and n = 15.

Proof. By Lemma 3.2, when M is a Hopf hypersurface in $\mathbb{C}P^n$ with at most 5 distinct principal curvatures. Therefore M is locally congruent to one of the list in Theorem B.

When *M* is locally congruent to type (A_1) , then $\lambda_1 = \cot r$ satisfies $\overline{\lambda}_1 = \lambda_1$. Thus all principal curvatures satisfy (3.5). From Lemma 3.1, the Ricci operator *S* of all type (A_1) hypersurfaces satisfy $g((\nabla_X S)X, \xi) = 0$ for *X* orthogonal to ξ . Similarly, since $\overline{\lambda}_1 = \lambda_1$ and $\overline{\lambda}_2 = \lambda_2$, type (A_2) hypersurfaces also satisfy that condition.

Next we consider the case that M is locally type (B). The principal curvatures $\lambda_1 = \cot(r - \frac{\pi}{4})$ and $\lambda_2 = \cot(r + \frac{\pi}{4})$ satisfies $\overline{\lambda_1} = \lambda_2$. If λ_1 and λ_2 are solutions of (3.6), then $\lambda_1 \lambda_2 = -3 + \alpha \operatorname{Tr} A - \alpha^2 = -1$. Since we have

$$\operatorname{Tr} A = (n-1)\left(\cot(r-\frac{\pi}{4}) + \cot(r+\frac{\pi}{4})\right) + \alpha,$$

we see that

$$1 = (n-1)\cot 2r\left(\cot(r-\frac{\pi}{4}) + \cot(r+\frac{\pi}{4})\right) \\ = -2n+2.$$

This is a contradiction. So type (B) hypersurfaces do not satisfy $g((\nabla_X S)X, \xi) = 0, X \perp \xi$.

Next we consider the case that M has 5 distinct constant principal curvatures. We put

$$\lambda_1 = \cot(r - \frac{\pi}{4}), \ \lambda_2 = \cot(r + \frac{\pi}{4}), \ \lambda_3 = \cot r,$$

$$\lambda_4 = -\tan r, \ \alpha = 2\cot(2r),$$

and their multiplicities are represented by $m(\lambda_1) = m(\lambda_2) = k$, $m(\lambda_3) = m(\lambda_4) = l$. Since λ_1 and λ_2 are solutions of (3.6), similar computation as the case of type (*B*) shows that Tr $A \cdot \alpha - \alpha^2 = 2$. On the other hand, we obtain

$$\operatorname{Tr} A - \alpha = k(\lambda_1 + \lambda_2) + l(\lambda_3 + \lambda_4)$$
$$= \frac{4k \tan^2 r - l(1 - \tan^2 r)^2}{(\tan^2 r - 1) \tan r}$$

Since $\alpha = 2 \cot 2r$, we have

$$\alpha(\operatorname{Tr} A - \alpha) = -4k + l\left(\frac{1 - \tan^2 r}{\tan r}\right)^2 = 2,$$

www.iejgeo.com

from which we see that

$$\cot^2 2r = \frac{1+2k}{2l}$$

When *M* is locally congruent to type (*C*), then k = 2 and l = n - 3. Thus we have $\cot^2 2r = \frac{5}{2(n-3)}$. Next, when *M* is locally congruent to (*D*), we obtain $\cot^2 2r = \frac{9}{8}$. Finally, if *M* is locally congruent to (*E*), then we have $\cot^2 2r = \frac{13}{16}$.

Theorem 3.2. Let *M* be a Hopf hypersurface of a complex hyperbolic space $\mathbb{C}H^n$. If the Ricci tensor *S* of *M* satisfies $g((\nabla_X S)X,\xi) = 0$ for any *X* orthogonal to ξ , then *M* is locally congruent to one of the following:

 (A_0) A horosphere,

 $(A_{1,0})$ A geodesic sphere of radius $r (0 < r < \infty)$,

 $(A_{1,1})$ A tube of radius r around a totally geodesic $\mathbb{C}H^{n-1}(c)$, where $0 < r < \infty$,

(A₂) A tube of radius r around a totally geodesic $\mathbb{C}H^{l}(c)$ $(1 \leq l \leq n-2)$, where $0 < r < \infty$,

Proof. Similar argument as the proof of Theorem 3.1 shows that all type (A_0) , $(A_{1,0})$ and $(A_{1,1})$ and (A_2) hypersurface satisfies the condition $g((\nabla_X S)X, \xi) = 0$ for any X orthogonal to ξ .

Suppose *M* is locally congruent to type (*B*). Then $\lambda_1 = \operatorname{coth} r$ and $\lambda_2 = \tanh r$ are solutions of (3.6). Then we have $\alpha \operatorname{Tr} A - \alpha^2 = -2$. So we have

$$\tanh 2r(n-1)(\coth r + \tanh r) = -1.$$

By the straightforward computation, we have 2(n-1) = -1. This is a contradiction.

4. Transversal Killing tensor

For a Riemannian manifold with Riemannian connection ∇ , a (1,1)-tensor field *T* is called a *Killing tensor* field if it satisfies $(\nabla_X T)X = 0$ or $(\nabla_X T)Y + (\nabla_Y T)X = 0$ for any vector fields *X* and *Y*. If *T* is symmetric, then we easily see that *T* is parallel. For an almost contact metric manifold (M, ϕ, η, ξ, g) , we call a (1,1)tensor field *T* on *M* a *transversal Killing tensor field* if it satisfies $(\nabla_X T)X = 0$ or $(\nabla_X T)Y + (\nabla_Y T)X = 0$ for any vector fields *X* and *Y* orthogonal to ξ (see Cho[2]). Cho [2] studied a real hypersurfaces in a non-flat complex space form whose shape operator is a transversal Killing tensor field. In this section, we study a real hypersurface *M* whose Ricci tensor *S* is a transversal Killing tensor field. We summarize theorems for later use.

Theorem D ([7]). Let *M* be a connected real hypersurface of $M_n(4c)$, $n \ge 3$, and suppose that the Ricci tensor *S* of *M* satisfies $S\xi = \beta\xi$ for some function β .

- (1) If $(\nabla_X S)Y$ is proportional to the structure vector field ξ for any vector fields X and Y orthogonal to ξ , then M is a Hopf hypersurface.
- (2) If $(\nabla_X S)Y$ is perpendicular to the structure vector field ξ for any vector fields X and Y orthogonal to the structure vector field ξ , then M is a ruled real hypersurface.

When n = 2, the author gave a corresponding result in [6]. We use the following theorems for hypersurfaces with η -parallel Ricci tensor (see [9], [11]).

Theorem E. Let M be a Hopf hypersurface of $\mathbb{C}P^n$, $n \ge 2$ with η -parallel Ricci tensor. Then M is congruent to one of real hypersurfaces of types (A_1) , (A_2) and (B) or a non-homogeneous real hypersurface with $A\xi = 0$ in $\mathbb{C}P^2$.

Theorem F. Let M be a Hopf hypersurface of $\mathbb{C}H^n$, $n \ge 2$ with η -parallel Ricci tensor. Then M is congruent to one of real hypersurfaces of types (A_0) , $(A_{1,0})$, $(A_{1,1})$, (A_2) and (B) or a non-homogeneous real hypersurface with $A\xi = 0$ in $\mathbb{C}H^2$.

First, we prove the following lemma.

Lemma 4.1. Let *M* be a connected real hypersurface of $M_n(4c)$, $n \ge 2$, and suppose that the Ricci tensor *S* of *M* is transversal Killing tensor field and satisfies $S\xi = \beta\xi$ for some function β , then *M* is a Hopf hypersurface with η -parallel Ricci tensor.

Proof. By the assumption we have $(\nabla_X S)X = 0$ for any X orthogonal to ξ , which is equivalent to $(\nabla_X S)Y + (\nabla_Y S)X = 0$ for any vector fields X and Y orthogonal to ξ . Since S is symmetric, it follows that

$$0 = g((\nabla_X S)X, Y) = -g((\nabla_Y S)X, X).$$

This implies that $g((\nabla_X S)Y, Z) = 0$ for any vector fields *X*, *Y* and *Z* orthogonat to ξ . Hence, the Ricci tensor *S* is η -parallel. Combining this to Theorem D (1), *M* is a Hopf hypersurface.

If the Ricci tensor *S* of *M* is transversal Killing tensor field, then *S* is transversal η -Killing. Therefore, if a real hypersurface of $M_2(c)$ with $A\xi = 0$ satisfies the condition that the Ricci tensor *S* of *M* is transversal Killing tensor field and $S\xi = \beta\xi$ for some function β , then Lemma 2.1 and Lemma 3.1 imply that $a_1a_2 = c \neq 0$ and $(a_1 - a_2)(a_1a_2 - 3c) = 0$. Thus *M* is a totally η -umbilical real hypersurface. Thus a non-homogeneous real hypersurface with $A\xi = 0$ in $M_n(4c)$ does not satisfy the condition that the Ricci tensor *S* of *M* is transversal Killing tensor field and $S\xi = \beta\xi$ for some function β .

From Theorems 3.1, 3.2 we also see that real hypersurfaces of type (B) do not satisfy the condition that *S* is transversal Killing tensor field and $S\xi = \beta\xi$ for some function β . Therefore we have the following theorems.

Theorem 4.1. Let *M* be a real hypersurface of $\mathbb{C}P^n$, $n \ge 2$. If the Ricci tensor *S* of *M* is transversal Killing tensor field and satisfies $S\xi = \beta\xi$ for some function β , then *M* is locally congruent to one of the types (A_1) and (A_2) .

Theorem 4.2. Let *M* be a real hypersurface of $\mathbb{C}H^n$, $n \ge 2$. If the Ricci tensor *S* of *M* is transversal Killing tensor field and satisfies $S\xi = \beta\xi$ for some function β , then *M* is locally congruent to one of the types (A_0) , $(A_{1,0})$, $(A_{1,1})$ and (A_2) .

References

- [1] Berndt, J., Real hypesurfaces with constant principal curvatures in comples hyperbolic space, J. Reine Angew. Math. 395 (2003), 11-25.
- [2] Cho, J. T., Notes on real hypersurfaces in a complex space form, *Bull. Korean Math. Soc.* 52 (2015), 335–344.
- [3] Ki, U.-H., Real hypersurfaces with parallel Ricci tensor of a complex space form, Tsukuba J. Math. 13 (1989), 73–81.
- [4] Ki, U-H., Nakagawa, H. and Suh, Y. J., Real hypersurfaces with harmonic Weyl tensor of a complex space form, *Hiroshima Math. J.* 20 (1990), 93-102.
- [5] Kimura, M., Real hypersurfaces and complex submanifolds in complex projective space, Trans. Am. Math. Soc. 296 (1986), 137-149.
- [6] Kon, M., 3-dimensional real hypersurfaces and Ricci operator, Diff. Geom. Dyn. Syst. 16 (2014), 189-202.
- [7] Kon, M., Ricci tensor of real hypersurfaces, Pacific J. Math. 281 (2016), 103-123.
- [8] Maeda, S., Ricci tensors of real hypersurfaces in a complex projective space, Proc. Amer. Math. Soc. 122 (1994), 1229-1235.
- [9] Maeda, S., Hopf hypersurfaces with η-parallel Ricci tensors in a nonflat complex space forms, *Scientiae Mathematicae Japonicae*, 76 (2013), 449-456.
- [10] Niebergall, R. and Ryan, P. J., Real hypersurfaces in complex space forms. Tight and taut submanifolds, *Tight and taut submanifolds*, 32 (1997), 233-305.
- [11] Suh, Y. J., On real hypersurfaces of a complex space form with η -parallel Ricci tensor, *Tsukuba J. Math.* 14 (1990), 27-37.
- [12] Takagi, R., Real hypersurfaces in a complex projective space with constant principal curvatures, J. Math. Soc. Japan 27 (1975), 43–53.
- [13] Takagi, R., Real hypersurfaces in a complex projective space with constant principal curvatures II, J. Math. Soc. Japan 27 (1975), 508-516.

Affiliations

MAYUKO KON

ADDRESS: Faculty of Education, Shinshu University, 6-Ro, Nishinagano, Nagano City 380-8544, Japan E-MAIL: mayuko_k@shinshu-u.ac.jp

ORCID ID : 0000-0002-2214-4238