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ABSTRACT

We classify Hopf hypersurfaces in a non-flat complex space form whose Ricci tensor S satisfies
g((∇XS)X, ξ) = 0 for any vector field X tangent to ξ, where ξ is the structure vector field. We
also classify real hypersurfaces with transversal Killing Ricci tensor satisfying Sξ = βξ for some
function β.
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1. Introduction

For real hypersurfaces in a complex space formMn(4c) of constant holomorphic sectional curvature 4c 6= 0, it
is an interesting problem to determine real hypersurfaces satisfying an additional condition on the Ricci tensor.

Ki [3] showed that there are no real hypersurfaces with parallel Ricci tensor, ∇S = 0, in Mn(4c), n ≥ 3.
Several conditions that weaken the condition ∇S = 0 are studied (cf., [4], [11]). On the other hand, when the
structure vector field ξ is principal, then the real hypersurface is said to be Hopf. For Hopf hypersurfaces,
fundamental formulas are well-organized form, and it was considered to be a natural condition. So kinds of
classification theorems are given under this assumption (see, for example, [10]). If the Ricci tensor S satisfies
g((∇XS)Y,Z) = 0 for any vector field X, Y and Z orthogonal to ξ, then it is said to be η-parallel (Suh [11]). Suh
and Maeda classified Hopf hypersurfaces of Mn(4c) with η-parallel Ricci tensor ([11], [9]). In [8], Maeda gave a
classification of Hopf hypersurfaces in CPn with ∇ξS = 0.

When S satisfies g((∇XS)X, ξ) = 0 for any X orthogonal to ξ, we call S the transversal η-Killing Ricci tensor.
In section 3, we classify Hopf hypersurfaces whose Ricci tensor S is transversal η-Killing.

In [6] and [7], the author showed that If (∇XS)Y is proportional (resp. perpendicular) to the structure
vector field ξ for any vector fields X and Y orthogonal to ξ, then M is a Hopf hypersurface (resp. ruled real
hypersurface), under an assumption that Sξ = βξ, β being a function. On the other hand, for an almost contact
metric manifold (M,φ, η, ξ, g), Cho [2] considered a condition that a (1,1)-tensor field T on M a transversal
Killing tensor field, that is, it satisfies (∇XT )X = 0 for any vector fields X to ξ.

Combining these with the results in section 3, we classify real hypersurfaces of Mn(4c) whose Ricci tensor S
is a transversal Killing tensor field and satisfies Sξ = βξ for some function β, in section 4. We notice that any
Hopf hypersurfaces and ruled real hypersurfaces satisfy the condition that Sξ = βξ, β beging a function.

The author would like to express her sincere gratitude to the referee for valuable suggestions and comments.

2. Preliminaries

Let Mn(4c) denote the complex space from of complex dimension n (real dimension 2n) of constant
holomorphic sectional curvature 4c. For the sake of simplicity, if c > 0, we only use c = +1 and call it the
complex projective space CPn, and if c < 0, we just consider c = −1, so that we call it the complex hyperbolic
space CHn. Throughout this paper, we suppose that c 6= 0. We denote by J the almost complex structure of
Mn(4c). The Hermitian metric of Mn(4c) will be denoted by G.
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Let M be a real (2n− 1)-dimensional hypersurface immersed in Mn(4c). We denote by g the Riemannian
metric induced on M from G. We take the unit normal vector field N of M in Mn(4c). For any vector field X
tangent to M , we define φ, η and ξ by

JX = φX + η(X)N, JN = −ξ,

where φX is the tangential part of JX , φ is a tensor field of type (1,1), η is a 1-form, and ξ is the unit vector field
on M . Then they satisfy

φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0

for any vector field X tangent to M . Moreover, we have

g(φX, Y ) + g(X,φY ) = 0, η(X) = g(X, ξ),

g(φX, φY ) = g(X,Y )− η(X)η(Y ).

Thus (φ, ξ, η, g) defines an almost contact metric structure on M .
We denote by ∇̃ the operator of covariant differentiation in Mn(4c), and by ∇ the one in M determined by

the induced metric. Then the Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + g(AX,Y )N, ∇̃XN = −AX

for any vector fields X and Y tangent to M . We call A the shape operator of M . If the shape operator A of M
satisfies Aξ = αξ for some functions α, then M is said to be Hopf. We use the following (cf. [10])

Lemma 2.1. Let M be a Hopf hypersurface of Mn(4c), n ≥ 2, c 6= 0. If a vector field X is orthogonal to ξ and AX = λX ,
then

(2λ− α)AφX = (λα+ 2c)φX,

where α = g(Aξ, ξ), and α is constant.

For the almost contact metric structure on M , we have

∇Xξ = φAX, (∇Xφ)Y = η(Y )AX − g(AX,Y )ξ.

We denote by R the Riemannian curvature tensor field of M . Then the equation of Gauss is given by

R(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y + g(φY,Z)φX

−g(φX,Z)φY − 2g(φX, Y )φZ}
+g(AY,Z)AX − g(AX,Z)AY,

and the equation of Codazzi by

(∇XA)Y − (∇YA)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}.

From the equation of Gauss, the Ricci tensor S of M satisfies

g(SX, Y ) = (2n+ 1)cg(X,Y )− 3cη(X)η(Y ) (2.1)
+TrAg(AX,Y )− g(AX,AY ),

where TrA is the trace of A. By (2.1), we have

(∇XS)Y = −3cg(φAX, Y )ξ − 3cη(Y )φAX

+(X TrA)AY + TrA(∇XA)Y −A(∇XA)Y (2.2)
−(∇XA)AY.

We use the following results to prove our theorem (see [1], [5], [10], [12], [13]).

Theorem A. Let M be a real hypersurface of Mn(4c). Then the principal curvatures of M are constant and ξ is
principal, if and only if, M is an open subset of a homogeneous hypersurfaces.

Theorem B. Let M be a homogeneous real hypersurface of CPn. Then M is congruent to one of the following:
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(A1) a geodesic sphere of radius r, where 0 < r < π/2,
(A2) a tube of radius r over a totally geodesic CP k (1 ≤ k ≤ n− 2), where 0 < r < π/2,
(B) A tube of radius r around a complex hyperquadric CQn−1, where 0 < r < π/4.
(C) a tube of radius r over a CP 1 ×CP n−1

2 , where 0 < r < π/4 and n(≥ 5) is odd,
(D) a tube of radius r over a complex Grassmann G2,5(C), where 0 < r < π/4 and n = 9,
(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5), where 0 < r < π/4 and n = 15.

The principal curvatures are as follows.

(A1) (A2) (B) (C, D, E)
λ1 cot r cot r cot(r − π/4) cot(r − π/4)
λ2 − tan r cot(r + π/4) cot(r + π/4)
λ3 cot r
λ4 − tan r
α 2 cot(2r) 2 cot(2r) 2 cot(2r) 2 cot(2r)

The multiplicity m(µ) of each principal curvature µ of a homogeneous real hypersurface is as follows.

(A1) (A2) (B) (C) (D) (E)
λ1 2n− 2 2n− 2k − 2 n− 1 2 4 6
λ2 2k n− 1 2 4 6
λ3 n− 3 4 8
λ4 n− 3 4 8
α 1 1 1 1 1 1

Theorem C. Let M be a Hopf hypersurface of CHn, n ≥ 2. If all principal curvatures are constant, then M is locally
congruent to one of the following:

(A0) A horosphere,
(A1,0) A geodesic sphere of radius r (0 < r <∞),
(A1,1) A tube of radius r around a totally geodesic CHn−1(c), where 0 < r <∞,

(A2) A tube of radius r around a totally geodesic CH l(c) (1 ≤ l ≤ n− 2), where 0 < r <∞,
(B) A tube of radius r around a totally real totally geodesic RHn(c/4), where 0 < r <∞.

The principal curvatures of these real hypersurfaces are given as follows:

(A0) (A1,0) (A1,1) (A2) (B)
λ1 1 coth r tanh r coth r coth r
λ2 tanh r tanh r
α 2 2 coth(2r) 2 coth(2r) 2 coth(2r) 2 tanh(2r)

3. The covariant derivative of the Ricci tensor

Let M be Hopf hypersurface of a complex space form Mn(4c), c 6= 0. Then the shape operator A satisfies
Aei = aiei, 1 ≤ i ≤ 2n− 2, with respect to a suitable orthonormal frame {e1, · · · , e2n−2, ξ}. We remark that if
Aiei = aiei, then

(2ai − α)Aφei = (aiα+ 2c)φei, (3.1)

by Lemma 2.1. In the following, we put Aφei = āiφei. Then we have

2aiāi − aiα− āiα− 2c = 0. (3.2)

Lemma 3.1. Let M be a Hopf hypersurface of Mn(4c). The Ricci tensor S of M is transversal η-Killing if and only if

(ai − aj)(−3c+ αTrA− α2 − aiaj)g(φei, ej) = 0 (3.3)

for i, j = 1, · · · , 2n− 2.
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Proof. By (2.2), when M is a Hopf hypersurface of Mn(4c), we obtain

g((∇eiS)ej , ξ)

= −3caig(φei, ej) + (TrA− α− aj)g((∇iA)ej , ξ)

= −3caig(φei, ej) + ai(TrA− α− aj)(α− aj)g(φei, ej)

= ai(−3c+ αTrA− aj TrA− α2 + a2j )g(φei, ej).

So we have

0 = g((∇eiS)ej , ξ) + g((∇ejS)ei, ξ)

= (ai − aj)(−3c+ αTrA− α2 − aiaj)g(φei, ej).

First we suppose that g((∇XS)X, ξ) = 0 for any X orthogonal to ξ. Since g((∇X+Y S)(X + Y ), ξ) = 0 for any
X and Y orthogonal to ξ, we have

g((∇XS)Y, ξ) + g((∇Y S)X, ξ) = 0.

So we have (3.3).
Next we suppose that the Ricci tensor S satisfies (3.3). Then we obtain

g((∇eiS)ej , ξ) + g((∇ejS)ei, ξ)

= (ai − aj)(−3c+ αTrA− α2 − aiaj)g(φei, ej) = 0

for any i and j. Thus we get g((∇eiS)ei, ξ) = 0. Any vector field X orthogonal to ξ is represented as X =∑
iXiei. Using g((∇eiS)ej , ξ) = −g((∇ejS)ei, ξ), we have

g((∇XS)X, ξ)

=
∑
i,j

XiXjg((∇eiS)ej , ξ)

=
∑
i

Xi
2g((∇eiS)ei, ξ) = 0.

So we have our result.

Lemma 3.2. Let M be a Hopf hypersurface of Mn(4c). If the Ricci tensor S of M is transversal η-Killing, then M has at
most 5 distinct constant principal curvatures.

Proof. From Lemma 3.1, putting ej = φei in (3.3), we have ai = āi or

− 3c+ αTrA− α2 − aiāi = 0. (3.4)

If ai = āi, by (3.2), we see that ai is a solution of the equation

x2 − αx− c = 0. (3.5)

Since α is constant, ai is also constant.
When ai 6= āi, from (3.1), we have 2ai = α or āi = aiα+2c

2ai−α . If 2ai = α for some ai, again from (3.1), we have
aiα+ 2c = 0, from which we see that α2 = −4c and c < 0. Then M has 2 constant principal curvatures (see [1]).

In the following, we suppose 2ai 6= α for any i. From (3.4) and āi = aiα+2c
2ai−α , we see that ai is a solution of the

following
x2α− 2(−4c+ αTrA− α2)x+ α(−3c+ αTrA− α2) = 0. (3.6)

We remark that āi is also the solution of the above equation since (3.2) and (3.4) is symmetric with respect to ai
and āi.

Therefore, we see that the shape operator A has at most 5 distinct principal curvatures. We put λ1 and
λ2 = λ̄1 are solutions of (3.6), whose multiplicity is k, respectively. We suppose λ3, λ4 are solutions of (3.5) with
multiplicity l and m, respectively. Then we have

TrA = k(λ1 + λ̄1) + lλ3 +mλ4 + α.

www.iejgeo.com 4

http://www.iej.geo.com


M. Kon

When α 6= 0, since λ1 and λ̄1 are solutions of (3.6), we have

λ1 + λ̄1 =
2(−4c+ αTrA− α2)

α
.

From these equations, we obtain

α(1− 2k) TrA = (lλ3 +mλ4)α− 8kc− 2kα2 + α2.

Since α(1− 2k) 6= 0, we see that TrA is constant. By (3.6), λ1 and λ̄1 are also constant. Hence all principal
curvatures are constant.

Finally we consider the case that α = 0. If ai 6= āi, then ai and āi are solutions of (3.6). So we have ai = āi = 0.
This is a contradiction. So we have ai = āi for all ai. Then the principal curvatures are

√
c and 0 with

multiplicities 2n− 2 and 1, respectively.

Using these lemmas, we prove the following theorem.

Theorem 3.1. Let M be a Hopf hypersurface of a complex projective space CPn. If the Ricci tensor S of M satisfies
g((∇XS)X, ξ) = 0 for any X orthogonal to ξ, then M is locally congruent to one of the following:

(A1) a geodesic sphere of radius r, where 0 < r < π/2,
(A2) a tube of radius r over a totally geodesic CP k (1 ≤ k ≤ n− 2), where 0 < r < π/2,
(C) a tube of radius r over a CP 1 ×CP n−1

2 , where cot2 2r = 5/(2n− 6) and n(≥ 5) is odd,
(D) a tube of radius r over a complex Grassmann G2,5(C), where cot2 2r = 9/8 and n = 9,
(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5), where cot2 2r = 13/16 and n = 15.

Proof. By Lemma 3.2, when M is a Hopf hypersurface in CPn with at most 5 distinct principal curvatures.
Therefore M is locally congruent to one of the list in Theorem B.

When M is locally congruent to type (A1), then λ1 = cot r satisfies λ̄1 = λ1. Thus all principal curvatures
satisfy (3.5). From Lemma 3.1, the Ricci operator S of all type (A1) hypersurfaces satisfy g((∇XS)X, ξ) = 0 for
X orthogonal to ξ. Similarly, since λ̄1 = λ1 and λ̄2 = λ2, type (A2) hypersurfaces also satisfy that condition.

Next we consider the case that M is locally type (B). The principal curvatures λ1 = cot(r − π
4 ) and λ2 =

cot(r + π
4 ) satisfies λ̄1 = λ2. If λ1 and λ2 are solutions of (3.6), then λ1λ2 = −3 + αTrA− α2 = −1. Since we

have
TrA = (n− 1)

(
cot(r − π

4
) + cot(r +

π

4
)
)

+ α,

we see that

1 = (n− 1) cot 2r
(

cot(r − π

4
) + cot(r +

π

4
)
)

= −2n+ 2.

This is a contradiction. So type (B) hypersurfaces do not satisfy g((∇XS)X, ξ) = 0, X ⊥ ξ.
Next we consider the case that M has 5 distinct constant principal curvatures. We put

λ1 = cot(r − π

4
), λ2 = cot(r +

π

4
), λ3 = cot r,

λ4 = − tan r, α = 2 cot(2r),

and their multiplicities are represented bym(λ1) = m(λ2) = k,m(λ3) = m(λ4) = l. Since λ1 and λ2 are solutions
of (3.6), similar computation as the case of type (B) shows that TrA · α− α2 = 2. On the other hand, we obtain

TrA− α = k(λ1 + λ2) + l(λ3 + λ4)

=
4k tan2 r − l(1− tan2 r)2

(tan2 r − 1) tan r
.

Since α = 2 cot 2r, we have

α(TrA− α) = −4k + l

(
1− tan2 r

tan r

)2

= 2,
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from which we see that

cot2 2r =
1 + 2k

2l
.

When M is locally congruent to type (C), then k = 2 and l = n− 3. Thus we have cot2 2r = 5
2(n−3) . Next, when

M is locally congruent to (D), we obtain cot2 2r = 9
8 . Finally, if M is locally congruent to (E), then we have

cot2 2r = 13
16 .

Theorem 3.2. Let M be a Hopf hypersurface of a complex hyperbolic space CHn. If the Ricci tensor S of M satisfies
g((∇XS)X, ξ) = 0 for any X orthogonal to ξ, then M is locally congruent to one of the following:

(A0) A horosphere,
(A1,0) A geodesic sphere of radius r (0 < r <∞),
(A1,1) A tube of radius r around a totally geodesic CHn−1(c), where 0 < r <∞,

(A2) A tube of radius r around a totally geodesic CH l(c) (1 ≤ l ≤ n− 2), where 0 < r <∞,

Proof. Similar argument as the proof of Theorem 3.1 shows that all type (A0), (A1,0) and (A1,1) and (A2)
hypersurface satisfies the condition g((∇XS)X, ξ) = 0 for any X orthogonal to ξ.

Suppose M is locally congruent to type (B). Then λ1 = coth r and λ2 = tanh r are solutions of (3.6). Then we
have αTrA− α2 = −2. So we have

tanh 2r(n− 1)(coth r + tanh r) = −1.

By the straightforward computation, we have 2(n− 1) = −1. This is a contradiction.

4. Transversal Killing tensor

For a Riemannian manifold with Riemannian connection ∇, a (1,1)-tensor field T is called a Killing tensor
field if it satisfies (∇XT )X = 0 or (∇XT )Y + (∇Y T )X = 0 for any vector fields X and Y . If T is symmetric,
then we easily see that T is parallel. For an almost contact metric manifold (M,φ, η, ξ, g), we call a (1,1)-
tensor field T on M a transversal Killing tensor field if it satisfies (∇XT )X = 0 or (∇XT )Y + (∇Y T )X = 0 for
any vector fields X and Y orthogonal to ξ (see Cho[2]). Cho [2] studied a real hypersurfaces in a non-flat
complex space form whose shape operator is a transversal Killing tensor field. In this section, we study a real
hypersurfaceM whose Ricci tensor S is a transversal Killing tensor field. We summarize theorems for later use.

Theorem D ([7]). Let M be a connected real hypersurface of Mn(4c), n ≥ 3, and suppose that the Ricci tensor S
of M satisfies Sξ = βξ for some function β.

(1) If (∇XS)Y is proportional to the structure vector field ξ for any vector fields X and Y orthogonal to ξ,
then M is a Hopf hypersurface.

(2) If (∇XS)Y is perpendicular to the structure vector field ξ for any vector fields X and Y orthogonal to the
structure vector field ξ, then M is a ruled real hypersurface.

When n = 2, the author gave a corresponding result in [6].
We use the following theorems for hypersurfaces with η-parallel Ricci tensor (see [9], [11]).

Theorem E. Let M be a Hopf hypersurface of CPn, n ≥ 2 with η-parallel Ricci tensor. Then M is congruent to
one of real hypersurfaces of types (A1), (A2) and (B) or a non-homogeneous real hypersurface with Aξ = 0 in CP 2.

Theorem F. Let M be a Hopf hypersurface of CHn, n ≥ 2 with η-parallel Ricci tensor. Then M is congruent to
one of real hypersurfaces of types (A0), (A1,0), (A1,1), (A2) and (B) or a non-homogeneous real hypersurface with
Aξ = 0 in CH2.

First, we prove the following lemma.

Lemma 4.1. Let M be a connected real hypersurface of Mn(4c), n ≥ 2, and suppose that the Ricci tensor S of M is
transversal Killing tensor field and satisfies Sξ = βξ for some function β, then M is a Hopf hypersurface with η-parallel
Ricci tensor.
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Proof. By the assumption we have (∇XS)X = 0 for any X orthogonal to ξ, which is equivalent to (∇XS)Y +
(∇Y S)X = 0 for any vector fields X and Y orthogonal to ξ. Since S is symmetric, it follows that

0 = g((∇XS)X,Y ) = −g((∇Y S)X,X).

This implies that g((∇XS)Y,Z) = 0 for any vector fields X , Y and Z orthogonat to ξ. Hence, the Ricci tensor S
is η-parallel. Combining this to Theorem D (1), M is a Hopf hypersurface.

If the Ricci tensor S of M is transversal Killing tensor field, then S is transversal η-Killing. Therefore, if
a real hypersurface of M2(c) with Aξ = 0 satisfies the condition that the Ricci tensor S of M is transversal
Killing tensor field and Sξ = βξ for some function β, then Lemma 2.1 and Lemma 3.1 imply that a1a2 = c 6= 0
and (a1 − a2)(a1a2 − 3c) = 0. Thus M is a totally η-umbilical real hypesurface. Thus a non-homogeneous real
hypersurface with Aξ = 0 in Mn(4c) does not satisfy the condition that the Ricci tensor S of M is transversal
Killing tensor field and Sξ = βξ for some function β.

From Theorems 3.1, 3.2 we also see that real hypersurfaces of type (B) do not satisfy the condition that
S is transversal Killing tensor field and Sξ = βξ for some function β. Therefore we have the following theorems.

Theorem 4.1. Let M be a real hypersurface of CPn, n ≥ 2. If the Ricci tensor S of M is transversal Killing tensor field
and satisfies Sξ = βξ for some function β, then M is locally congruent to one of the types (A1) and (A2).

Theorem 4.2. Let M be a real hypersurface of CHn, n ≥ 2. If the Ricci tensor S of M is transversal Killing tensor field
and satisfies Sξ = βξ for some function β, then M is locally congruent to one of the types (A0), (A1,0), (A1,1) and (A2).
.
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