
 

Doctoral Dissertation (Shinshu University) 
 

On matrix Toda brackets  
in  

 the Baues-Wirsching cohomology 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

September 2018 
 

Kenichirou Shinkai 



ON MATRIX TODA BRACKETS IN THE BAUES-WIRSCHING

COHOMOLOGY

KENICHIROU SHINKAI

Abstract. Hardie, Kamps and Marcum have considered the matrix Toda
brackets introduced by Barratt in the category of topological spaces from a
2-categorical point of view. Baues and Dreckmann have shown that a class
in the third Baues-Wirsching cohomology of a small category C governs every

classical Toda bracket if the bracket is defined with a Toda category in C.
Our aim is to generalize such a relationship to that between the class in the
cohomology and matrix Toda brackets in a 2-category. Moreover, the non-

triviality of the third cohomology is discussed via computation of a matrix
Toda bracket in the category of cochain complexes on an additive category.
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1. Introduction

The secondary operations due to Toda [26], the Toda brackets, play a crucial role
in the computation of the homotopy groups of spheres and more general suspension

spaces. More precisely, for a diagram H
h �� G

g �� F
f �� E in the category of

pointed topological spaces with gh � 0 and fg � 0, we define the classical Toda
bracket {f, g, h} in the set of homotopy classes [ΣH,E] with an indeterminacy,
where ΣH denotes the reduced suspension of H. Therefore, for three elements in
appropriate homotopy sets, the Toda bracket may give a new element of a homotopy
group of a space.

The construction of the Toda bracket is applicable in a triangulated category [11,
17]. Thus one might expect that such a secondary operation gives us new insights
into consideration of an appropriate Abelian category, a triangulated category and
a 2-category; see [3, 5, 8, 13, 15, 16, 25].

Baues and Wirsching have introduced cohomology of a small category, the Baues-
Wirsching cohomology, with interpretation of the first and second cohomology. The
first cohomology group can be described in terms of derivations, the second one
classifies linear extensions of categories; see [9]. Baues and Dreckmann [8] have
shown that the third Baues-Wirsching cohomology of a small category C classifies
linear track extensions over C; see [8, Theorem 4.6]. Moreover, a particular class,
the so-called universal Toda bracket is defined in the third one. If the category C
is a subcategory of the category of topological spaces, then it is shown that the
universal Toda bracket governs every Toda bracket if C contains the Toda category,
which defines the bracket.

Generalizing the classical Toda brackets, matrix Toda brackets have been intro-
duced by Barratt [2]. Roughly speaking, the bracket can be defined for a commu-
tative diagram of the form

W

0

��

0

��w �� C
g ��

f

��

B

b

��
A

a �� X

in the homotopy category of pointed topological spaces by using homotopies which

give the comutativity. In particular, the matrix Toda bracket

{
b
a
,
g
f
, w

}
is nothing

but the classical one {b, g, w} if A is a space consisting of a point. Subsequently,
Hardie, Kamps and Marcum [13] have developed a categorical approach to such
brackets in a 2-category. It is important to mention that the matrix Toda bracket
has applications in explicit calculations of homotopy groups and more generaliza-
tions; see [3, 14, 15, 20, 21, 22, 23]. The results together with those mentioned
above motivate us to investigate the generalized brackets with the cohomology of
a small category.

In this manuscript, we show that the same class as the universal Toda bracket in
the third Baues-Wirsching cohomology of a small category also governs matrix Toda
brackets in the sense of Hardie, Kamps and Marcum if the bracket is decomposed
into two Toda brackets; see Theorem 2.6. Moreover, using the description of the
classical Toda bracket in a triangulated category due to Heller, we examine the non-
triviality of a matrix Toda bracket defined in a 2-category of cochain complexes.
Indeed, it is possible to represent a matrix Toda bracket with a classical one in an
algebraic triangulated category; see Theorem 2.14 for more details. The formula
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is reminiscent of the original definition of the matrix Toda bracket due to Barratt;
see also [24].

The the rest this paper is organized as follows. In Section 2, we describe The-
orems 2.6 and 2.14, which are our main theorems. Section 3 gives a brief review
of the matrix Toda bracket introduced by Hardie, Kamps and Marcum. After re-
calling a linear track extension over a small category, the universal Toda bracket is
defined. In Section 4, we recall the definition of the Baues-Wirsching cohomology
of a small category with coefficients in a natural system. Then we prove Theorems
2.6. Section 5 proves Theorem 2.14 and gives a computational example of a matrix
Toda bracket. In order to describe the main theorems in Section 2, we need defi-
nitions and terminology although most of the explicit explanations are deferred to
the latter sections. For the reader, we here summarize the places in which such key
terms are mentioned. We indeed describe

• the matrix Toda bracket in the beginning of Section 3,
• a track category in Definition 3.2,
• a linear track extension in Definition 3.4,
• ‘Hypothesis I’ in the assertion of Theorem 2.6 before Definition 3.6,
• the universal Toda bracket in Definition 3.6,
• the Baues-Wirsching cohomolog and its variants in Definition 4.1 and
• the algebraic Toda bracket in the sense of Heller, which is needed to state
Theorem 2.14, in the beginning of Section 5.

Acknowledgement. The author would like to express his deep thanks to Katsuhiko
Kuribayashi for many valuable comments on this article and his encouragement
throughout the research for this work. He also thanks the referee for careful reading,
thoughtful suggestions and valuable proposals to revise the original paper for this
thesis.

2. The main theorems

In this section, our main theorems are described. For a small category C, we
define the category F(C) of factorizations in C as follows. The objects are the
morphisms in C and a morphism from α to β is a pair (u, v) of morphisms in C such
that β = u ◦ α ◦ v:

· u �� ·

·
α

��

·
v

��
β

��

The composite of maps(u, v) : α → β and (u′, v′) : β → γ is defined by (u′, v′) ◦
(u, v) = (u′ ◦ u, v ◦ v′). Observe that, for an object ϕ : y → x of F(C), a morphism
idϕ = (idx, idy) is the identity on ϕ. By definition, a natural system D on a small
category C is a covariant functor from F(C) to the category of Abelian groups. We
may write Dα for D(α), where α ∈ ob(F(C)).

We recall the definition of a 2-category. A category G is a 2-category if the
following conditions are satisfied:

(i) For objects X,Y ∈ob(G), the hom-set HomG(X,Y ) constitutes a small
category G(X,Y ) with obG(X,Y ) = HomG(X,Y ).

(ii) For X,Y, Z ∈ob(G), the composite of morphisms in G defines a functor
◦ : G(Y, Z)×G(X,Y ) → G(X,Z) with 11Y ◦−=1G(X,Y ) and −◦11Y =1G(Y,Z).

A morphism from f : X → Y to g : X → Y denoted F : f ⇒ g in the category
G(X,Y ) is called a 2-morphism.

An object 0 in a 2-category is a 0 -object if G(0, X) and G(X, 0) are trivial cate-
gories for any objects X ∈ob(G).
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Two 1-morphisms f, g : A → B of G are homotopic if there exists an invertible
2-morphism F : f ⇒ g. We write f � g if f and g are homotopic.

As usual, the homotopy category HG of a 2-category G is the category with the
same class of objects as that in G and the hom-set HomHG(A,B) for objects A and
B in HG is defined to be the quotient HomG(A,B)/� by the homotopy relation �.
In what follows, G denotes a 2-category with a 0-object unless otherwise specified.

In order to describe our main theorem (Theorem 2.6 below), we further need
terminology on 2-morphisms.

Definition 2.1. Let S : u ⇒ v and T : r ⇒ s be 2-morphisms, where u, v, r, and
s are morphisms with same source and target. We say that S and T are conjugate
and write S〈conj〉T if there exists invertible morphisms H : v ⇒ s and K : u ⇒ r
such that H + S = T +K.

Definition 2.2. Let f, g : A → B be morphisms and F : f ⇒ g a 2-morphism in
G. A set N(F ) is defined to be the set {G : 0AB ⇒ 0AB | G〈conj〉F}.

In what follows, we write AXY for N(10 : 0 ⇒ 0 : X → Y ). We need more struc-
ture on the set AXY in order to relate matrix Toda brackets with the cohomology
mentioned in the Introduction. The set AXY is automatically a group; see [13,
Proposition 2.4]. Moreover, we assume that the group AXY is Abelian for any X
and Y in HG. For any morphisms b : B → C in G, the maps b∗ : AAB → AAC and
b∗ : ACA → ABA which are induced by the horizontal composition in G are well-
defined homomorphisms by the interchange law. Observe that we have a functor
A−,− : HG ×HG → Ab to the category of Abelian groups.

Consider a commutative diagram

(2.1) : W

0

��

0

��w �� C
g ��

f

��

B

b

��
A

a �� X

in HG. Then we can define a matrix Toda bracket{
b
a
,
g
f
, w

}
in the sense of Hardie, Kamps and Marcum; see Section 3 for more details. Let h
and k be 1-morphisms of a 2-category G. For a subset C of G(h, h) and an invertible
2-morphism T : k ⇒ h, let CT denote the subset {−T + ξ + T | ξ ∈ C} of G(k, k);
see [13, (6.5) Notation]. Then, we see that the matrix Toda bracket

{
b
a
,
g
f
, w

}
is in AWX/(b∗AWB +D + a∗AWA), where D is the submodule (A(af) ◦ w)aH of
AWX , where A(af) ={F : af ⇒ af |F : invertible}. Moreover, if af � 0 � bg,

then

{
b
a
,
g
f
, w

}
is in AWX/(b∗AWB +w∗ACX + a∗AWA); see [13, Corollary 7.3].

In fact, the result [13, Proposition 6.9 (c)] yields that D = w∗ACX .

Definition 2.3. Let Ab be the category of Abelian groups. A functor DA :
F(HG) → Ab is defined by DA

[f ]:=As(f)t(f) = N(10 : 0 ⇒ 0 : s(f) → t(f)) and

DA(u, v)(G) := 1u ◦ G ◦ 1v = v∗u∗G for G ∈ DA
[f ] and (u, v) : [f ] → [g], where ◦

denotes the composition in HG.
Let G be a track category; see Definition 3.2 below. We consider a linear track

extension of the form DA + �� G2
���� G1

p �� HG in the sense of Baues and
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Dreckmann; see Definition 3.4. Then, we have the universal Toda bracket 〈HG〉
in the Baues-Wirsching cohomology H3(HG, DA) with the coefficients in the nat-
ural system DA. Here, HG is small; see Definition 3.6. We observe that one of
important data which defines a linear track extension is a set of isomorphisms
σf : DA

[f ] → G(f, f) determined by 1-morphisms f of G. Such a set of isomorphisms

is called the action of DA to G.
Track categories appear naturally in homotopy theory. Indeed, applying the

fundamental groupoid functor to each mapping space in a topologically enriched
category yields a track category; see [18]. The discussion in [10, Introduction]
as well as [12, Section 8.I,8, III.1] gives a simplicial version of the construction
above. Moreover, a cofibration category in the sense of Baues gives rise to a track
category; see [6, Proposition II.5.6 and Corollary]. From a category equipped with
a suitable cylinder functor, one can form a track category as described in [18,
Theorem IV.1.11].

We here mention that the Baues-Wirsching cohomology H∗(C, D) of a small
category C can be normalized with an ideal S of the category C. We denote it by
H∗

S(C, D); see Section 4.

Definition 2.4. Let MT be the category generated by the directed graph in dis-
played diagram, modulo the relation ã ◦ f̃ = b̃ ◦ g̃.

W̃
w̃ �� C̃

g̃ ��

f̃
��

B̃.

b̃
��

Ã
ã �� X̃

This category MT is called the matrix Toda category .

Definition 2.5. Let C be a category with zero morphisms. For a functor F :
MT → C which satisfies F (fw) = 0, F (gw) = 0, the functor F is called a matrix
Toda diagram in C. We also call F (MT ) a matrix Toda diagram in C.

For the category MT , we have a functor ϕ : MT → HG with ϕ(η̃) = η for
η ∈ {w, a, b, f, g}; that is, the diagram (2.1) is regarded as a matrix Toda dia-
gram . Then, the functor ϕ induces a homomorphism ϕ∗ : H3

O(HG)(HG, DA) →
H3

S(MT,ϕ∗DA). Here, S = {f̃ w̃, g̃w̃, b̃g̃w̃}. Moreover, we have an isomorphism

h̃ : H3(HG, DA) → H3
O(HG)(HG, DA); see Section 4.

We are ready to describe our main theorem.

Theorem 2.6. Let G be a track category with HG small, which satisfies Hypothesis
I ;see Section 3. If af � 0 � bg, then there exists an isomorphism

α : H3
S(MT,ϕ∗DA)

∼=−→ AWX/(b∗AWB + w∗ACX + a∗AWA)

such that the composite defined by the diagram

H3
O(HG)(HG, DA)

ϕ∗
�� H3

S(MT,ϕ∗DA)

α∼=
��

H3(HG, DA)

h̃ ∼=

�� ⎧⎨
⎩
b
a
,
g
f
, w

⎫⎬
⎭

∗

�� AWX/(b∗AWB + w∗ACX + a∗AWA)

sends the universal Toda bracket 〈HG〉 to the matrix Toda bracket

{
b
a
,
g
f
, w

}
de-

fined by the diagram (2.1).
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We recall a linear track extension; see Definition 3.4. Then we have the following
corollary.

Corollary 2.7. Let C be a small subcategory of HG which has a matrix Toda
diagram with a non-zero bracket. Then C admits a non-trivial linear track extension
by the natural system DA mentioned in Theorem 2.6.

Proof. Let F : MT → C be a functor which satisfies the condition described in
Definition 2.5. For the inclusion functor ι : C → HG, we define the functor ϕ :
MT → HG by composing ι and F . Then the commutative diagram

HG Cι
�� MT

F
��

ϕ

��

induces a commutative diagram

H3
O(HG)(HG, DA)

ϕ∗

		
ι∗ ��

i∗∼=
��

H3
O(C)(C, ι∗DA) F∗

��

i∗∼=
��

H3
S(MT,ϕ∗DA)

α∼=
��

H3(HG, DA)

⎧⎨
⎩
b
a
,
g
f
, w

⎫⎬
⎭

∗




ι∗ ��

h̃

��

H3(C, ι∗DA)

h̃

��

AWX/A�,

where A� := b∗AWB+w∗ACX +a∗AWA. In fact, F (S) and ι(O(C)) are included in
O(C) and O(HG), respectively. Then we have F ∗◦ι∗ = ϕ∗. The functor ι : C → HG
induces the commutative diagram

F̌ ∗(O(HG)) ι� ��

i

��

F̌ ∗(O(C))

i

��
F ∗(HG, DA)

ι� �� F ∗(C, ι∗DA),

where column maps are inclusions. The diagram gives rise to the commutative
diagram

H3
O(HG)(HG, DA) ι∗ ��

i∗

��

H3
O(C)(C, ι∗DA)

i∗

��
H3(HG, DA)

ι∗ �� H3(C, ι∗DA).

Thus we have ι∗ ◦ i∗ = i∗ ◦ ι∗. In consequence, we see that

α ◦ F ∗ ◦ h̃(ι∗〈HG〉) = α ◦ F ∗(h̃ ◦ ι∗(〈HG〉)
= α ◦ F ∗(ι∗ ◦ h̃(〈HG〉)
= α ◦ ϕ∗ ◦ h̃(〈HG〉)

=

{
b g
a f

w

}∗
(〈HG〉)

=

{
b g
a f

w

}
(by theorem 2.6.)

�= 0.
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This implies that the element ι∗〈HG〉 is nontrivial in H3(C, ι∗DA). �

If A in the diagram (2.1) is the 0-object , then we have a diagram

W

0��K ��w �� C
g ��

0

��L
��B

b �� X.

Therefore, the matrix Toda bracket

{
b
0
,
g
0
, w

}
is nothing but the classical Toda

bracket {b, g, w} defined by {−bK+Lw | K : 0 ⇒ gw, L : 0 ⇒ bg,K,L : invertible}.
We observe that {b , g , w} is in the coset AWX/(b∗AWB + w∗ACX) ; see [13,
Proposition 8.2].

Corollary 2.8. One has

{
b
0
,
g
0
, w

}∗
(〈HG〉) = {b g w}.

In what follows, we may write {b g w}∗ for

{
b
0
,
g
0
, w

}∗
.

Remark 2.9. We have

{
b
a
,
g
f
, w

}∗
(〈HG〉) =

{
b
a
,
g
f
, w

}
= {b g w} − {a f w} =

(π ◦ ({b g w}∗ − {a f w}∗))(〈HG〉) in AWX/(b∗AWB + w∗ACX + a∗AWA), where
π : AWX/(b∗AWB + w∗ACX) ⊕ AWX/(w∗ACX + a∗AWA) → AWX/(b∗AWB +
w∗ACX + a∗AWA) is the projection; see Lemma 4.7 below.

We here recall a result in [8] on the classical Toda bracket. Let Top be the
category of based topological spaces with the based homotopy relation �∗. Assume
that the 2-category G in our setting is a subcategory of based coHspaces whose
1-morphism are continuous maps and whose 2-hom-set of Top(X,Y ) is defined by
HomTop(X,Y )(f, g) = {H : X × I → Y }/�∗ for 1-morphisms f, g : X → Y . Then
we see that

AAB = N(10 : 0AB ⇒ 0AB) = {G : 0AB ⇒ 0AB | G〈conj〉10} ∼= [ΣA,B]

as a set and that Hypothesis I is satisfied for the 2-category G. Observe that the
based homotopy set [ΣA,B] is an Abelian group whose addition is defined with
the suspension structure of the domain as usual. Therefore, in view of Corollary
2.8, Theorem 2.6 is regarded as a generalization of the result [8, Theorem 3.3]. It
is important to remark that the ideal S′ used in [8, Thorem 3.3] does not coincide
with S in Theorem 2.6. In fact, S = {fw, gw, bgw} and S′ = {bg, gw, bgw}. Hence,
Corollary 2.8 gives another description of classical Toda brackets, which is stated
in terms of matrix Toda brackets.

Under the same assumption as in Theorem 2.6, we have propositions. These
propositions follow from [13, Theorem 5.4 and 5.5] and Theorem 2.6.

Proposition 2.10. Let x : X → Y be a map. Given a diagram of the form (2.1)
in HG, let x∗ : AWX/(b∗AWB + D + a∗AWA) → AWY /((xb)∗AWB + ACY ◦ w +
(xa)∗AWA) be the homomorphism induced by the map x, where D = (A(af)◦w)aH .
Suppose further that xaf = 0 = xbg in a commutative diagram

W
w �� C

g ��

f
��

B

b
��

A
a �� X

x �� Y
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in HG. Then, there holds the equality

x∗

{
b
a
,
g
f
, w

}
=

{
xb
xa

,
g
f
, w

}∗
(〈HG〉)

in AWX/(xb)∗AWB +ACY ◦ w + (xa)∗AWA.

Proof. By Theorem 2.6, we have

{
xb
xa

,
g
f
, w

}∗
(〈HG〉) =

{
xb
xa

,
g
f
, w

}
. By the

definition of the matrix Toda bracket, there exists an element θ in AWX such

that

{
b
a
,
g
f
, w

}
= [θ]. It follows that x∗

{
b
a
,
g
f
, w

}
= [x ◦ θ]. The result [13,

Theorem 5.4] implies that x ◦
{
b
a
,
g
f
, w

}
⊂

{
xb
xa

,
g
f
, w

}
. Then we see that x ◦ θ ∈

x ◦
{
b
a
,
g
f
, w

}
and hence [x ◦ θ] =

{
xb
xa

,
g
f
, w

}
in the quotient mentioned in the

assertion. This completes the proof. �

Proposition 2.11. Given a diagram of the form (2.1) in HG, let π : AZX/(b∗AZB+
D + a∗AZA) → AZX/(b∗AZB + AWX ◦ δ + a∗AZA) be the projection, where
δ : Z → W is a map and D = (A(af) ◦ wδ)aH . Suppose that afw = 0 = bgw
in a commutative diagram

Z
δ �� W

w �� C
g ��

f

��

B

b

��
A

a �� X

in HG. Then, one has

π

{
b
a
,
g
f
, wδ

}
=

{
b
a
,
gw
fw

, δ

}∗
(〈HG〉)

in AZX/(b∗AZB +AWX ◦ δ + a∗AZA).

Proof. Theorem 2.6 enables us to deduce that

{
b
a
,
gw
fw

, δ

}∗
(〈HG〉) =

{
b
a
,
gw
fw

, δ

}
.

By the definition of the matrix Toda bracket, there exists an element θ in AZX

such that

{
b
a
,
g
f
, wδ

}
= [θ]. By [13, Theorem 5.5], we see that

{
b
a
,
g
f
, wδ

}
⊂{

b
a
,
gw
fw

, δ

}
. Since θ is in

{
b
a
,
g
f
, wδ

}
, it follows that [θ] =

{
b
a
,
gw
fw

, δ

}
in the

quotient. We have the result. �

In describing Theorem 2.6, we use a matrix Toda category MT but not a Toda
diagram in [8]. Therefore, the maps π and x∗ in Propositions 2.10 and 2.11 are
defined naturally. An advantage of the propositions above is that the non-triviality
of the matrix Toda brackets follows from that of the image by the homomorphisms
of the universal Toda bracket 〈HG〉.

Another main theorem asserts that a matrix Toda bracket is represented by the
classical one in an appropriate category. In order to describe such a result, we
consider the category of cochain complexes Ch(B) on an additive category B.

For any objects X and Y in Ch(B), the hom-set Ch(B)(X,Y ) admits a category
structure. In fact, its objects are cochain maps from X to Y and the hom-set is a
set of linear maps of degree −1 defined by

HomCh(B)(X,Y )(f, g) := {h : X → Y | f − g = dY h+ hdX}
/
∼ .
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Moreover, for linear maps h, k : X → Y of degree −1, by definition h ∼ k if and only
if there exists a linear map u : X → Y of degree −2 such that h− k = dY u− udX .

A vertical composite

+ : HomCh(B)(X,Y )(g, h)×HomCh(B)(X,Y )(f, g) → HomCh(B)(X,Y )(f, h)

is defined by +(h1, h2) = h1 + h2. Moreover, the composite

◦ : Ch(B)(Y, Z)× Ch(B)(X,Y ) → Ch(B)(X,Z)

in the category Ch(B) gives rise to a functor whose behavior in the hom-sets

◦ : HomCh(B)(Y,Z)(f
′, g′)×HomCh(B)(X,Y )(f, g) → HomCh(B)(X,Z)(f

′ ◦ f, g′ ◦ g)

is defined by k◦h := f ′k+hg for k ∈ HomCh(B)(Y,Z)(f
′, g′) and h ∈ HomCh(B)(X,Y )(f, g).

The homotopy category H(Ch(B)) admits the triangulated category structure
whose distinguished triangles are constructed by the mapping cone and suspension
functors; see [1, Theorem 2.3.1].

More generally, we recall the definition of an algebraic triangulated category.

Definition 2.12. [19, 3.2] An exact functor T → U between triangulated cate-
gories is a pair (υ, η) consisting of a functor υ : T → U and natural isomorphism

η : υ ◦ ΣT → ΣU ◦ υ such that for every exact triangle X
α→ Y

β→ Z
γ→ ΣX in T

the triangle

υX
υα−→ υY

υβ−→ υZ
ηX◦υγ−→ Σ(υX)

is exact in U .

Definition 2.13. [19, 7.5] A triangulated category T is called algebraic if there
exists a fully faithful exact functor ϑ : T → H(Ch(B)) with a natural isomorphism
η : ϑ ◦ Σ → Σ ◦ ϑ for some additive category B.

A matrix Toda diagram (2.1) in a triangulated category T gives rise to a Toda
diagram of the form

W
w−→ C

−f∨g−→ A⊕B
∇(a,b)−→ X.

Then we have (−f ∨ g)w = 0 and ∇(a, b)(−f ∨ g) = 0 in T . In fact, the direct sum
of two objects A and B is an object A⊕B together with morphisms

i : A → A⊕B , j : B → A⊕B

making (A⊕B, i, j) into the coproduct. Moreover, we have the product (A⊕B, p, q)
with morphisms

p : A⊕B → A , q : A⊕B → B.

These maps are related by equations [18, page 444]

pi = idA , qj = idB , pj = 0 , qi = 0 ip+ jq = idA⊕B .

We shall prove (−f ∨ g)w = 0 and ∇(a, b)(−f ∨ g) = 0. Consider the diagram

B
b

�����������������

j

��
W

w �� C

−f
���������������

g

����������������� −f∨g �� A⊕B

p

��

q

��

∇(a,b) �� X.

A

i

��

a

�����������������
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For (−f ∨ g)w : W → A ⊕ B, we see that p ◦ ((−f ∨ g)w) = (p ◦ (−f ∨ g) ◦ w =
−f ◦ w = 0 = p ◦ 0 and q ◦ ((−f ∨ g)w) = g ◦ w = 0 = q ◦ 0. Since (−f ∨ g)w is
unique, it follows that (−f ∨ g)w = 0.

B

W

0
���������������

0

����������������� (−f∨g)w �� A⊕B

p

��

q

��

A

The second equality follows from relations between morphism mentioned above.
In fact, we have

∇(a, b) ◦ (−f ∨ g) = ∇(a, b) ◦ 1A⊕B ◦ (−f ∨ g)

= ∇(a, b) ◦ (i ◦ p+ j ◦ q) ◦ (−f ∨ g)

= ∇(a, b) ◦ i ◦ p ◦ (−f ∨ g) +∇(a, b) ◦ j ◦ q ◦ (−f ∨ g)

= (∇(a, b) ◦ i) ◦ (p ◦ (−f ∨ g)) + (∇(a, b) ◦ j) ◦ (q ◦ (−f ∨ g))

= a ◦ (−f) + b ◦ g
= −a ◦ f + b ◦ g
= 0.

Let {ϕ,ψ, η} denote the classical Toda bracket for X
η→ Y

ψ→ Z
ϕ→ W in T

defined by Heller [17, Section 13]. Then we have the following theorem.

Theorem 2.14. For a matrix Toda diagram (2.1) in an algebraic triangulated
category T with a fully faithful exact functor (ϑ, η), via ϑ, one has{

b, g
w

a, f

}
= {∇(a, b),−f ∨ g, w},

that is {
ϑb, ϑg

ϑw
ϑa, ϑf

}
= ϑ{∇(a, b),−f ∨ g, w} ◦ η−1

W .

3. Brief recollection on matrix Toda brackets and the universal

Toda bracket

We begin by considering a diagram

W

0

		

0

��w �� C
g ��

f
��

B

b
��

A

S
=⇒
a �� X

in a 2-category G, where S : af ⇒ bg is a 2-morphism. Then, we define a set
σ(S,w) by

σ(S,w) := {−bK + Sw + aH | H : 0 ⇒ fw,K : 0 ⇒ gw,H and K are invertible}.

We define the matrix Toda bracket

{
b
a
,
g
f
, w

}
to be the union

⋃
S∈Z σ(S,w), where

Z = {S | S : af ⇒ bg is invertible}.
Remark 3.1. For a 2-morphism S : af ⇒ bg and 1-morphism w : W → C, we see
that σ(S,w) ⊂ N(Sw).
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Let θ = −bK+Sw+aH inN(1afw) = AWX ; see [13, Proposition (2.4)]. Suppose
that af � 0 � bg and AWX is an Abelian group. Then, the matrix Toda bracket{
b
a
,
g
f
, w

}
coincides with the coset (θ + b ◦ N(1gw) + N(S) ◦ w + a ◦ N(1fw)).

We observe that a � a′, b � b′, f � f ′, g � g′ and w � w′ then

{
b
a
,
g
f
, w

}
={

b′

a′
,
g′

f ′, w′
}

as a coset; see [13, Proposition (5.3)].

In general, k � l then N(1k) = N(1l) ; see [13, Proposition (2.2)]. Then, we see

that

{
b
a
,
g
f
, w

}
= [θ] is in AWX/(b∗AWB + w∗ACX + a∗AWA).

Let C be a small category andD a natural system. For α, u ∈ mor(C) with s(u) =
t(α), we write u∗ for the homomorphism D(u, ids(α)) : Dα → Du◦α. Similarly, the
homomorphism D(idt(α), v) : Dα → Dα◦v is written as v∗, where v ∈ mor(C) with
t(v) = s(α).

We here recall the definition of the nth Baues–Wirsching cohomology of C with
coefficients in D. For n ≥ 1, let Nn(C) be the set of n-simplices of the nerve of C;
that is, Nn(C) = {λ = (λ1, λ2,··· , λn) | X0

λ1← X1
λ2← X2 ← · · · λn← Xn }. Let Fn be

an Abelian group defined by

Fn = Fn(C, D) := {c : Nn(C) → ∪g∈mor(C)Dg | c(λ1, . . . , λn) ∈ Dλ1◦···◦λn}.
The boundary operator δn : Fn−1 → Fn is defined by

(δn(c))(λ) = λ1∗c(λ2, . . . , λn)

+

n−1∑
i=1

(−1)ic(λ1, . . . , λi ◦ λi+1, . . . , λn) + (−1)nλ∗
nc(λ1, . . . , λn−1),

for λ = (λ1, . . . , λn) ∈ Nn(C) and c ∈ Fn−1. The cohomology Hn(F ∗(C, D)) of the
complex F ∗(C, D) := {Fn(C, D), δn}n∈Z is called the nth Baues-Wirsching coho-
mology, denoted Hn(C, D).

Definition 3.2. A track category T is a 2-category enriched in groupoids. More
precisely, T is category consisting of following data:

(i) For objects A and B of T , the set T (A,B) of 1-morphisms is a groupoid.
(ii) The composite ∗ : T (A,B)×T (A′, A) → T (A′, B) is a functor for A′, A,B ∈

ob(T ).

We may write T1 and T2 for the underlying 1-category of a track category and the
sets of 2-morphisms, respectively; allowed Line 11of Page 4. (be used Line 11of
Page 4.)

Remark 3.3. (i) For f, f ′ ∈ HomT1(A,B) = obT (A,B), H ∈ HomT (A,B)(f, f
′) and

G ∈ HomT (A′,A)(g, g
′), the function ∗ carries the pair of tracks (H,G) to a track

H∗G in HomT (A′,B)(f◦g, f ′◦g′). For the vertical composite + : HomT (A,B)(f
′, f ′′)×

HomT (A,B)(f, f
′) → HomT (A,B)(f, f

′′), we write + (H ′, H) = H ′ + H. Observe
that the functoriality of ∗ gives rise to equalities H ∗G = g′∗H+f∗G = f ′

∗G+g∗H,
where f∗G := 1f ∗G and g∗H := H ∗ 1g.
(ii) (1A)∗G = G, (1A)

∗H = H.
(iii) The operation ∗ in (i) is associative.

Definition 3.4. [8, Definition (4.3)] Let C be a category and D a natural system
on C, namely a functor D : FC → Ab. A linear track extension E of C by D consists
of a track category T , a functor p : T1 → C and an action σ of D on T , which is
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a set σ = {σf : Dp(f) → T (f, f) | σf is an isomorphism of groups for f ∈mor(T1)}.
Moreover, the following conditions are required:
(i) p is identity on ob(C) and full, moreover, p satisfies p(f) = p(g) ⇔ f � g.
(ii) For H ∈ T (f, h) and α ∈ Dp(f), σh(α) +H = H + σf (α).
(iii) For α, β ∈ Dp(f) and f, g ∈ mor(T1), one has g∗σf (α) = σfg(g

∗α) and
f∗σg(β) = σfg(f∗β).

Following [8], we may write D
+ �� T2 ���� T1

p �� C for the linear track exten-

sion E mentioned above, see also [4, Section 1] for the notation.
Let E be a linear track extension of a small category C by D and let τ : mor

C → mor T1 and H : N2C → ⋃
f,g∈mor(T1)

T (f, g) be functions with p ◦ τ=1 and

H(f, g) ∈ T (τf ◦τg, τ(fg)). We define a cochain CE(τ,H) : N3(C) →
⋃

f∈mor(C) Df

by

CE(τ,H)(f, g, h) := σ−1
τ(fgh)(Δ),

with Δ = −H(f, gh) − (τf)∗H(g, h) + (τh)∗H(f, g) + H(fg, h). See the diagram
below. Observe that Δ belongs to T (τ(fgh), τ(fgh)) and σ−1

τ(fgh) is an isomorphism

from T (τ(fgh), τ(fgh)) to D(pτ(fgh)) = D(fgh).

C F

τ(f)��1τ(f)
��

τ(f)
�� G

τ(g)
��

τ(fg)

���H(f,g)

�� H
τ(h)

��

τ(h)

��1τ(h)

��

τ(fgh)

���H(fg,h)

��

τ(fgh)���−H(f,gh)

��

τ(gh)���−H(g,h)��

Let Fn denote the Abelian group Fn(C, D). For the boundary operator δ4 :
F 3 → F 4, we see that δ4(C(τ,H)) = 0. Observe that the cocycle C(τ,H) does
depend on the choice of τ and H; its cohomology class[C(τ,H)] dose not ; see [8,
(A.1) Lemma (c)].

Remark 3.5. Suppose that T has a 0-object, then we can choose τ and H so that
τ(0) = 0 and H(f, 0) = H(0, f) = 10. Indeed, p ◦ τ = 1 and p is full, then there
exist τ(f) ∈ HomT1(A,B) such that p(τ(f)) = f for f ∈ morC. Observe that
p(τ(fg)) = fg = p(τ(f) ◦ τ(g)), then there exist a 2-morphism H between τf ◦ τg
and τ(fg); see Definition 3.4(i).

We here define the universal Toda bracket.
Hypothesis I. Let G be a track category which satisfies the following conditions:

(i) The group AXY is Abelian for any X and Y in HG.
(ii) For the functor DA : F(HG) → Ab defined in Definition 2.3, there exists a

linear track extension

DA + �� G2
���� G1

p �� HG
such that σ0 = id, where the functor p : G1 → HG is the natural projection.

We observe that σ0 denotes the element determined by the zero map 0 in the
action σ = {σf : DA

[f ] → G(f, f) | σf is an isomorphism of groups for f ∈ mor(G1)}
of DA which defines the linear track extension above; see [7, proof of Theorem 3.1],
[8, Example 4.7] and Example 5.2 below for examples which satisfy Hypothesis I.
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In particular, Example 5.2 gives a linear track extension whose action consists of
identities; that is σf = id for each morphism f in G.
Definition 3.6. Let G be a track category which satisfies Hypothesis I and HG
small category. Let E(HG) be the linear track extension in Hypothesis I. Then
the class 〈HG〉 := [CE(HG)(τ,H)] which belongs to H3(HG, DA) is called the
universal Toda bracket.

4. Proof of Theorem 2.6

We begin by recalling a normalized version of the Baues-Wirsching cohomology.
Let S ⊂ mor(C) be a subclass of morphism in C. We say that S is an ideal in C if
f ◦ g ∈ S, g ◦ h ∈ S for any g ∈ S and (f, g, h) ∈ N3(C). A natural system D on
C is S-trivial if f∗ = 0, f∗ = 0 (zero map) for any f ∈ S. For a 0-object ∗, a set
O(C) is defined by O(C) := {0 : A → ∗ → B|A,B ∈ob(C)}. It is readily seen that
O(C) is an ideal.

Definition 4.1. Let S be an ideal of mor(C). Abelian subgroups Fn(S) and F̌n(S)
of Fn(C, D) = Fn are denoted by

Fn(S) :=

{
{c ∈ Fn|c(λ1, . . . , λn) = 0 if λi ∈ S for every i ∈ {1, . . . , n}} (n ≥ 1)

{c ∈ F 0| c(A) = 0 if 1A ∈ S} (n = 0)

and

F̌n(S) :=

{
{c ∈ Fn|c(λ1, . . . , λn) = 0 if λi ∈ S for some i ∈ {1, . . . , n}} (n ≥ 1)

{c ∈ F 0 | c(A) = 0 if 1A ∈ S} (n = 0)

respectively. We say that c ∈ Fn(S) is a cochain relative to S. We say that
c ∈ F̌n(S) is a normalized cochain.
Observe that we have a sequence F̌n(S) ⊂ Fn(S) ⊂ Fn(C, D) of inclusions.

Let K be a subcategory of a small category C and S an ideal of mor(C). We
define Hn

S (C,K;D) by Hn(F ∗(morK) ∩F̌ ∗(S), δ), which is called the S-normalized
cohomology group of the pair (C,K).

In order to define the map α in Theorem 2.6, important results in [8] concerning
the normalized cohomology are described below.

Theorem 4.2. [8, Theorem (1.9)] Let S be an ideal in C and D an S-trivial
natural system on C. Then the inclusion j : S ⊂ S∪Ob(C) induces an isomorphism

j∗ : Hn
S∪Ob(C) (C,K;D)

∼=−→ Hn
S (C,K;D) for n ≥ 0.

Theorem 4.3. [8, Theorem (1.10) ] Let C be a small category which has a zero
object and O(C) the ideal of zero morphisms. Let K be a subcategory of C which
contains the zero morphism 0 : A →A for every object A in Ob(K). Moreover, let
S be an ideal in C and D a natural system on C which is S ∪ O(C)-trivial. Then

the inclusion i : S ⊂ S ∪O(C) induces an isomorphism i∗ : Hn
S∪O(C) (C,K;D)

∼=−→
Hn

S (C,K;D).

In what follows, we drop the tildes for objects and morphisms of MT and S
denotes the ideal {fw, gw, bgw} in MT . We shall have a commutative diagram

(4.1) : F̌ 2
δ̌3 ��

m′∼=
��

F̌ 3
δ̌4 ��

m∼=
��

F̌ 4

D�
m◦δ̌3◦n′

��

n′
��

Dbgw ×Dafw
0 ��

n

��

0,

where D� := Dgw ×Dbg ×Dfw ×Daf ×Dbgw and F̌ idenotes F̌ i(S ∪ ob(MT )); see
Appendix A for the commutativity of the diagram and the maps. This allows us
to deduce the following lemma.
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Lemma 4.4. The map n induces an isomorphism

ñ : Dbgw ×Dbgw/I = Dbgw ×Dafw/I ∼= H3
S∪ob(MT )(MT,D),

where I = Im(m ◦ δ̌3 ◦ n′)

The following lemma is proved in Appendix A.

Lemma 4.5. The map k : Dbgw/(b∗Dgw+w∗Dbg+a∗Dfw) → Dbgw×Dbgw/ Im(m◦
δ̌3 ◦ n′) defined by k([y]) = [(y, 0)] is a well-defined isomorphism.

Thus, we have the following result.

Theorem 4.6. Let D be a natural system on MT which is S-trivial. Then ñ ◦ k
is an isomorphism from Dbgw/(b∗Dgw + w∗Dbg + a∗Dfw) to H3

S∪ob(MT )(MT,D).

Let MT be the matrix Toda category, DA the natural system of automorphism
on HC and S an ideal of MT and of the form {fw, gw, bgw}. Suppose that there
exists a functor ϕ : MT → HG which satisfies the condition that ϕ(fw) = 0 and
ϕ(gw) = 0. We define (ϕ�)3 : F̌ 3(O(HG)) → F̌ 3(S) by

(ϕ�)3(c)(λ1, λ2, λ3) = c(ϕ(λ1), ϕ(λ2), ϕ(λ3)).

Moreover,we define ϕ∗ : H3
O(HG)(HG;DA) → H3

S(MT ;ϕ∗DA) by ϕ∗([c]) := [(ϕ�)3(c)]

for [c] ∈ H3
O(HG)(HG;DA).

We define

{
b
a
,
g
f
, w

}∗
by the composite which fits into the commutative diagram

H3
O(HG)(HG;DA)

ϕ∗
�� H3

S(MT ;ϕ∗DA)
∼= �� H3

S∪ob(MT )(MT ;ϕ∗DA)

∼=
��

j∗
��

H3(HG;DA)

h̃ ∼=

�� ⎧⎨
⎩
b
a
,
g
f
, w

⎫⎬
⎭

∗

�� AWX/b ∗ AWB + w∗ACX + a∗AWA,

ñ◦k

��

where h̃ is the inverse of the isomorphism described in Theorem 4.3; see also The-
orem 4.6.

In order to prove Theorem 2.6, we recall the definition of h̃ in [8, Appendix B].
Under the same assumption as in theorem 4.3, let F ∗ denote the cochain complex
{Fn(morK) ∩F̌n(S), δn}. We write Fn for the module Fn(morK) ∩ F̌n(S).

For n ≥ 1 and 0 ≤ i ≤ n, let ti : Fn+1 → Fn be a homomorphism defined by

tic(λ1,··· , λn) :=

{
c(λ1,··· , λi, 0, λi+1,··· , λn) if λ1 ◦··· ◦λn = 0

0 otherwise.

By definition, we see that for n = 0, t0 : F 1 → F 0 is the trivial map. For each
non-negative integer k, define a submodule Fn

k of Fn by

Fn
k = {c ∈ Fn : c(λ1,··· , λn) = 0 if λi = 0 for some i ≤ k}.

Then Fn
k defines a decreasing sequence of subcomplexes of (F ∗, δ) such that Fn

0 =

Fn and Fn
k = Fn(morK)∩ F̌n(S∪O(C)) for k ≥ n. We define a map hk : F ∗

k → F ∗
k

by hk := 1− t̃kδn+1 − δnt̃k, where

t̃k(c) :=

{
(−1)k+1tk if k ≤ n− 1

0 otherwise.
for c ∈ Fn

A direct calculation shows that hk is a chain map; see [8, page 337] . Thus we see
that hk is homotopic to the identity. The homomorphism hk satisfies the condition
that (i) hkc = c for c ∈ F ∗

k+1 and (ii) hk(F ∗
k ) ⊂ F ∗

k+1.
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It follows from the condition (ii) that hk is a homomorphism from Fn
k to Fn

k+1.
Thus we have a commutative diagram

�� Fn−1
n+1

δn �� Fn
n+1

δn �� Fn+1
n+1

δn ��

�� Fn−1
n

id

��

δn �� Fn
n

id

��

δn �� Fn+1
n

hn

��

δn ��

�� Fn−1
n−1

id

��

δn �� Fn
n−1

hn−1

��

δn �� Fn+1
n−1

hn−1

��

δn ��

:

hn−2

��

:

hn−2

��

:

hn−2

��

�� Fn−1
0

h0

��

δn �� Fn
0

δn+1
��

h0

��

Fn+1
0

��

h0

��

This diagram enables us to define a chain map h : Fn
0 = Fn → Fn

n = Fn(morK) ∩
F̌n(S ∪O(C)) by h = hn−1 ◦ hn−2 ◦ · · · ◦ h0. The homomorphism h̃ in Theorem 2.6

is defined by h̃([c]) := [hc].

We describe Lemma 4.7 which is necessary for Lemma 4.8.

Lemma 4.7. Suppose that S : af ⇒ bg is an invertible 2-morphism in G. If N(S)
is a non-empty set, then there exist two invertible 2-morphisms U : af ⇒ 0 and
V : bg ⇒ 0 such that S = −V + U.

Proof. Since N(S) �=0, there exists 2-morphism G : 0 ⇒0 such that G〈conj 〉S; that
is, there exist invertible 2-morphisms F1 and F2 such that F1 +G = S + F2. Then
we have an equality S = F1+G−F2. We define invertible 2-morphisms U : af ⇒ 0
and V : bg ⇒ 0 by V = −G − F1 and U = −F2, respectively. Then we see that
S = −V + U : af ⇒ bg. �

With two important lemmas below, we prove Theorem 2.6; see Appendix B for
the proofs of the lemmas 4.8, 4.9.

Lemma 4.8. For the map k in Lemma 4.5, one has k([θ]) = [(−bK −V w,−aH −
Uw)], where V and U are the 2-morphisms defined by the 2-morphism S : af ⇒ bg
in Lemma 4.7.

Lemma 4.9. For the composite h = h2 ◦ h1 ◦ h0, one has

(ϕ�)3(hCE(C)(τ,H))(b, g, w) = CE(C)(τ,H)(b, g, w) = −bK − V w.

Proof of Theorem 2.6. We define a homomorphism

α : H3
S(MT,ϕ∗DA)

∼=−→ AWX/(b∗AWB + w∗ACX + a∗AWA)

by α := (j∗ ◦ ñ ◦ k)−1.
It follows from Lemma 4.8, 4.4, Theorem 4.2 and Lemma A.1 that

α−1([θ]) = j∗ ◦ ñ ◦ k([θ])
= (j∗ ◦ ñ)[(−bK − V w,−aH − Uw)]

= j∗[n(−bK − V w,−aH − Uw)] = [n(−bK − V w,−aH − Uw)]

= [c′(−bK−V w,−aH−Uw)]

in H3
S(MT ;ϕ∗DA). For [c′(−bK−V w,−aH−Uw)] ∈ H3

S(MT ;ϕ∗DA), we have

c′(−bK−V w,−aH−Uw)(b, g, w) = −bK − V w.
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The same argument enables us to deduce that c′(−bK−V w,−aH−Uw)(a, f, w) = −aH−
Uw. The result above and Lemma 4.9 yield that ϕ∗ ◦ h̃(〈C〉) = α−1([θ]). This
completes the proof. �

5. Proof of Theorem 2.14

In this section, we describe a matrix Toda bracket in a triangulated category in
terms of a classical Toda bracket defined in [17, Chapter II].

Let T be a triangulated category with suspension functor Σ. We recall here the

Toda bracket in T defined by Heller [17]. Given a diagram W
f→ X

g→ Y
h→ Z

with hg = 0 and gf = 0 in T . Then we have a distinguished triangle of the form

W
f→ X

i→ Cf
j→ ΣW and a commutative diagram

W
f �� X

i �� Cf
j ��

s

��

ΣW

t

��
W

f
�� X g

�� Y
h

�� Z

in T . The Toda bracket {h, g, f} ∈ T (ΣW,Z)
/
(hT (ΣW,Y )) + T (ΣX,Z)Σf) is

defined by the class [t] in the quotient.
Let B be an additive category and Ch(B) the category of cochain complexes on

B mentioned in Section 2. The homotopy category H(Ch(B)), which admits the
triangulated category structure whose distinguished triangles are constructed by
the mapping cone and suspension functors. Observe that the suspension functor
Σ : H(Ch(B)) → H(Ch(B)) is defined by (ΣX)i = Xi+1 and dΣX = −dX for a
cochain complex (X, dX).

Let T be an algebraic triangulated category with a fully faithful exact functor
ϑ : T → H(Ch(B)). In what follows, we identify morphisms in T with their images
by ϑ in H(Ch(B)).
Proposition 5.1. AWX = A(0 : W → X) = T (ΣW,X).

Proof. By definition, we see that

A(0 : W → X) = N(10 : 0WX ⇒ 0WX ) = HomT (W,X)(0
W
X , 0WX )

= Homch(B)(W,X)(0
W
X , 0WX )

= {h : W → X | 0− 0 = dXh+ hdW }
/
∼

= {h : ΣW → X | h : a cochain map}
/
chain homotopy relation

= H(Ch(B))(ΣW,X)

= T (ΣW,X).

This completes the proof. �

Here we verify that the matrix Toda bracket and the Toda bracket in Theorem
2.14 are in the same abelian group in H(Ch(B))(Σ(ϑW ), ϑX).

The matrix Toda bracket

{
ϑb, ϑg

ϑw
ϑa, ϑf

}
belongs to AϑWϑX/(ϑb∗AϑWϑB +

ϑw∗AϑCϑX+ϑa∗AϑWϑA) andAϑWϑX is nothing but the groupH(Ch(B))(Σ(ϑW )), ϑX)
by Proposition 5.1. The classical Toda bracket ϑ{∇(a, b),−f ∨ g, w} in H(Ch(B)
belong to ϑT (ΣW,X)

/
ϑ(∇(a, b)T (ΣW,A ⊕ B) + T (ΣC,X)Σw) and ϑT (ΣW,X)

is equal to H(Ch(B))(ϑ(ΣW ), ϑX). Thus we have H(Ch(B))(ϑ(ΣW ), ϑX) ◦ η−1
W =

H(Ch(B))(Σ(ϑW ), ϑX).
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We denote by MD the diagram (2.1) in T . Then MD gives rise to a sequence

T (MD) : W
w→ C

−f∨g→ A⊕B
∇(a,b)→ X with (−f ∨g)w = 0 and ∇(a, b)(−f ∨g) = 0.

Thus T (MD) is regarded as a Toda category by definition.

Proof of Theorem 2.14. We see that the both sides are in the same Abelian group.
In fact, the natural maps i : A → A⊕B and j : B → A⊕B induce an isomorphism

(i∗, j∗) : T (ΣW,A)⊕ T (ΣW,B)
∼=→ T (ΣW,A⊕B). It follows from the universality

of the direct sum that the composite ∇(a, b)∗ ◦ (i∗, j∗) is nothing but ∇(a∗, b∗) :
T (ΣW,A)⊕ T (ΣW,B) → T (ΣW,X). Thus we have

∇(a, b)∗(ΣW,A⊕B) = a∗T (ΣW,A) + b∗T (ΣW,B).

Indeed, we have

∇(a, b)∗T (ΣW,A⊕B) = ∇(a, b)∗(i∗, j∗)(T (ΣW,A)⊕ T (Σw,B))

= ∇(a∗, b∗)(T (ΣW,A)⊕ T (Σw,B))

= a∗T (ΣW,A) + b∗T (ΣW,B).

T (ΣW,B)

b∗

�����������������

j∗
��

T (ΣW,A)⊕ T (ΣW,B)

(i∗,0) ���������������������

(0,j∗)
��������������������� (i∗,j∗) �� T (ΣW,A⊕B)

∇(a,b)∗ �� T (ΣW,X)

T (ΣW,A)

i∗

��

a∗

�����������������

The result and Proposition 5.1 enable us to conclude that the matrix Toda
bracket and the classical Toda bracket are in the same quotient group.

In order to show the equality of Theorem 2.14, we consider a commutative dia-
gram

T (W,A⊕B)

∇(a,b)∗
��

T (C,A⊕B)
w∗

��

∇(a,b)∗
��

T (Cw, A⊕B)
i∗��

∇(a,b)∗
��

T (ΣW,A⊕B)
j∗��

∇(a,b)∗
��

T (W,X) T (C,X)
w∗

�� T (Cw, X)
i∗�� T (ΣW,X)

j∗��

in which row sequences are exact. Chasing the diagram, we construct t and s in the
definition of the Toda bracket {∇(a, b),−f∨g, w}. Since w∗(−f∨g) = (−f∨g)w = 0
for −f∨g in T (C,A⊕B), it follows that i∗(s) = −f∨g for some morphism s : Cw →
A⊕B. In fact, we can choose the morphism

(
−f H
g −K

)
: Cw = C⊕ΣW → A⊕B

in T (Cw, A ⊕ B) as s. The equation Cw = C ⊕ ΣW is meant in the underlying
category of graded objects in B, not in T . Moreover, we see that j∗(−bK + Sw +

aH) = (0,−bK + Sw + aH), ∇(a, b)∗

(
−f H
g −K

)
= (−af + bg, aH − bK) and

j∗(−bK + Sw + aH)−∇(a, b)∗

(
−f H
g −K

)
= (S, 0)

(
dC w
0 −dW

)
+ dX(S, 0).

This implies that we can choose −bK + Sw + aH as t and j∗(t) = ∇(a, b)∗s; see
Appendix C in detail. This completes the proof. �

We describe a computational example with Theorem 2.14.
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Example 5.2. Let G be the 2-category Ch(B) mentioned above. One has a linear

track extension of the form DA + �� G2
���� G1

p �� HG . By definition, we see

that DA
[f ] = A(0 : s(f) → t(f)) = G(0, 0) = G(f, f). Then, we define the action σ

by σf = id for any f . Indeed, G(f, f) = {h : X → Y | f − f = dY h + hdX}
/
∼=

{h : X → Y | 0 = 0− 0 = dY h+ hdX}
/
∼= G(0, 0). In this example, all conditions

in Theorem 2.6 are satisfied.

Example 5.3. Let T be the triangulated category H(Ch(B)), where B is the

category of Z-modules. Here T is clearly algebraic. Let X
f→ Y

i→ Cf
j→ ΣX

be the mapping cone construction of a map f in T . Suppose that there exists
an integer k such that (i) Hk(X) �= 0 while Hom(Hk(Y ), Hk(X)) = 0 and (ii)
H(j) : Hk−1(Cf ) → Hk−1(ΣX) is not surjective. Then we see that 1Σ(X⊕X) is a
non-trivial element in the quotient Q defined by

T (Σ(X⊕X),Σ(X⊕X))
/
(j, j)T (Σ(X⊕X), Cf⊕Cf )+T (Σ(Y⊕Y ),Σ(X⊕X))Σ(f, f).

In fact, If 1Σ(X⊕X) is trivial in Q, then we have

1Σ(X⊕X) = (j, j)(α) + β ◦ Σ(f, f)
for some α ∈ H0(Hom(Σ(X⊕X), Cf⊕Cf )) and β ∈ H0(Hom(Σ(Y ⊕Y ),Σ(X⊕X)).

Observe that in our setting, the Hom-set T (U, V ) is nothing but the 0th coho-
mology H0(Hom((U, dU ), (V, dV ))) of the cochain complex Hom(U, V ) with the dif-
ferential δ defined by δ(ϕ) = dV ϕ− (−1)degϕϕdU for a homomorphism ϕ : U → V .

Let h : H0(Hom((U, dU ), (V, dV ))) →
∏

−p+q=0 Hom(Hp(U), Hq(V )) be the ho-
momorphism defined by assigning a cochain map the map induced in the cohomol-
ogy. Then the equality above enables us to deduce that

h(1Σ(X⊕X)) = (H(j), H(j))h(α) + h(β) ◦ Σ(H(f), H(f)) = (H(j), H(j))h(α)

in the degree k − 1. The second equality follows from the condition (i). The left
hand side is the identity map 1H(Σ(X⊕X)) while the right hand side is not surjective
because of (ii), which is a contradiction.
We consider a diagram

MDf : X ⊕X
(f,f) �� Y ⊕ Y

(i,0) ��

−(0,i)

��

Cf

j∨0

��
Cf

0∨j
�� Σ(X ⊕X)

in T . It is readily seen that this is a matrix Toda diagram. Thus the diagram gives
rise to a Toda diagram of the form

T (MDf ) : X ⊕X
(f,f) �� Y ⊕ Y

(i,i) �� Cf ⊕ Cf
(j,j) �� Σ(X ⊕X),

which is a distinguished triangle in T . Theorem 2.14 implies that in Q,{
j ∨ 0, (i, 0)

(f, f)
0 ∨ j, −(0, i)

}
= {(j, j), (i, i), (f, f)} = [1Σ(X⊕X)] �= 0.

The last equality follows from the definition of the classical Toda bracket.
We describe a toy example; see diagram below. As the example which satisfies

the conditions (i) and (ii) above, we give complexes X, Y and a cochain map
f : X → Y , where X0 = Z, Xi = 0 if i �= 0, Y −1 = Y 0 = Z, Y k = 0 for k �= −1, 0,
the differential dY : Y −1 → Y 0 is defined by dY (y) = 2y and f0 = 1 : X1 = Z →
Y 1 = Z. Observe that H0(Y ) = Z/2Z, H0(X) = Z and H(j) : H−1(Cf ) = 2Z →
H−1(ΣX) = Z is the inclusion; see Appendix D.
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The result [8, Theorem (4.6)] asserts that linear track extensions of C by a
natural system D are classified with the Baues-Wirsching cohomology H3(C, D).
Then, Theorem 2.6 enables one to deduce the following result.

Example 5.4. Let G be a small sub 2-category of Ch(B) which contains the matrix
Toda diagram MDf described in Example 5.3. There exists a linear track extension
of HG by DA with σ0 = 1 which is non-trivial up to equivalence. This follows from
Corollary 2.7.

Appendix A. Proof of Lemma 4.5

By the same argument as in the proof of [8, Lemma (1.12)], we have Lemma 4.5.
We first define isomorphism m,n,m′ and n′ in diagram (4.1).

Lemma A.1. The Abelian subgroup F̌ 3 of F 3 is isomorphic to Dbgw ×Dafw.

Proof. We define homomorphisms m : F̌ 3 → Dbgw ×Dafw and n : Dbgw ×Dafw →
F̌ 3 by m(c) := (c(b, g, w), c(a, f, w)) and n((x1, x2)) := c′(x1,x2)

respectively, where

c′x1,x2
is defined by

c′(x1,x2)
(α1, α2, α3) :=

⎧⎨⎩
x1 (α1, α2, α3) = (b, g, w)
x2 (α1, α2, α3) = (a, f, w)
0 if there exists i such that αi is in S ∪ ob(MT ).

The conditions (ii) and (iii) in the definition of MT yield that the map n is well
defined. It is readily seen that n ◦m = idF̌ 3 and m ◦ n = idDbgw×Dafw

. �

Lemma A.2. The Abelian subgroup F̌ 2 of F 2is isomorphic to D� = Dgw ×Dbg ×
Dfw ×Daf ×Dbgw.

Proof. We define homomorphisms m′ : F̌ 2 → D� and n′ : D� → F̌ 2 by m′(c) :=
(c(g, w), c(b, g), c(f, w), c(a, f), (bg, w)) and n′((x1, x2, x3, x4, x5)) := c′(x1,x2,x3,x4,x5)

,

respectively. Here,

c′(x1,x2,x3,x4,x5)
(α1, α2) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 (α1, α2) = (g, w)
x2 (α1, α2) = (b, g)
x3 (α1, α2) = (f, w)
x4 (α1, α2) = (a, f)
x5 (α1, α2) = (bg, w)
0 if there exists i such that αi is in S ∪ ob(MT ).

The well-definedness of n′ follows from the condition (i) in the definition of MT
and the argument of Lemma A.1. A direct calculation shows that m′ ◦ n′ = idD�

and n′ ◦m′ = idF̌ 2 . �

We show the following Lemmas to describe cochains F̌ 4 and the map m ◦ δ̌3 ◦n′

explicitly.

Lemma A.3. The Abelian subgroup F̌n of Fn is trivial for n ≥ 4.

Proof. For (λ1, . . . , λn) ∈ Nn(MT ), there exists i such that λi is the identity.
Therefore, c(λ1, . . . , λn) = 0 for any c ∈ F̌n. �

Lemma A.4. For (x1, x2, x3, x4, x5) ∈ D�, one has

m ◦ δ̌3 ◦ n′(x1, x2, x3, x4, x5) = (b∗x1 − w∗x2 − x5, a∗x3 − w∗x4 − x5).
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Proof. By definition, it follows that

m ◦ δ̌3(n′(x1, x2, x3, x4, x5))

= m ◦ δ̌3(c′(x1,x2,x3,x4,x5)
)

= m(δ̌3(c′(x1,x2,x3,x4,x5)
)

= (δ̌3(c′(x1,x2,x3,x4,x5)
)(b, g, w), δ̌3(c′(x1,x2,x3,x4,x5)

)(a, f, w))

= (δ3(c′(x1,x2,x3,x4,x5)
)(b, g, w), δ3(c′(x1,x2,x3,x4,x5)

)(a, f, w)).

For the first component , we have

δ3(c′(x1,x2,x3,x4,x5)
)(b, g, w)

= b∗c
′
(x1,x2,x3,x4,x5)

(g, w) + (−1)1c′(x1,x2,x3,x4,x5)
(bg, w)

+(−1)2c′(x1,x2,x3,x4,x5)
(b, gw) + (−1)3w∗(c′(x1,x2,x3,x4,x5)

(b, g))

= b∗x1 − x5 + 0− w∗x2 = b∗x1 − w∗x2 − x5.

For the second one, we see that

δ3(c′(x1,x2,x3,x4,x5)
)(a, f, w)

= a∗c
′
(x1,x2,x3,x4,x5)

(f, w) + (−1)1c′(x1,x2,x3,x4,x5)
(af, w)

+(−1)2c′(x1,x2,x3,x4,x5)
(a, fw) + (−1)3w∗(c′(x1,x2,x3,x4,x5)

(a, f))

= a∗x3 − x5 + 0− w∗x4 = a∗x3 − w∗x4 − x5.

This completes the proof. �

Proof of Lemma 4.5. We define maps

l : Dbgw ×Dbgw/ Im(m ◦ δ̌3 ◦ n′) → Dbgw/(b∗Dgw + w∗Dbg + a∗Dfw),

k : Dbgw/(b∗Dgw + w∗Dbg + a∗Dfw) → Dbgw ×Dbgw/Im(m ◦ δ̌3 ◦ n′)

by

l([(x1, x2)]) := [x1 − x2] for [(x1, x2)] ∈ Dbgw ×DafwIm(m ◦ δ̌3 ◦ n′),

k([y]) := [(y, 0)] for [y] ∈ Dbgw/(b∗Dgw + w∗Dbg + a∗Dfw).

We show that l and k are well-defined homomorphisms. For any element (z1, z2)
in Im(m◦ δ̌3 ◦n′), there exists an element (x1, x2, x3, x4, x5) ∈ D� such that m◦ δ̌3 ◦
n′(x1, x2, x3, x4, x5) = (z1, z2). By Lemma A.4, we see that z1 = b∗x1 −w∗x2 − x5,
z2 = a∗x3 − w∗x4 − x5 and

z1 − z2 = b∗x1 − w∗x2 − x5 − (a∗x3 − w∗x4 − x5)

= b∗x1 − a∗x3 − w∗(x2 − x4) ∈ b∗Dgw + a∗Dfw + w∗Dbg.

Next, for any element u in b∗Dgw + a∗Dfw + w∗Dbg, we write u = b∗x+ w∗y +
a∗z. Then m ◦ δ̌3 ◦ n′(x,−y,−z, 0,−a∗z) = (u, 0). Observe that a∗z ∈ a∗Dfw ⊂
Dafw = Dbgw. It is easily seen that l ◦ k = 1Dbgw/(b∗Dgw+w∗Dbg+a∗Dfw) and k ◦ l =
1Dbgw×Dbgw/ Im(m◦δ̌3◦n′). Indeed , l ◦ k([y]) = l([(y, 0)]) = [y − 0] = [y] and

k ◦ l([(x1, x2)]) = k([x1 − x2]) = [(x1 − x2, 0)] = [(x1, x2)].

In fact, [(x1, x2)] − [(x1 − x2, 0)] = [(x1, x2) − (x1 − x2, 0)] = [(x2, x2)]. Moreover,
since m◦ δ̌3 ◦n′(0, 0, 0, 0,−x2) = (b∗0−w∗0−(−x2), a∗0−w∗0−(−x2)) = (x2, x2),
it follows that (x2, x2) is in Im(m ◦ δ̌3 ◦ n′). We see that [(x2, x2)] = 0 and hence
[(x1, x2)] = [(x1 − x2, 0)]. �
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Appendix B. Proofs of Lemmas 4.8 and 4.9

Explicit calculation gives the proof of the Lemma 4.8 and we describe a proof of
Lemma 4.9 in detail.

Proof of Lemma 4.8. Recall that DA
bgw := A(0 : s(bgw) → t(bgw)) = A(0 : W →

X). We see that Uw : afw ⇒ 0w = 0 and then −Uw : 0 ⇒ afw : W → X and
−aH : afw ⇒ 0 : W → X. This implies that −aH − Uw : 0 ⇒ 0 : W → X and
that ((0, 0, 0, 0,−(Uw+ aH))) is in D� = DA

gw ×DA
bg ×DA

fw ×DA
af ×DA

bgw. Then

we have [(−bK + (−V w) + Uw + aH, 0)] = [(−bK − V w,−aH − Uw)]. In fact, it
follows that

(−bK + (−V w) + Uw + aH, 0)− (−bK − V w,−aH − Uw)

= (−bK + (−V w) + V w + bK + Uw + aH, 0− (−aH − Uw))

= (Uw + aH,Uw + aH)

= m ◦ δ̌3 ◦ n′((0, 0, 0, 0,−(Uw + aH))) ∈ Im(m ◦ δ̌3 ◦ n′).

The last equality follows from Lemma A.4. Therefore, we see that

k([θ]) := [(θ, 0)] = [(−bK + Sw + aH, 0)] = [(−bK + (−V + U)w + aH, 0)]

= [(−bK + (−V w) + Uw + aH, 0)]

= [(−bK − V w,−aH − Uw)].

This completes the proof. �

Proof of Lemma 4.9. We see that

CE(C)(τ,H)(b, g, w) := σ−1
τ(bgw)(Δ) = σ−1

τ(0)(Δ) = σ−1
0 (Δ) = Δ,

since σ0 = id. We have

Δ = −H(b, gw)− (τb)∗H(g, w) + (τw)∗H(b, g) +H(bg, w)

= −10∗ − (τb)∗H(g, w) + (τw)∗H(b, g) + 10∗ (gw, bg ∈ S; see Theorem 4.6)

= −(τb) ◦H(g, w) +H(b, g) ◦ (τw)
= −bK − V w. (τb = b,H(g, w) = K, τw = w,H(b, g) = −V )

This yields the second equality in Lemma 4.9.
Next, we shall show the first equality in Lemma 4.9. We denote CE(C)(τ,H) by

c. By the definitions of (ϕ�)3 and the inclusion ϕ, we have (ϕ�)3(hc)(b, g, w) =
hc(ϕ(b), ϕ(g), ϕ(w)) = hc(b, g, w); see the definition of (ϕ�)3. Since h = h2 ◦h1 ◦h0,
it follows that hc(b, g, w) = (h2◦h1◦h0)c(b, g, w), where h0 = (1− t̃0δ4−δ3t̃0), h1 =
(1− t̃1δ4 − δ3t̃1) and h2 = (1− t̃2δ4 − δ3t̃2).

We determine h0c(b, g, w), h1(h0c(b, g, w)) and h2(h1(h0c(b, g, w))). As for the
element h0c(b, g, w), we have

h0c(b, g, w) = (1− t̃0δ4 − δ3t̃0)c(b, g, w)

= (c− t̃0δ4(c)− δ3t̃0(c))(b, g, w)

= c(b, g, w)− δ4(c)t̃0(b, g, w)− δ3t̃0(c)(b, g, w).
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Here, −δ4(c)t̃0(b, g, w) and −δ3t̃0(c)(b, g, w) are determined as follows. By the
definitions of δ4 and t̃k, we have

−δ4(c)t̃0(b, g, w) = −(t̃0(δ4(c))(b, g, w))

= −t̃0(δ4(c)(b, g, w))

= −(−1)(0+1)t0(δ4(c)(b, g, w))

= δ4(c)(0, b, g, w)

= 0∗c(b, g, w)− c(0b, g, w) + c(0, bg, w)− c(0, b, gw) + w∗c(0, b, g)

= −c(0, g, w) + c(0, bg, w)− c(0, b, gw) + w∗c(0, b, g).

Moreover, we see that

−δ3t̃0(c)(b, g, w) = −((−1)1t0(c)b∗(g, w)− (−1)1t0(c)(bg, w)

+(−1)1t0(c)(b, gw)− w∗(−1)1t0(c)(b, g))

= b∗c(0, g, w)− c(0, bg, w) + c(0, b, gw)− w∗c(0, b, g).

The definition of hk enables us to calculate h0c(b, g, w) as follows:

h0c(b, g, w) = c(b, g, w)− δ4(c)t̃0(b, g, w)− δ3t̃0(c)(b, g, w)

= c(b, g, w)− c(0, g, w) + c(0, bg, w)− c(0, b, gw) + w∗c(0, b, g)

+b∗c(0, g, w)− c(0, bg, w) + c(0, b, gw)− w∗c(0, b, g)

= c(b, g, w)− c(0, g, w) + b∗c(0, g, w).

Then, we have

h1(h0(b, g, w)) = h1(c(b, g, w)− c(0, g, w) + b∗c(0, g, w))

= h1c(b, g, w)− h1c(0, g, w) + h1b∗c(0, g, w).

Here, we calculate only the first term h1c(b, g, w). The direct calculation shows
that

h1c(b, g, w)

= (1− t̃1δ4 − δ3t̃1)c(b, g, w)

= c(b, g, w)− t̃1δ4(c)(b, g, w)− δ3t̃1(c)(b, g, w)

= c(b, g, w)− (−1)2t1(δ4(c)(b, g, w))− δ3((−1)2t1(c)(b, g, w))

= c(b, g, w)− (b∗c(0, g, w)− c(b0, g, w) + c(b, 0g, w)− c(b, 0, gw) + w∗(b, 0, g))

−(b∗t
1(c)(g, w)− t1(c)(bg, w) + t1(c)(b, gw)− w∗t1(c)(b, g)

= c(b, g, w)− (b∗c(0, g, w)− c(0, g, w) + c(b, 0, w)− c(b, 0, gw) + w∗(b, 0, g))

−(b∗c(g, 0, w)− c(bg, 0, w) + c(b, 0, gw)− w∗c(b, 0, g)

= c(b, g, w)− b∗c(0, g, w) + c(0, g, w)− c(b, 0, w)− b∗c(g, 0, w) + c(bg, 0, w).

Then, we see that

h1c(b, g, w)− h1c(0, g, w) + h1b∗c(0, g, w)

= c(b, g, w)− b∗c(0, g, w) + c(0, g, w)− c(b, 0, w)− b∗c(g, 0, w) + c(bg, 0, w)

−(c(0, g, w)− 0∗c(0, g, w) + c(0, g, w)− c(0, 0, w)− 0∗c(g, 0, w) + c(0, 0, w))

+b∗(c(0, g, w)− 0∗c(0, g, w) + c(0, g, w)− c(0, 0, w)− 0∗c(g, 0, w) + c(0, 0, w))

= c(b, g, w)− c(b, 0, w)− b∗c(g, 0, w) + c(bg, 0, w)− c(0, g, w) + b∗c(0, g, w).
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As for the term h2(h1(h0c(b, g, w))), we have

h2(h1(h0c(b, g, w)))

= h2(c(b, g, w)− c(b, 0, w)− b∗c(g, 0, w) + c(bg, 0, w)− c(0, g, w) + b∗c(0, g, w))

= h2c(b, g, w)− h2c(b, 0, w)− h2b ∗ c(g, 0, w)
+h2c(bg, 0, w)− h2c(0, g, w) + h2b∗c(0, g, w).

As for the first term h2c(b, g, w), it follows that

h2c(b, g, w)

= (1− t̃2δ4 − δ3t̃2)c(b, g, w)

= c(b, g, w)− (−1)3δ4t2(c)(b, g, w)− δ3(−1)3t2(c)(b, g, w)

= c(b, g, w) + (b∗c(g, 0, w)− c(bg, 0, w) + c(b, 0, w)− c(b, g, 0) + h∗c(b, g, 0))

+(b∗t
2(c)(g, w)− t2(c)(bg, w) + t2(c)(b, gw)− h∗t2(c)(b, g))

= c(b, g, w) + (b∗c(g, 0, w)− c(bg, 0, w) + c(b, 0, w)− c(b, g, 0) + h∗c(b, g, 0))

+(b∗c(g, w, 0)− c(bg, w, 0) + c(b, gw, 0)− h∗c(b, g, 0))

= c(b, g, w) + b∗c(g, 0, w)− c(bg, 0, w) + c(b, 0, w)− c(b, g, 0)

+b∗c(g, w, 0)− c(bg, w, 0) + c(b, gw, 0).

Thus, combining the terms with other calculation, we have the following equations:

h2(h1(h0c(b, g, w)))

= h2c(b, g, w)− h2c(b, 0, w)− h2b∗c(g, 0, w) + h2c(bg, 0, w)

−h2c(0, g, w) + h2b∗c(0, g, w)

= c(b, g, w) + b∗c(g, 0, w)− c(bg, 0, w) + c(b, 0, w)− c(b, g, 0) + b∗c(g, w, 0)

−c(bg, w, 0) + c(b, gw, 0)− (c(b, 0, w) + b∗c(0, 0, w)− c(0, 0, w) + c(b, 0, w)

−c(b, 0, 0) + b∗c(0, w, 0)− c(0, w, 0) + c(b, 0, 0))− b∗(c(g, 0, w) + g∗c(0, 0, w)

−c(0, 0, w) + c(g, 0, w)− c(g, 0, 0) + g∗c(0, w, 0)− c(0, w, 0) + c(g, 0, 0))

+(c(bg, 0, w) + (bg)∗c(0, 0, w)− c(0, 0, w) + c(bg, 0, w)− c(bg, 0, 0)

+(bg)∗c(0, w, 0)− c(0, w, 0) + c(bg, 0, 0))− (c(0, g, w) + 0∗c(g, 0, w)

−c(0, 0, w) + c(0, 0, w)− c(0, g, 0) + 0∗c(g, w, 0)− c(0, w, 0) + c(0, gw, 0))

+b∗(c(0, g, w) + 0∗c(g, 0, w)− c(0, 0, w) + c(0, 0, w)

−c(0, g, 0) + 0∗c(g, w, 0)− c(0, w, 0) + c(0, gw, 0))

= c(b, g, w)− c(b, g, 0)− c(bg, w, 0) + c(b, gw, 0)− c(b, 0, w) + c(bg, 0, w)

−c(0, g, w) + c(0, g, 0) + c(0, w, 0)− c(0, gw, 0) + b∗(c(g, w, 0)− c(g, 0, w)

+c(0, g, w)− c(0, g, 0)− c(0, w, 0) + c(0, gw, 0))

= c(b, g, w)− c(b, g, 0)− c(0, w, 0) + c(b, 0, 0)− c(b, 0, w) + c(0, 0, w)

−c(0, g, w) + c(0, g, 0) + c(0, w, 0)− c(0, 0, 0) + b∗(c(g, w, 0)− c(g, 0, w)

+c(0, g, w)− c(0, g, 0)− c(0, w, 0) + c(0, 0, 0)).

Here, considering the first terms and second one, we have

c(b, g, w)

= CE(C)(τ,H)(b, g, w) := σ−1
τ(bgw)(Δ) = σ−1

τ(0)(Δ) = Δ

= −H(b, gw)− (τb)∗H(g, w) + (τw)∗H(b, g) +H(bg, w)

= −id0∗ − (τb)∗H(g, w) + (τw)∗H(b, g) + id0∗
= −(τb)∗H(g, w) + (τw)∗H(b, g)

= −(τb) ◦H(g, w) +H(b, g) ◦ (τw),
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c(b, g, 0)

= −H(b, 0)− (τb)∗H(g, 0) + (τ0)∗H(b, g) +H(bg, 0)

= −id− (τb)∗H(g, 0) + (0)∗H(b, g) + id

= −(τb)∗idα + 0∗H(b, g)

= −id(τb)◦α + 0∗H(b, g)

= H(b, g) ◦ 0∗.

In consequence, we see that

h2(h1(h0c(b, g, w)))

= c(b, g, w)−H(b, g) ◦ 0∗ +H(b, 0) ◦ 0∗
−(−(τb) ◦H(0, w) +H(b, 0) ◦ (τw)) + (−0 ◦H(0, w) +H(0, 0) ◦ (τw))
−(−0 ◦H(g, w) +H(0, g) ◦ (τw)) +H(0, g) ◦ 0∗ −H(0, 0) ◦ 0∗
+b∗[H(g, w) ◦ 0∗ − {(−τg) ◦H(0, w) +H(g, 0) ◦ (τw)} − 0 ◦H(g, w)

+H(0, g) ◦ (τw)−H(0, g) ◦ 0∗ −H(0, w) ◦ 0∗ +H(0, 0) ◦ 0∗].

In the equation above, observe that

H(b, 0) ◦ (τw) = id ◦ τw = idα ◦ idτw = idα(τw) = id0,

τg ◦H(0, w)−H(g, 0) ◦ (τw) +H(0, g) ◦ (τw)
= (τg) ◦ id− id ◦ (τw) + id ◦ (τw) = idτg ◦ id = id(τg)◦α = id0,

−H(0, g) ◦ 0∗ +H(0, 0) ◦ 0∗ = −id ◦ 0∗ + id ◦ 0∗,
b∗(id0) = idb0 = id0,

−b∗ ◦ (H(0, w) ◦ 0∗) = −b∗ ◦ (id ◦ 0∗) = −b∗ ◦ id0 = −(τb) ◦H(0, w).

Then, we have

h2(h1(h0c(b, g, w))) = c(b, g, w)−H(b, 0) ◦ (τw) +H(0, 0) ◦ (τw)
−H(0, g) ◦ (τw) + b∗ ◦ id0

= c(b, g, w)− id0 + id ◦ τw − id ◦ τw + id0

= c(b, g, w)

= CE(C)(τ,H)(b, g, w)

= −bK − V w.

In the same argument as above enables us to conclude that CE(C)(τ,H)(a, f, w) =
−aH − Uw. This completes the proof. �

Appendix C. On the equalities i∗(s) = −f ∨ g and j∗(t) = ∇(a, b)∗(s) in

the proof of Theorem 2.14

We recall the morphisms s and t constructed in the proof of Theorem 2.14.
We show that diagram (I) is commutative; that is, i∗(s) = −f ∨ g and j∗(t) =
∇(a, b)∗(s).

(I) : W
w �� X

i �� Cw
j ��

s

��

ΣW

t

��
W w

�� X −f∨g
�� A⊕B ∇(a,b)

�� X
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First equality i∗(s) = −f ∨ g is showed as follows. Let s be the morphism(
−f H
g −K

)
: Cw = C ⊕ΣW → A⊕B in T (Cw, A⊕B). Then we see that i∗(s) =(

−f H
g −K

)(
1
0

)
=

(
−f
g

)
, −f ∨ g :=

(
−f
g

)
and w∗(−f ∨ g) = (−f ∨ g)w = 0.

Next we will verify the equality j∗(t) = ∇(a, b)∗(s).

Let t be −bK + Sw + aH and s be

(
−f H
g −K

)
. We write j∗(t), ∇(a, b)∗(s) and

j∗(t)−∇(a, b)∗(s) with homotopy as follows.

j∗(t)

= j∗(−bK + Sw + aH)

= (−bK + Sw + aH) ◦ j
= (−bK + Sw + aH)(0, 1)

= (0,−bK + Sw + aH).

∇(a, b)∗(s)

= ∇(a, b)

(
−f H
g −K

)
= (a, b)

(
−f H
g −K

)
= (−af + bg, aH − bK).

j∗(t)−∇(a, b)∗(s) = (0 − bK + Sw + aH)− (−af + bg aH − bK)

= (af − bg Sw).

Moreover, we see that

(S 0)

(
dC w
0 −dW

)
+ dX(S 0)

= (SdC Sw) + (dXS 0)

= (SdC + dXS Sw).

Since S is a homotopy between af and bg, it follows that af − bg = SdC + dXS.
This enables us to deduce that

j∗(t)−∇(a, b)∗(s)

= j∗(−bK + Sw + aH)−∇(a, b)∗

(
−f H
g −K

)
= (S 0)

(
dC w
0 −dW

)
+ dX(S 0).

We have j∗(t) = ∇(a, b)∗(s) since [j∗(t)] = [∇(a, b)∗(s)].

Appendix D. On the non-triviality of 1Σ(X⊕X)

By definition, we have Hom(X,Y )k = {f : X → Y | f : R-homomorphism, deg f =

k, i.e, f : Xi → Y i+k} and in the complex · · · → Hom(X,Y )−1 δ−→ Hom(X,Y )0
δ−→

Hom(X,Y )1 −→, the differential δ is defined by δ(f) = dY f = −(−)degffdX .
Since H0(Hom(Σ(Y ⊕ Y ),Σ(X ⊕X))) = Homch(B)(Σ(Y ⊕ Y ),Σ(X ⊕X))/∼
= T (Σ(Y ⊕ Y ),Σ(X ⊕X)) , consider a commutative diagram
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H0(HomΣ(Y ⊕ Y ),Σ(X ⊕X)))
h ��

Σ(f,f)

��

∏
−p+q=0 Hom(Hp(Σ(Y ⊕ Y )), Hq(Σ(X ⊕X)))

Σ(H(f),H(f)∗

��
H0(Hom(Σ(X ⊕X),Σ(X ⊕X)))

h ��
∏

−p+q=0 Hom(Hp(Σ(X ⊕X)), Hq(Σ(X ⊕X)))

H0(Hom(Σ(X ⊕X), Cf ⊕ Cf ))
h ��

(j,j)∗

��

∏
−p+q=0 Hom(Hp(Σ(X ⊕X), Hq(Cf ⊕ Cf ))).

(H(j),H(j))∗

��

Here h denotes the map defined by taking the homology. For 1Σ(X⊕X) ∈ H0(Hom(Σ(X⊕
X),Σ(X⊕X)), β ∈ H0(Hom(Σ(Y ⊕Y ),Σ(X⊕X)), α ∈ H0(Hom(Σ(X⊕X), Cf ⊕
Cf )), we see that

h(1Σ(X⊕X)) = h((j, j) ◦ (α) + β ◦ Σ(f, f))
= h((j, j) ◦ (α)) + h(β ◦ Σ(f, f))
= h((j, j)∗(α)) + h(Σ(f, f)∗(β))

= (H(j), H(j))∗ ◦ h(α) + Σ(H(f), H(f))∗ ◦ h(β).
By the condition (i) there exists an integer k such that Hom(Hk−1(Σ(Y⊕Y )), Hk−1(Σ(X⊕
X)) = 0 (h(β) = 0), h(1Σ(X⊕X)) = h((j, j)∗(α)).We have h(1Σ(X⊕X)) = (H(j), H(j))h(α).
Since h(1Σ(X⊕X)) ∈ Hom(Hp(Σ(Y⊕Y )), Hq(Σ(X⊕X))) and p = q , 1H : Hp → Hp

and 1H(Σ(X⊕X)) ∈ Hom(Hp(Σ(Y ⊕ Y )), Hq(Σ(X ⊕ X))). Then H(1Σ(X⊕X)) =
1H(Σ(X⊕X)) is surjective. On the other hand, (H(j), H(j)) : Hq(Cf ⊕ Cf )) →
Hq(Σ(X ⊕ X)) is not surjective by the condition (ii) and then (H(j), H(j))h(α)
is not surjective, which is contradiction. Then we see that 1Σ(X⊕X) is a nontrivial
element in the quotient Q.

The toy example in Example 5.3 is pictured as follow.

X : · · · 0 �� 0

f−2

��

0 �� 0

f−1

��

0 ��
Z

f0=id
��

0 �� 0

��

0 �� 0

��

�� · · · : cochain complex

Y : · · · 0 �� 0
0 ��

Z
×2 ��

Z
0 �� 0

0 �� 0 �� · · · : cochain complex

with

Hn(X) =

{
Z, n = 0
0, n �= 0

and Hn(Y ) =

{
Z/2Z, n = 0
0, n �= 0.

We check there exists an integer k such that (i)Hk(X) �= 0 while Hom(Hk(Y ), Hk(X)) =
0 and (ii) H(j) : Hk−1(Cf ) → Hk−1(ΣX) is not surjective.
(i) Hom(Z/2,Z) = 0.
In fact, for a homomorphism g : Z/2 → Z; g([0]) = 0. g([0]) = g([1] + [1]) =
0, g([1]) + g([1]) = 0, 2g([1]) = 0. Then g([1]) = 0. In consequence, we have g is
zero map.
(ii) H(j) : H−1(Cf ) → H−1(ΣX) is not surjective.

In fact, for mapping cone X
f−→ Y

i−→ Cf
j−→ ΣX and Ci

f = Y i ⊕ ΣXi, we have
the cochain complex

Cf : · · · −→ Y −2 ⊕ ΣX−2 d−1

−→ Y −1 ⊕ ΣX−1 d0

−→ Y 0 ⊕ ΣX0 d1

−→ Y 1 ⊕ ΣX1−→.

Here, Y −2 ⊕ ΣX−2 = 0 ⊕ X−1 = 0 ⊕ 0 = 0, Y −1 ⊕ ΣX−1 = Z ⊕ X0 =
Z⊕ Z, Y 0 ⊕ ΣX0 = Z⊕X1 = Z⊕ 0 = Z.

By the definition dnC(f) =

(
dnY fn

0 −dnX

)
, d0Y (y) = 2y, f0 = id, we have

(
d0Y f0

0 −d0X

)(
x
y

)
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=

(
d0Y x+ f0y
0− d0Xy

)
=

(
2x+ y
0 + 0

)
=

(
2x+ y

0

)
; and hence d0Cf

(x, y) = (2x + y, 0).

Then, we see that Ker d0Cf
={(x, y) ∈ Z ⊕ Z | 2x + y = 0} = {(x,−2x)}. By

(ΣX)i = Xi+1, H−1(ΣX) = H0(X) ∼= Z. Since j is the projection to the second
factor, it follows that H(j) is not surjective.
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