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A snail-eating snake recognizes 
prey handedness
Patchara Danaisawadi1,2, Takahiro Asami3, Hidetoshi Ota4, Chirasak Sutcharit2  
& Somsak Panha2

Specialized predator-prey interactions can be a driving force for their coevolution. Southeast Asian 
snail-eating snakes (Pareas) have more teeth on the right mandible and specialize in predation on the 
clockwise-coiled (dextral) majority in shelled snails by soft-body extraction. Snails have countered the 
snakes’ dextral-predation by recurrent coil reversal, which generates diverse counterclockwise-coiled 
(sinistral) prey where Pareas snakes live. However, whether the snake predator in turn evolves any 
response to prey reversal is unknown. We show that Pareas carinatus living with abundant sinistrals 
avoids approaching or striking at a sinistral that is more difficult and costly to handle than a dextral. 
Whenever it strikes, however, the snake succeeds in predation by handling dextral and sinistral prey in 
reverse. In contrast, P. iwasakii with little access to sinistrals on small peripheral islands attempts and 
frequently misses capturing a given sinistral. Prey-handedness recognition should be advantageous for 
right-handed snail-eating snakes where frequently encountering sinistrals. Under dextral-predation by 
Pareas snakes, adaptive fixation of a prey population for a reversal gene instantaneously generates a 
sinistral species because interchiral mating is rarely possible. The novel warning, instead of sheltering, 
effect of sinistrality benefitting both predators and prey could further accelerate single-gene ecological 
speciation by left-right reversal.

Left-right asymmetry has repeatedly evolved in the external morphology and behavior of many bilaterian animals 
which are symmetric in body plan1–7. This secondary asymmetry often plays crucial roles in interactions with the 
external environment, in contrast to internal asymmetry which results from primary asymmetry expressed in 
early development8,9. Directional asymmetry in the feeding apparatus of snail-eating specialists may represent a 
direct role of secondary asymmetry in predator-prey interactions which drive dynamics of ecology and evolution 
in living communities5,10–15.

Southeast Asian snakes of the genus Pareas typically specialize in the predation of snails by extracting the 
soft body from the shell16,17 and exhibit directional asymmetry in mandibular dentition5. Pareas iwasakii strikes 
at prey by tilting the head leftward only and attempts to capture by the same handling manner irrespective of 
the direction of snail coil (handedness)5, which can either be clockwise (dextral) or counterclockwise (sinis-
tral) (Fig. 1). Because of the lack of recognition of prey handedness, this snake frequently fails in capturing the 
sinistral prey with its mouthparts, and thus this prey survives. Poor performance of predation on sinistral prey 
(sinistral-predation) suggests that the asymmetries of morphology and behavior of Pareas snakes evolved for spe-
cialized predation on the dextral majority in snails and thus do not effectively function for sinistral-predation5,15.

In sympatry with Pareas snakes, most snails are pulmonates, in which a single gene reverses the direction 
of primary and secondary asymmetries8,18. Because of these reversals, the genital position and mating behav-
iors mismatch between dextral and sinistral snails. This interferes with their copulation and results in positive 
frequency-dependent selection against reversal19,20. However, once the reversed phenotype exceeds 50% under 
a survival advantage against the right-handed predation by Pareas, the population in isolation rapidly becomes 
fixed for the reversal. This instantaneous peak shift completes premating isolation, which gives rise to a reversed 
species21–24. Predation on dextral prey (dextral-predation) by Pareas snakes has contributed to the exceptionally 
high diversity of sinistral snails in Southeast Asia by accelerating this single-gene adaptive speciation by left-right 
reversal15.
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Among Pareas species, however, the degree of mandibular asymmetry, which is left-right difference relative to 
the total number of teeth, greatly varies from 1% for a slug-eating specialist to 18% for P. iwasakii5. The latter lives 
on only two peripheral islands in the range of Pareas distribution, where only one of 23 potential prey species is 
sinistral (see the method for counting the potantial prey species). On the other hand, most of the other congeneric 
snakes occur in the central region of Southeast Asia with diverse sinistral species15,25–27. Such local variations in 
both the strength of predator asymmetry and the relative abundance of sinistral prey in sympatry may involve a 
geographic mosaic of coevolution28.

Pareas carinatus occurs most widely across the central region of Pareas distribution and exhibit the relatively 
weak dental asymmetry5,29 in the genus. When a relatively small snail was provided each time, this snake struck 
by tilting its head either leftward or rightward and succeeded in every attempt of dextral- or sinistral-predation29. 
The previous studies with P. iwasakii have examined the effect of prey size only by comparing the snake’s responses 
between large and small prey categories5,15. In the present study, we examined the effects of prey size and hand-
edness on predatory performances of P. carinatus by using snails that continuously vary in shell size as widely as 
available in its habitat.

Here we show that a snail-eating snake P. carinatus refrains from behavioral attempts of costly predation on 
sinistral prey as predicted by the size-dependent decline of feeding efficiency in sinistral-predation relative to 
dextral-predation.

Results and Discussion
Recognition of prey handedness. In every experiment the snake moved its eyes to stare at the crawling 
snail as soon as the latter was placed in front of the snake. While staring, the snake approached 64 of 76 (84.2%) 
dextrals and 26 of 38 (68.4%) sinistrals presented. In the rest of the cases, the snake averted its head and eyes from 
the snail and did not approach. When approaching, the snake kept staring at the snail. During this period, the 
snake often reoriented its head to the snail by shifting the direction and angle of head-tilting at a distance of 10 
to 20 mm from the snail. These behaviors during continuous staring suggest the importance of vision for critical 
operation of the mandibles and upper jaws at the subsequent moment of strike. The snake struck at 52 of the 64 
(81.2%) dextrals and 19 of the 26 (73.1%) sinistrals. In the rest of the approaching cases, the snake moved away 
from the snail without striking.

There was no difference in shell size between approached and non-approached dextral snails (Fig. 2a). In 
contrast, approached sinistrals were smaller than non-approached ones. This was significant in terms of the effect 
of interaction between shell size and handedness on this positive or negative decision for approach (F1,110 =  5.4, 
p =  0.013, Fig. 2a). Similarly, dextrals that were struck did not differ in shell size from dextrals that were not 
struck, whereas sinistrals struck were significantly smaller than sinistrals not struck (F1,86 =  6.0, p =  0.016). The 
mean shell sizes presented to the snake did not differ between these dextrals and sinistrals (see materials and 
methods). Therefore, the snake dinstinguished prey enatiomorphs during staring and approaching.

Neither the time lengths of staring nor of approaching depended on the subsequent decisions (F1,64 =  1.1, 
p =  0.29; F1,79 =  1.3, p =  0.26, respectively) or on snail handedness (F1,64 =  0.03, p =  0.87; F1,79 =  0.15, p =  0.70, 
respectively). On average, snakes made decisions for approach in 10.3 sec ±  2.5 S.E. and for strike in 63.9 sec ±  7.9. 
The snake was given no choice of handedness of prey. Nevertheless, the snake frequently refrained from approach-
ing or striking at a relatively large sinistral by staring for around 10 seconds or one minute, respectively.

Squamate reptiles use tongue-flicks for vomeronasal chemoreception30. In the present experiment, however, 
the snake did not flick the tongue in 85 of 111 (76.6%) cases before the decision for approach or in 54 of 88 
(61.4%) cases before the decision for strike. In the rest (tongue-flicking cases), the number of tongue-flicks did 
not depend on the shell size (F1,11 =  0.03, p =  0.86 before the decision for approach; F1,20 =  0.001 , p =  0.99 before 
the decision for strike) or on snail handedness (F1,11 =  0.08, p =  0.78 before the decision for approach; F1,20 =  3.5, 
p =  0.076 before the decision for strike).

Without flicking the tongue, the snake could not obtain odors for vomeronasal chemoreception. Nevertheless, 
the snake ceased staring at and did not approach relatively large sinistrals (F1,81 =  7.1, p =  0.009, Fig. 2b). After 
it approached in the other cases, the snake also refrained from striking at one dextral and two sinistrals with-
out flicking the tongue. These sinistrals not struck may have been larger than the other sinistrals struck, but 
more replicates are necessary for statistical validation (Fig. 2b). In this predation experiment with no choice 

Figure 1. The sinistral shell of Dyakia salangana (left) and the dextral shell of Cryptozona siamensis (right). 
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of prey handedness, the snake avoided preying on relatively large sinistrals whereas it preyed on dextrals irre-
spective of the shell size (F1,110 =  11.7, p =  0.001; Fig. 2c). This was also the case when the snake did not flick the 
tongue (F1,62 =  9.1, p =  0.004). The snake therefore recognizes prey handedness without relying on vomeronasal 
chemoreception by tongue-flick.

The head-tilting direction for strike varied among predation events irrespective of snake individuals (Fig. 3). 
This direction was rightward more frequently for sinistral prey than for dextral prey (F1,67 =  4.1, p =  0.046). This 
indicates that prey handedness affects the left-right direction of predatory behavior. In every strike the snake 
successfully captured and fed the prey, unlike P. iwasakii5,15.

While handling the prey after strike, the snake held the ventral outer surface of the last whorl (umbilicus side) 
with the upper jaws and the soft body with the mandibles inserted into the aperture (Fig. 4). When the prey was 
dextral, the left mandible was at the peripheral side of the whorl and the right mandible at the side of the shell 
columellar (umbilicus) (Fig. 4a). On the other hand, whenever preying on the sinistral, the snake oppositely 
positioned the left and right mandibles with no change of the upper jaws’ location on the ventral shell surface 
(Fig. 4b). This means that the snake laterally reverses the manner of prey handling according to the direction of 
shell asymmetry. Otherwise, in the case of sinistral prey, the snake would have directed the upper jaws toward the 
dorsal outer surface of the shell aperture and often fail in prey capture, as known for P. iwasakii5,15.

Figure 2. Handedness-dependent size effects on decisions for approach (a) and strike (b), and size-dependent 
predation on sinistrals (c). No and Yes are the negative and positive decisions, respectively. The snake strikes at a 
snail only after approach. Each number under the decision indicates the number of replicates. Each of plots and 
error bars indicates the mean and standard error.
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Different snail species have different odors31. However, our results rule out olfactory recognition of sinis-
tral species by the vomeronasal system, which is typically important for squamates’ chemical recognition30. In 
the distribution range of Pareas, prey reversal frequently evolved in response to specialized dextral-predation 
by the snakes15. These phylogenetically independent sinistral lineages reversed by a single gene15,24 would be 
unlikely to evolve to release sinistral-specific odors if any. Of 29 sinistrals of Dyakia salangana given to the 
snake, which must have shared species-specific odors, the snake only approached 17 that were smaller in the 
mean shell size (14.6 mm ±  1.6 S.E.) than the rest (23.7 ±  0.87; F1,27 =  8.8, p =  0.006). After approach, the snake 
struck at the smaller 10 (11.3 ±  1.6) but not at the other larger sinistrals (22.1 ±  1.1; F1,27 =  8.7, p =  0.006). These 
size-dependent decisions for predation on conspecific prey are not ascribable to prey odor differences.

For predation success in extracting the soft body, which is otherwise withdrawn into the shell, snail-eating 
snakes must locate the mouthparts properly onto the asymmetric shell at the moment of strike5. Pareas carinatus  
reverses such definite orientation of the apparatus by staring at sinistral prey (Fig. 4). Pareas snakes have a devel-
oped optical system with the large eyes for night vision as well as other nocturnal reptiles do32–35. These suggest 
that visual structure perception is necessary for their chirally specialized predation and overrides chemical odor 
distinction36 where prey is visible. Dextral and sinistral shells are physically discrete in coiling direction and 
lateral location of the aperture, through which the soft body is extracted (Fig. 1). These major differences in shell 
structure may serve as a visual cue for the snake to distinguish between prey enantiomorphs.

Figure 3. Frequencies of leftward and rightward strikes at dextral and sinistral prey. Each value indicates 
the number of replicates. Predation succeeded in every striking occasion.

Figure 4. Left-right reversal of handling behavior in Pareas carinatus according to prey handedness. (a) 
Handling of a dextral snail (Cryptozona siamensis). (b) Handling of a sinistral snail (Dyakia salangana). Left and 
right mandibles are inserted into the aperture in reverse relative to the structure of shell whorl while the upper 
jaws hold the ventral outer surface (umbilicus side) of the shell.
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Feeding efficiency. The snake took a longer time to finish feeding on a larger snail regardless of prey hand-
edness (F1,64 =  4.6, p =  0.036) and retracted the mandibles for a larger number of times while taking longer 
(F1,64 =  057, p <  0.001). However, the number of retractions increased only with the dextral prey size (F1,47 =  31, 
p <  0.001), but did not with the sinistral prey size (F1,17 =  0.65, p =  0.43) (Fig. 5a). Thus, difference in the number 
of retractions between prey enantiomorphs depended on the prey size (F1,64 =  9.7, p =  0.003).

The snake rectracted the mandibles more frequently while preying on the dextral than the sinistral (F1,64 =  5.3, 
p =  0.024) (Fig. 5b). The prey soft-body mass gained per retraction increased with the dextral prey size (F1,47 =  66, 
p =  0.024) but did not with the sinistral prey size (F1,17 =  0.008, p =  0.93) (Fig. 5c). The interaction between the 
size and handedness was accordingly significant (F1,30 =  8.1, p =  0.008). Thus, when preying on the dextral, man-
dibular retractions are not only more frequent but also increasingly more efficient with the prey size in terms of 
soft-body gain per retraction.

Superior performances in feeding on dextral prey in terms of retraction frequency and efficiency synergisti-
cally resulted in a significantly larger gain of soft body per time than that achieved by feeding on sinistral prey 
(F1,30 =  8.5, p =  0.007) (Fig. 5d). This benefit of preying on the dextral instead of the sinistral increased with 
the shell size (F1,30 =  8.0, p =  0.008), as the gain per time positively depended on the dextral’s size (F1,47 =  57, 
p =  0.001) but not on the sinistral’s size (F1,17 =  0.15, p =  0.70).

In Fig. 5a,c,d, regression lines for the dextral and sinistral cases cross at the shell sizes of 11.4, 12.1 and 
12.7 mm, respectively (see Table S1 for the regression statistics). This predicts that the relative value of sinis-
tral prey declines with the increase of the size. In practice, the snake preyed on all of the sinistrals smaller than 
12.4 mm. However, the snake did not strike at 18 of the 26 (69.2%) sinistrals larger than this size. These cases of 
avoidance do not appear in Fig. 5, but nevertheless correspond to the range beyond the predicted threshold size 
of around 12 mm. These results support the hypothesis that the size-dependent increase of cost for preying on a 
sinistral instead of a dextral has driven the evolution of prey-handedness recognition and size-dependent avoid-
ance of sinistral-predation.

In the distribution range of P. carinatus, sinistral species reach 17.0% in the total of 900 pulmonate species, 
exclusive of those that are too small for the snake to prey (see methods; Table S2). Our field records demonstrate 
that this arboreal snake is frequently active on trees where tree snails of pulmonates co-occur (Table S3). These 
tree snail species are almost invariably sinistral (subgenus Syndromus) or chirally dimorphic within populations 
(subgenus Amphidromus). Their high abundances are well established26,27,37,38. On the other hand, no sinistral 
tree snail co-occurs with a congeneric snake P. iwasakii, which lives on the islands with only one ground-dwelling 

Figure 5. Size-dependent efficiencies and benefits of preying on a dextral. (a) Size dependent increase of 
the number of mandibular retractions only in dextral-predation. (b) Higher retraction frequency in dextral-
predation than in sinistral-predation. (c) Size-dependent increase of soft-body mass gained per retraction 
only in dextral-predation. (d) Size-dependent increase of relative benefit only in dextral-predation. Time is 
the feeding time in seconds. Mass is the prey weight reduction in grams after predation. Solid and open circles 
indicate predations on dextrals and sinistrals, respectively. The regression (interrupted) line for sinistrals is 
illustrated in each case to indicate the intersection with that (solid line) for dextrals, though the slope for the 
former was not significant (see Table S1 for regression statistics).
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sinistral and 22 dextral species and thus would rarely encounter sinistral prey. Thus, it would be of little advantage 
to evolve an ability to distinguish between prey enantiomorphs. This explains the frequent failure of P. iwasakii to 
capture a given sinistral after striking. In contrast, P. carinatus lives with abundant sinistral snails, where avoiding 
predatory attempts on costly sinistrals should be advantageous.

The predator in this case does not evolve to exploit sinistrals by arms race. Instead the snake has shifted to 
avoid a cost of attempting unsuccessful or inefficient sinistral-predation because the easier prey type (dextrals) 
still remains abundant. This behavioral response by visual recognition reduces both a risk for the snake to expend 
foraging time and energy to handle unsuitable prey and a risk for sinistral snails to undergo physical attacks by the 
snake. Sinistrality therefore functions as a warning sign to the predator, instead of sheltering the prey. Predator’s 
recognition of prey handedness, which benefits both the snake predator and sinistral prey, could further accela-
rate ecological prey speciation39 by a reversal gene.

Many studies have shown the association of ecological performance with the direction of asymme-
try in morphology and/or behavior4,5,11,20,40–42. We do not know, however, how important it is for a predator 
to be so asymmetric for chirally specialized predation. The previous studies ascribed the reduced efficiencies 
of sinistral-predation by P. iwasakii to its leftward-fixed strike with no prey-handedness recognition and to its 
most pronounced dental asymmetry in Pareas5. In contrast, the present snake P. carinaus does not fail in dextral 
or sinistral-predation either by leftward or rightward striking. Moreover, the mean dental asymmetry among 
four of the six snakes used in this study was almost minimal (4.5%) in the genus29. Nevertheless, efficiencies of 
dextral-predation were obviously superior to those of sinistral-predation. Accordingly, specialized handling of 
asymmetric prey does not necessarily require so manifest directional asymmetry in striking behavior or mandib-
ular morphology as expected from the previous studies.

However, P. iwasakii fed on the dextral wild-type of Bradybaena similaris more efficiently than its sinistral 
mutants5, which were as small as the present threshold size (Fig. 5). Pareas carinatus in contrast feeds on dextral 
and sinistral prey of this size range with equivalent efficiency. Thus, the efficiency of feeding on dextral prey rel-
ative to that on sinistral prey may depend on the strength of dental asymmetry. If this is the case, weaker dental 
asymmetry may represent weaker specialization in dextral-predation. This would be advantangeous for Pareas 
snakes where frequently coming across sinistral snails, because snails of even large species can be small enough 
to prey when they are young. Strongly right-handed dentition on the other hand would benefit them for strong 
specialization in habitats with few sinistrals. Testing this hypothesis requires explicit comparison of predation 
performance among snail-eating snakes that differ in dental asymmetry. Our results therefore have important 
implications for further investigation of functional significance of predator’s asymmetry for chirally specialized 
predation.

A single gene is responsbile for the reversal of primary and secondary asymmetries in pulmonate snails8,18. 
The snail-eating snake P. carinatus notices this reversal by staring at a snail, though people often do not unless 
told so. Our study demonstrates that a chirally specialized predator can evolve an ability to recognize the left-right 
reversal of prey asymmetry where advantageous.

Materials and Methods
We collected six adults of P. carinatus (snout-vent length 510–720 mm; head width 6.78–11.53 mm) from 
Chanthaburi, eastern Thailand, where we also collected snails for the present study. In total, we used 76 low-spired 
dextral snails (56 Cryptozona siamensis, 2 Ganesella capitium, 16 Sarika resplendens and 2 Satsuma sp.) and 38 
low-spired sinistral snails (29 Dyakia salangana and 9 Ganesella rhombostomus) (Table 1). To examine the effects 
of snail body size, we used the square root of the product of shell height by width as the shell size of each snail. 
These dextrals and sinistrals did not significantly differ in the mean shell size (t =  − 0.56, d.f. =  112, p =  0.58, 
Table 1, Fig. 6).

In comparison of snail faunas, we excluded the Clausiliidae and minute species with the shell which is 
smaller than 5 mm in diameter, height or aperture from the count of species. We treated the speciose subgenera 
Amphidromus and Syndromus of the genus Amphidromus as separate genera and counted each of the five genera, 
Camaena, Chersaecia, Amphidromus, Ganesella, Syndromus, which include both dextral and sinistral or dimor-
phic species, as a dextral genus as well as a sinistral genus (Table S2).

Predation experiment. Each snake was conditioned with no food for 3 days before each predation trial 
(hereafter called experiment) begun at 21:00. We first placed a snail and let it crawl 100 mm ahead of a snake sit-
ting on a horizontal wooden bar (15 mm diameter) in a transparent plastic terrarium (300 ×  450 ×  250 mm). We 

Coiling 
direction Species n Width (W) Height (H)

Shell size (square root of 
W × H)

Mean ±  S.E. Min Max

Dextral

Cryptozona siamensis 56 13.28 ±  0.53 21.02 ±  0.95 16.67 ±  0.71 7.01 27.08

Ganesella capitium 2 12.16 ±  0.08 14.53 ±  0.12 13.29 ±  0.19 13.27 13.30

Sarika resplendens 16 10.31 ±  0.40 19.57 ±  0.92 14.17 ±  0.57 9.16 17.17

Satsuma sp. 2 18.58 ±  0.05 26.83 ±  0.16 22.31 ±  0.04 22.28 22.35

Sinistral
Dyakia salangana 29 22.39 ±  1.67 15.06 ±  1.05 18.34 ±  1.30 4.65 29.96

G. rhombostomus 9 11.06 ±  0.16 12.49 ±  0.52 12.02 ±  0.35 10.29 13.53

Table 1.  Mean size ± S.E. of snails used in predation experiment.
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randomized the combination of snake and snail individuals. All experiments were conducted in the laboratory at 
25 to 28 °C under the illuminance of 100 lux. Behavioral responses of each snake were recorded with a video cam-
era. We conducted the experiment between October 2012 and June 2014 at Chulalongkorn University. The exper-
imental protocol was approved by the Animal Care and Use Committee of Faculty of Science, Chulalongkorn 
University and carried out in accordance with the approved guidelines of the Animal Care and Use Committee of 
Faculty of Science, Chulalongkorn University (Protocol Review No. 1223003).

Behavior record. The snake began to stare by fixing eyes onto the crawling snail when the latter was placed. 
In many cases, the snake approached the snail by moving its head and body. When the snake preys, it strikes at the 
snail and feeds by extracting the soft body through alternate retractions of left and right mandibles17,29. The snake 
drops the shell at the end of predation. By using video records, we quantified the feeding time (from striking to 
dropping of the shell) in seconds, the total number of retractions of left and right mandibles during feeding, and 
the total numbers of tongue-flicks before approach and strike. When the snake preyed, we estimated the prey 
soft-body mass gained by the snake by measuring a reduction of prey weight in grams after predation.

Statistical analysis. We tested the dependence of occurrence of approach or strike on snail handedness, 
shell size and their interaction, by constructing generalized linear mixed models (GLMMs) with the random 
effects of snake individual and snail species. We logarithm-transformed the feeding time, number of retractions 
and prey mass gained by the snake. By using those values, we calculated the retraction frequency, prey mass 
gained per retraction and prey mass gained per time. We examined the fixed effects of snail handedness, shell size 
and their interaction on those feeding time, number of retractions, retraction frequency, and prey masses gained 
per retraction and per time by using GLMMs with the random effects of snake individual and snail species. We 
tested the fixed effects of snail handedness and size on the head-tilting direction for strike by using a GLMM with 
random effects of snake individual and snail species.
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