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Abstract

This study investigates the unitary equivalence classes of translation-
invariant two-dimensional two-state quantum walks. We show that
unitary equivalence classes of such quantum walks are essentially pa-
rameterized by two real parameters.

1 Introduction

Quantum walks are analogous to classical random walks. They have been
studied in various fields, such as quantum information theory and quantum
probability theory. A quantum walk is defined by a pair (U, {Hv}v∈V ), in
which V is a countable set, {Hv}v∈V is a family of separable Hilbert spaces,
and U is a unitary operator on H =

⊕
v∈V Hv [6]. In this paper, we discuss

two-dimensional two-state quantum walks, in which V = Z2 and Hv = C2.
These have been the subject of some previous studies [1, 2, 7].

It is important to clarify when two quantum walks are considered equal.
We consider unitary equivalence of quantum walks in the sense of [4, 6]. If
two quantum walks are unitarily equivalent, then many properties of their
quantum walks are the same. For example, digraphs, dimensions of Hilbert
spaces, spectrums of unitary operators, probability distributions of quantum
walks, etc. would be the same for each quantum walk. Therefore, we can
think of unitarily equivalent quantum walks as being the same.

The aim of this paper is to determine the unitary equivalence classes of
translation-invariant two-dimensional two-state quantum walks. This will
enable us to better understand the entirety of such quantum walks.

In the previous papers [4, 5], we considered unitary equivalence classes
of one-dimensional quantum walks, and parameterized several types of one-
dimensional quantum walks. Unitary equivalence classes of translation-invariant
one-dimensional quantum walks were also investigated in [3], and they are
parameterized by one real parameter. In this study, we extend these results
to the two-dimensional case.
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In Sect. 2, we consider unitary equivalence classes of translation-invariant
two-dimensional quantum walks. We show that such unitary equivalence
classes are essentially parameterized by two real parameters.

2 Unitary equivalence classes of translation-

invariant two-dimensional two-state quan-

tum walks

Before we investigate the unitary equivalence classes of translation-invariant
two-dimensional two-state quantum walks, we must define such quantum
walks.

Definition 1 Let Hm,n = C2 for (m,n) ∈ Z2. A unitary operator U on
H =

⊕
(m,n)∈Z2 Hm,n is called a two-dimensional two-state quantum walk if

UHm,n ⊂ Hm+1,n ⊕Hm−1,n ⊕Hm,n+1 ⊕Hm,n−1 (1)

for all m,n ∈ Z. Moreover, U is said to be translation-invariant if, for all
k, ℓ,m, n ∈ Z,

Pm,nUPk,ℓ = Pm+1,nUPk+1,ℓ = Pm,n+1UPk,ℓ+1

as operators on C2, where Pm,n is the projection onto Hm,n.

A pure quantum state is represented by a unit vector in a Hilbert space.
For λ ∈ R, quantum states ξ and eiλξ inH are identified. Hence, the quantum
walks U and eiλU are also identified.

We recall the definition of unitary equivalence of two-dimensional two-
state quantum walks.

Definition 2 Two-dimensional two-state quantum walks U1 and U2 are uni-
tarily equivalent if there exists a unitary W =

⊕
(m,n)∈Z2 Wm,n on H =⊕

(m,n)∈Z2 Hm,n such that
WU1W

∗ = U2.

Let U be a translation-invariant two-dimensional two-state quantum walk.
When we consider Pm+1,nUPm,n as an operator on C2, we write U+1,0 =
Pm+1,nUPm,n. Note that U+1,0 does not depend on m and n. Operators
U−1,0, U0,+1 and U0,−1 are similarly defined.
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Theorem 1 Let U be a translation-invariant two-dimensional two-state quan-
tum walk. Then, ranU+1,0 and ranU−1,0 are orthogonal. Similarly, ranU0,+1

and ranU0,−1 are also orthogonal.

Proof. Since U is unitary, UHm,n and UHm+2,n are orthogonal. In consid-
ering (1), we obtain that Pm+1,nUHm,n and Pm+1,nUHm+2,n are orthogonal.
This means ranU+1,0 ⊥ ranU−1,0.

The proof of ranU0,+1 ⊥ ranU0,−1 is similar. □

First, we concentrate on the rank of U+1,0. Since dimHm+1,n = 2, we
have 0 ≤ rankU+1,0 ≤ 2.

Case 1: rankU+1,0 = 2.
By Lemma 1 and the assumption, U−1,0 = 0 holds. Then,

UHm,n ⊂ Hm+1,n ⊕Hm,n+1 ⊕Hm,n−1. (2)

Since UHm,n and UHm+1,n−1 are orthogonal, we obtain Pm+1,nUHm,n ⊥
Pm+1,nUHm+1,n−1 by (2). The assumption rankU+1,0 = 2 implies Pm+1,nUHm,n =
Hm+1,n, and hence, U0,+1 = 0. Similarly, we can obtain U0,−1 = 0.

Consequently, when rankU+1,0 = 2, UHm,n = Hm+1,n. This means that
U is represented as a direct sum of unitary operators on C2.

Case 2: rankU+1,0 = 0.
In this case,

UHm,n ⊂ Hm−1,n ⊕Hm,n+1 ⊕Hm,n−1.

Since UHm,n and UHm+1,n+1 are orthogonal, we obtain Pm,n+1UHm,n ⊥
Pm,n+1UHm+1,n+1, and hence, ranU0,+1 and ranU−1,0 are orthogonal. Sim-
ilarly, we can obtain ranU0,−1 ⊥ ranU−1,0. Then, by Lemma 1, ranU−1,0,
ranU0,+1 and ranU0,−1 are mutually orthogonal. This implies that one of the
above three ranges is the zero vector space.

When ranU−1,0 = {0},

UHm,n ⊂ Hm,n+1 ⊕Hm,n−1.

This means that U can be represented as a direct sum of one-dimensional
quantum walks. When ranU0,±1 = {0},

UHm,n ⊂ Hm−1,n ⊕Hm,n∓1.
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Then, U on H =
⊕

k∈Z
(⊕

n∈Z Hn,k∓n

)
can also be considered as a direct

sum of one-dimensional quantum walks.

Consequently, when rankU+1,0 = 0, 2, U is a direct sum of unitary opera-
tors on C2 or of one-dimensional quantum walks. Similarly, when rankU−1,0 =
0, 2 or rankU0,±1 = 0, 2, we have the same result.

Hence, in the following, we assume that rankU±1,0 = rankU0,±1 = 1. Let
ξ1, ξ2, ζ1 and ζ2 be unit vectors in C2 with ranU+1,0 = Cξ1, ranU−1,0 = Cξ2,
ranU0,+1 = Cζ1 and ranU0,−1 = Cζ2. By Lemma 1, {ξ1, ξ2} and {ζ1, ζ2} are
orthonormal bases in C2. When we consider the vectors as in Hm,n, we write
ξm,n
1 , ξm,n

2 and so on.
Next, we clarify the structure of U . To do this, we prepare three lemmas.

Theorem 2 Let η be a vector in C2, and let

Uηm,n = aξm+1,n
1 + bζm,n+1

1 + cζm,n−1
2 + dξm−1,n

2

for some a, b, c, d ∈ C. If one of a, b, c and d is zero, then two of them are
zero.

Proof. We need only show the proof for the case when a = 0; the other
cases are proven similarly.

Since Uηm,n, Uηm−1,n−1 and Uηm−1,n+1 are mutually orthogonal, dξm−1,n
2 ,

bζm−1,n
1 and cζm−1,n

2 are mutually orthogonal. Since dimHm−1,n = 2, one of
b, c and d is zero. □

Theorem 3 There exists an orthonormal basis {ηm,n
1 , ηm,n

2 } in Hm,n = C2

such that

Uηm,n
1 = αξm+1,n

1 + βζm,n+1
1 , Uηm,n

2 = γζm,n−1
2 + δξm−1,n

2 (3)

or
Uηm,n

1 = αξm+1,n
1 + βζm,n−1

2 , Uηm,n
2 = γζm,n+1

1 + δξm−1,n
2 (4)

for some α, β, γ, δ ∈ C\{0}.

Proof. Since rankU−1,0 = 1, dimkerU−1,0 = 1. Let η1 be a unit vector in
kerU−1,0, and let η2 be a unit vector in C2 which is orthogonal to η1. Then,

Uηm,n
1 = aξm+1,n

1 + bζm,n+1
1 + cζm,n−1

2 (5)
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for some a, b, c ∈ C. By Lemma 2, one of a, b and c is zero.
Assume that a = 0. Let

Uηm,n
2 = pξm+1,n

1 + qζm,n+1
1 + rζm,n−1

2 + sξm−1,n
2 .

By the assumption rankU±1,0 = 1, p and s are not zero. Moreover, since
Uηm,n

1 , Uηm−1,n+1
2 and Uηm+1,n+1

2 are mutually orthogonal, bζm,n+1
1 , pξm,n+1

1

and sξm,n+1
2 are mutually orthogonal, and hence b = 0. Similarly, we obtain

c = 0, and therefore η1 = 0. This is a contradiction.
Hence, assume that a ̸= 0 and c = 0 in (5). If, in addition, b = 0, then

Uηm,n
1 = aξm+1,n

1 and

Uηm,n
2 = qζm,n+1

1 + rζm,n−1
2 + sξm−1,n

2 .

Again, by Lemma 2, one of q, r and s is zero, and this contradicts the
assumption that rankU±1,0 = rankU0,±1 = 1. Therefore, b ̸= 0.

Let

Uηm,n
1 = aξm+1,n

1 + bζm,n+1
1 , Uηm,n

2 = pξm+1,n
1 + qζm,n+1

1 + rζm,n−1
2 + sξm−1,n

2

for some a, b, p, q, r, s ∈ C with a, b, r, s ̸= 0. Since Uηm,n
1 ⊥ Uηm,n

2 , ap̄+ bq̄ =
0. On the other hand,

U(pηm,n
1 − aηm,n

2 ) = (bp− aq)ζm,n+1
1 − arζm,n−1

2 − asξm−1,n
2 .

By Lemma 2 and the assumption a, r, s ̸= 0, we have bp − aq = 0. These
equations imply b(|p|2 + |q|2) = 0, and therefore, p = q = 0. Hence, we
conclude

Uηm,n
1 = αξm+1,n

1 + βζm,n+1
1 , Uηm,n

2 = γζm,n−1
2 + δξm−1,n

2

for some α, β, γ, δ ∈ C\{0}.
Similarly, if we assume a ̸= 0 and b = 0 in (5), we obtain

Uηm,n
1 = αξm+1,n

1 + βζm,n−1
2 , Uηm,n

2 = γζm,n+1
1 + δξm−1,n

2

for some α, β, γ, δ ∈ C\{0}. □
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Theorem 4 If U satisfies (3), there exist θ1, θ2 ∈ R such that

ζ1 = eiθ1ξ2, ζ2 = eiθ2ξ1,

where i =
√
−1. If U satisfies (4), there exist θ1, θ2 ∈ R such that

ζ1 = eiθ1ξ1, ζ2 = eiθ2ξ2.

Proof. We need only show the proof for the case when U satisfies (3); the
other case is proven similarly

The condition Uηm,n
1 ⊥ Uηm+1,n−1

1 implies ξm+1,n
1 ⊥ ζm+1,n

1 . Since {ξ1, ξ2}
and {ζ1, ζ2} are orthonormal bases in C2, ζ1 = eiθ1ξ2 and ζ2 = eiθ2ξ1 for some
θ1, θ2 ∈ R. □

As a consequence of these lemmas, we have the following theorem.

Theorem 1 For a translation-invariant two-dimensional two-state quantum
walk U with rankU±1,0 = rankU0,±1 = 1, there exist orthonormal bases
{ξ1, ξ2} and {η1, η2} in C2, r ∈ (0, 1) and a, b, c, d ∈ R such that

U =
∑

(m,n)∈Z2

|eiarξm+1,n
1 + eib

√
1− r2ξm,n±1

2 ⟩⟨ηm,n
1 |

+|eic
√
1− r2ξm,n∓1

1 + eidrξm−1,n
2 ⟩⟨ηm,n

2 |

and a− c = b− d+ π (mod 2π).

Proof. By the lemmas above, we can assume that

U =
∑

(m,n)∈Z2

|αξm+1,n
1 + βξm,n±1

2 ⟩⟨ηm,n
1 |+ |γξm,n∓1

1 + δξm−1,n
2 ⟩⟨ηm,n

2 |

for some α, β, γ, δ ∈ C\{0}.
Since Uηm,n

1 and Uηm+1,n±1
2 are orthogonal, αξm+1,n

1 +βξm,n±1
2 and γξm+1,n

1 +
δξm,n±1

2 are orthogonal. Hence, there exist r ∈ (0, 1) and a, b, c, d ∈ R such
that

α = eiar, β = eib
√
1− r2, γ = eic

√
1− r2, δ = eidr

and a− c = b− d+ π (mod 2π). □
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In the following, we assume that there exist orthonormal bases {ξ1, ξ2}
and {η1, η2} in C2, r ∈ (0, 1) and a, b, c, d ∈ R such that

U =
∑

(m,n)∈Z2

|eiarξm+1,n
1 + eib

√
1− r2ξm,n+1

2 ⟩⟨ηm,n
1 |

+|eic
√
1− r2ξm,n−1

1 + eidrξm−1,n
2 ⟩⟨ηm,n

2 |

and a− c = b− d+ π (mod 2π). We can analyze the other case in the same
way.

Now, we consider unitary equivalence of translation-invariant two-dimensional
two-state quantum walks.

Step 1. Define a unitary W1 on H by

W1ξ
m,n
1 = em,n

1 , W1ξ
m,n
2 = em,n

2 ,

where {em,n
1 , em,n

2 } is the canonical basis in Hm,n. W1 can also be represented
as

W1 =
⊕

(m,n)∈Z2

|em,n
1 ⟩⟨ξm,n

1 |+ |em,n
2 ⟩⟨ξm,n

2 |.

Since U is written as

U =
∑

(m,n)∈Z2

|eiarξm+1,n
1 + eibsξm,n+1

2 ⟩⟨ηm,n
1 |

+|eicsξm,n−1
1 + eidrξm−1,n

2 ⟩⟨ηm,n
2 |

for some r ∈ (0, 1) and a, b, c, d ∈ R with s =
√
1− r2, W1UW ∗

1 is calculated
as

W1UW ∗
1

=
∑

(m,n)∈Z2

|eiarW1ξ
m+1,n
1 + eibsW1ξ

m,n+1
2 ⟩⟨W1η

m,n
1 |

+|eicsW1ξ
m,n−1
1 + eidrW1ξ

m−1,n
2 ⟩⟨W1η

m,n
2 |

=
∑

(m,n)∈Z2

|eiarem+1,n
1 + eibsem,n+1

2 ⟩⟨W1η
m,n
1 |

+|eicsem,n−1
1 + eidrem−1,n

2 ⟩⟨W1η
m,n
2 |.

Here, {W1η1,W1η2} is an orthonormal basis in C2. Therefore, there exist
p ∈ [0, 1] and x, y, z, w ∈ R such that

W1η1 = eixpe1 + eiyqe2, W1η2 = eizqe1 + eiwpe2,
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where q =
√
1− p2 and x − z = y − w + π (mod 2π). Consequently, we

obtain

W1UW ∗
1 =

∑
(m,n)∈Z2

|eiarem+1,n
1 + eibsem,n+1

2 ⟩⟨eixpem,n
1 + eiyqem,n

2 |

+|eicsem,n−1
1 + eidrem−1,n

2 ⟩⟨eizqem,n
1 + eiwpem,n

2 |.

Step 2. Define a unitary W2 on H by

W2 =
⊕

(m,n)∈Z2

e−ix|em,n
1 ⟩⟨em,n

1 |+ e−iy|em,n
2 ⟩⟨em,n

2 |.

Then, since x− z = y − w + π (mod 2π),

W2W1UW ∗
1W

∗
2

=
∑

(m,n)∈Z2

|eiarW2e
m+1,n
1 + eibsW2e

m,n+1
2 ⟩⟨eixpW2e

m,n
1 + eiyqW2e

m,n
2 |

+|eicsW2e
m,n−1
1 + eidrW2e

m−1,n
2 ⟩⟨eizqW2e

m,n
1 + eiwpW2e

m,n
2 |

=
∑

(m,n)∈Z2

|ei(a−x)rem+1,n
1 + ei(b−y)sem,n+1

2 ⟩⟨pem,n
1 + qem,n

2 |

+|ei(c−x)sem,n−1
1 + ei(d−y)rem−1,n

2 ⟩⟨ei(z−x)qem,n
1 + ei(w−y)pem,n

2 |
=

∑
(m,n)∈Z2

|ei(a−x)rem+1,n
1 + ei(b−y)sem,n+1

2 ⟩⟨pem,n
1 + qem,n

2 |

+|ei(c−x−w+y)sem,n−1
1 + ei(d−w)rem−1,n

2 ⟩⟨ei(z−x−w+y)qem,n
1 + pem,n

2 |
=

∑
(m,n)∈Z2

|ei(a−x)rem+1,n
1 + ei(b−y)sem,n+1

2 ⟩⟨pem,n
1 + qem,n

2 |

+| − ei(c−z)sem,n−1
1 + ei(d−w)rem−1,n

2 ⟩⟨−qem,n
1 + pem,n

2 |.

Step 3. Let ℓ = (b+ c− y − z)/2. Define a unitary W3 on H by

W3 =
⊕

(m,n)∈Z2

ei(m(−a+x+ℓ)+n(−b+y+ℓ))Im,n,

where Im,n is the identity operator on Hm,n. Then, for any ξ, ζ ∈ C2 and
h, k,m, n ∈ Z,

|W3ξ
m,n⟩⟨W3ζ

h,k| = |ei((m−h)(−a+x+ℓ)+(n−k)(−b+y+ℓ))ξm,n⟩⟨ζh,k|.
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Therefore,

e−iℓW3W2W1UW ∗
1W

∗
2W

∗
3

= e−iℓ
∑

(m,n)∈Z2

|ei(a−x)rW3e
m+1,n
1 + ei(b−y)sW3e

m,n+1
2 ⟩⟨W3(pe

m,n
1 + qem,n

2 )|

+| − ei(c−z)sW3e
m,n−1
1 + ei(d−w)rW3e

m−1,n
2 ⟩⟨W3(−qem,n

1 + pem,n
2 )|

=
∑

(m,n)∈Z2

|rem+1,n
1 + sem,n+1

2 ⟩⟨pem,n
1 + qem,n

2 |

+| − ei(b+c−y−z−2ℓ)sem,n−1
1 + ei(a+d−x−w−2ℓ)rem−1,n

2 ⟩⟨−qem,n
1 + pem,n

2 |
=

∑
(m,n)∈Z2

|rem+1,n
1 + sem,n+1

2 ⟩⟨pem,n
1 + qem,n

2 |

+| − sem,n−1
1 + rem−1,n

2 ⟩⟨−qem,n
1 + pem,n

2 |.

Now, we are ready to prove the next theorem.

Theorem 2 A translation-invariant two-dimensional two-state quantum walk
U with rankU±1,0 = rankU0,±1 = 1 is unitarily equivalent to

Ur,p,± =
∑

(m,n)∈Z2

|rem+1,n
1 + sem,n±1

2 ⟩⟨pem,n
1 + qem,n

2 |

+| − sem,n∓1
1 + rem−1,n

2 ⟩⟨−qem,n
1 + pem,n

2 |

for some 0 < r < 1 and 0 ≤ p ≤ 1, where s =
√
1− r2 and q =

√
1− p2.

Moreover, Ur,p,ε and Ur′,p′,ε′ are unitarily equivalent if and only if r = r′,
p = p′ and ε = ε′.

Proof. We have already proven the first part of this theorem. Hence, we
need only prove that Ur,p,ε and Ur′,p′,ε′ are unitarily equivalent if and only if
r = r′, p = p′ and ε = ε′

Assume that Ur,p,ε and Ur′,p′,ε′ are unitarily equivalent. Then, there exist
λ ∈ R and a unitary operator W =

⊕
(m,n)∈Z2 Wm,n on H =

⊕
(m,n)∈Z2 Hm,n

such that
eiλWUr,p,εW

∗ = Ur′,p′,ε′ .

The equation

Ur′,p′,ε′(pe
m,n
1 + qem,n

2 ) = eiλWUr,p,εW
∗(pem,n

1 + qem,n
2 )
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implies ε = ε′.
For all (m,n) ∈ Z2, Pm±1,ne

iλWUr,p,εW
∗Pm,n = Pm±1,nUr′,p′,ε′Pm,n. There-

fore, Wem,n
1 and Wem,n

2 are described as Wem,n
1 = eium,nem,n

1 and Wem,n
2 =

eivm,nem,n
2 for some um,n, vm,n ∈ R. Since W commutes with Pm,n for all

(m,n) ∈ Z2,

r = ∥Pm+1,nUr,p,εPm,n∥ = ∥eiλWPm+1,nUr,p,εPm,nW
∗∥

= ∥Pm+1,nUr′,p′,ε′Pm,n∥ = r′.

Furthermore,

rp = ∥Pm+1,nUr,p,εe
m,n
1 ∥ = ∥e−iλPm+1,nW

∗Ur′,p′,ε′Wem,n
1 ∥

= ∥Pm+1,nUr′,p′,ε′e
m,n
1 ∥ = r′p′.

This implies p = p′. □

This theorem says that unitary equivalence classes of translation-invariant
two-dimensional two-state quantum walks are essentially parameterized by
two real parameters.
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