二相系格子ボルツマン法による混相流

シミュレーション Numerical Simulation of Multiphase Flow by the Two-Phase Lattice Boltzmann Method

1. はじめに

格子ボルツマン法[1-3] (Lattice Boltzmann Method, 以下 LBM と記す)は、1990年代以降開発が進んで きた非圧縮性粘性流体の比較的新しい数値計算法 である. LBM では、気体分子運動論のアナロジー を利用して、流体を有限個の速度をもつ多数の仮想 粒子の集合体(格子気体モデル)で近似し、各粒子 の衝突と並進とを粒子の速度分布関数を用いて逐 次計算し、そのモーメントから巨視的な流れ場や温 度(濃度)場を計算する. LBM の特長は、複雑流 れに対してもアルゴリズムが簡単であることや、並 列計算に向いていることなどがあげられる. そのた め、これまでに多孔質内流れなどの複雑な境界をも つ流れや、気液・液液二相流などの界面が複雑に変 形する流れに適用され成功を収めている.

本稿では、特に微小スケールの混相流現象(液滴 の挙動や変形する物体を含む流れ)に焦点を当て、 筆者らの最近の研究成果を紹介する.

2. 二相系流れのLBM モデル

これまでに提案されている二相系 LBM のモデル は, 大別すると(i) Color-Gradient モデル[4], (ii) Pseudopotential モデル[5], (iii) Free-Energy モデル

(Phase-Field モデル) [6]に分類される[7]. このうち(iii)のモデルは、非平衡熱力学に基づく系の自由 エネルギーを導入した方法であり、二相の界面形状 は系の自由エネルギーが最小となるように自律的 に変形して決まる. Swiftら[6]が提案した最初のモ デルは、数値安定性の問題から二相流体の密度比に 限界(せいぜい 10 程度くらいまで)があり、高密 度比の二相流を扱える LBM の開発が望まれていた. これに対し Inamuroら[8]は、Free-Energy モデルを ベースに Projection 法[9]を導入した高密度比の二相 系 LBM を開発し、本手法を用いることにより、例 えば水-空気系に代表される密度比 1000 程度の計 算を安定に実行することができると報告している. 吉野 正人(信州大学) Masato YOSHINO (Shinshu University) e-mail: masato@shinshu-u.ac.jp

以下では、3.4節を除き、この高密度比の二相系 LBM を用いて計算を行った.LBM の速度モデルと しては、3.1節では2次元9速度モデル[10]、それ 以外では3次元15速度モデル[10]を用いた.なお、 特に断らない限り、変数は適切な代表量(基準量) を用いて無次元化されたものである.計算手法およ び定式化の詳細は、文献[8]を参照されたい.

3. 数值計算例

3.1 固体壁面上での液滴の衝突・混合現象の解析

固体壁面上における液滴の衝突・混合現象は,例 えばスプレーコーティングなどで見られるように, 工業的にも重要な現象の一つである.ここでは,固 体壁面上で静止する液滴に別の液滴が衝突・混合す る際の動的な挙動について,二次元計算を行った結 果[11]を述べる.

図 1 に示すような $L_x \times L_y$ の計算領域に対して, y = 0の固体壁面上に静止する直径Dの液滴(液滴 A) に,同じ大きさの別の液滴(液滴 B)が上方から衝 突する場合を考える.重力は-y方向に作用する(重 力加速度をgとする).y = 0の固体壁には濡れ性を 考慮したすべりなし境界条件, $y = L_y$ では各物理量 の勾配が 0 のノイマン条件,左右の境界には周期境 界条件を用いた.本問題の無次元パラメータは,液 相密度 ρ_L と気相密度 ρ_G の比(ρ_L/ρ_G),液相粘度 μ_L と 気相粘度 μ_G の比(μ_L/μ_G),液相基準のレイノルズ数 $Re = \rho_L DV/\mu_L$,液相基準のウェーバー数 $We = \rho_L DV^2/\sigma$ (σ :界面張力),およびフルード数Fr =

図2 液滴形状の時間変化($We = 10, \theta_s = \pi/2$)

 V/\sqrt{gD} であるが、一般に、液滴の直径は 2~3mm 程 度であることを考慮すると、ウェーバー数が支配パ ラメータであり、その違いによって液滴の挙動は大 きく異なると考えられる.本計算で用いた主なパラ メータの値は、 $L_x \times L_y = 1500\Delta x \times 450\Delta x$ 、D =100 Δx 、 $\rho_L/\rho_G = 50$ ($\rho_L = 50$ 、 $\rho_G = 1$)、 $\mu_L/\mu_G =$ 55.6 ($\mu_L = 2.27 \times 10^{-2}\Delta x$ 、 $\mu_G = 4.08 \times 10^{-4}\Delta x$)、 $g\Delta x = 1.07 \times 10^{-10}$ 、 $V = 3.32 \times 10^{-3}$ (Δx :空間の格 子間隔)であり、その他の値は文献[11]を参照して いただきたい.

結果の一例として,固体壁面の静的接触角を $\theta_s = \pi/2$ とし,We = 10および100に対する液滴形 状の時間変化をそれぞれ図2,図3に示す(各図は, 計算領域の下半分 $0 \le y \le L_y/2$ のみを表示してい る).これらの図は,液滴AとBを区別するために, 二色のトレーサ粒子をそれぞれの液滴に埋め込み, その挙動を四次のルンゲ・クッタ法によって計算し た結果を表示したものである.We = 10のケース (図2)では,液滴 B が液滴 A の上に衝突した際 に,飛び散ることなく壁面上に広がる結果が得られ

ている.一方, We = 100のケース(図3)では,衝 突後二つの液滴が合一した両端部分にリムと呼ば れる特徴的な突起部が形成されている.また,合一 した液滴は壁面近傍で分裂し,ほぼ液滴Aで構成

図3 液滴形状の時間変化 ($We = 100, \theta_s = \pi/2$)

された微小液滴が生成されている. その後, この微 小液滴が飛散していく間に, 合一した液滴は A と B の両方の液が混合し再び分裂が発生する.

次に、合一液滴における混合率(mixing rate)を 各ウェーバー数に対して計算した結果を図 4 に示 す.ここで、混合率は合一液滴における落下液滴(液 滴 B)の割合を表している.本図から、We < 40で は混合率はウェーバー数とともに増加するが、 40 < We < 100ではほぼ一定値になっている.言い 換えれば、飛沫した液滴中に含まれる A と B の割 合は、40 < We < 100ではほぼ一定となる結果が得 られた.現在、本問題の三次元解析に取り組んでい るところである.

図5 液滴衝突の計算領域および変数の定義

図6 同径液滴の衝突におけるレイノルズ数と臨 界ウェーバー数の関係

3.2 液滴同士の二体衝突解析

液滴同士の衝突は,機械工学ではエンジン内の燃料噴霧,自然界では雨滴の形成など様々な分野で見られる現象である.本研究では,種々の条件下における液滴同士の二体衝突解析を行った[12].以下ではその結果について述べる.

図 5 に示すような $L_x \times L_y \times L_z$ の計算領域内に, 直径が D_l , D_s ($D_l \ge D_s$) の二つの液滴を配置し, 相 対速さVで衝突させた.境界条件は,全面に周期境 界条件を適用した.この系の支配パラメータは、液 相密度 $\rho_{\rm L}$ と気相密度 $\rho_{\rm G}$ の比 ($\rho_{\rm L}/\rho_{\rm G}$),液相粘度 $\mu_{\rm L}$ と 気相粘度 μ_{G} の比 (μ_{L}/μ_{G}), 液相基準のレイノルズ数 $Re = \rho_L D_s V / \mu_L$, 液相基準のウェーバー数We = $\rho_L D_s V^2 / \sigma$,および2つの液滴の直径比 $\Delta = D_s / D_l$ で ある.以下では0.4 ≤ Δ≤ 1.0とし, 全領域を0.4 ≤ Δ< 0.7 \mathcal{C} *i* $L_x \times L_y \times L_z = 246\Delta x \times 128\Delta x \times 128\Delta x$ *i* \mathcal{L} , $0.7 \le \Delta \le 1.0$ \circlearrowright $L_x \times L_y \times L_z = 192\Delta x \times 96\Delta x \times$ 96∆xにそれぞれ分割した. 無次元パラメータを $\rho_{\rm L}/\rho_{\rm G} = 50, \ \mu_{\rm L}/\mu_{\rm G} = 50, \ 600 \le Re \le 4000, \ 20 \le$ $We \leq 80$ とし、計算パラメータを $D_s = 32\Delta x, V =$ 0.1, $\rho_{\rm L} = 50$, $\rho_{\rm G} = 1$, $32\Delta x \le D_l \le 80\Delta x$, $4.00 \times$ $10^{-2}\Delta x \le \mu_{\rm L} \le 2.67 \times 10^{-1}\Delta x$, $8.00 \times 10^{-4}\Delta x \le$ $\mu_G \leq 5.33 \times 10^{-3} \Delta x$, $0.2\Delta x \leq \sigma \leq 0.8\Delta x \geq l.t$.

図8 液滴の直径比と臨界ウェーバー数の関係

3.2.1 同径液滴の衝突挙動解析

同じ大きさの液滴衝突 $(D_l = D_s)$ において,各レ イノルズ数に対してウェーバー数を変化させ計算 を行った.その結果,衝突後の液滴の挙動は,同じ レイノルズ数でもウェーバー数の値によって合体 するケースと分離するケースが得られた.本研究で は、ウェーバー数を1刻みで変化させ、衝突後の挙 動を合体と分離の2つのパターンに分類し、そのと き挙動が変化する前後2点のウェーバー数の中間 値を臨界ウェーバー数と定義した.各レイノルズ数 に対する衝突挙動の形態と臨界ウェーバー数を図 6に示す.図中の実線は挙動形態を分類する境界線 であり、Volume of Fluid (VOF)法[13]に基づく数値 計算から得られた Saroka らによる結果[14]である. この図より、Re < 2000ではレイノルズ数が小さい

ほど合体しやすく,臨界ウェーバー数は増加してい ることがわかる.これはレイノルズ数の減少に伴い 液相の粘度が相対的に増加するため,液滴同士が合 体しやすくなったことが要因と考えられる.一方, *Re* > 2000では,臨界ウェーバー数はレイノルズ数 に依存せずほぼ一定の値を示し,Saroka らによる結 果[14]と良く一致している.本結果より,*Re* < 2000 では,レイノルズ数は衝突挙動に影響を与え,臨界 ウェーバー数を支配するパラメータであると言え る.

3.2.2 異径液滴の衝突挙動解析

異なる大きさの液滴衝突において,直径比および レイノルズ数が衝突挙動に与える影響について調べ た.結果の一例として, *Re* = 2000, *We* = 40, Δ= 0.5のケースに対する液滴挙動の時間変化を図 7 に 示す.液滴は衝突直後に半径方向に広がって傘状に なり,その後界面張力により縮み,初速方向に伸び 始める.瓢箪状になった液滴はさらに伸び続け,や がては二つの液滴に分離する結果となった.

次に, Re = 600,1000,2000,4000に対して同様の 計算を行い衝突の際の挙動を調べた. 各レイノルズ 数に対して,液滴の直径比と臨界ウェーバー数の関 係を図8に示す. この図より,いずれのレイノルズ 数においても,直径比が Δ = 0.7前後で臨界ウェーバ 一数は増加しており, Δ = 0.7のときに最小となるこ とがわかる.よって,600 ≤ Re ≤ 4000では,直径比 に対する臨界ウェーバー数の依存性は,いずれのレ イノルズ数に対しても同じであることがわかった. また,直径比が0.55 < Δ < 0.9では,レイノルズ数が 小さいほど臨界ウェーバー数は増加しており,この

傾向は同径液滴の場合と一致している.一方, Δ< 0.55では、同径液滴の傾向とは異なることから、この関係は異径特有の結果であると言える.

3.3 雲の成長過程における微小水滴の挙動解析

雲は, 雲粒子と呼ばれる直径数μmから数 mm サ イズの非常に小さな水滴の集まりで構成され, それ らが重力や上昇気流等の影響で衝突し, 合体や分裂 を繰り返すことで粒径が変化し, 雲の成長や消滅を 促すと言われている[15]. それゆえ, 雲の成長や消 滅現象を解明するためには, 微小水滴の衝突挙動を 調べることが重要である.

以下では, 雲中における微小水滴 (雲粒子) の挙 動を計算するために、直径が5 μ m $\leq \tilde{D} \leq 50 \mu$ m,相 対衝突速さが $\tilde{V} = 0.1$ m/sの雲粒子を想定した衝突 挙動を調べた[16]. 3.2 節で述べた図 5 のような計 算領域内に, 直径Dの同一液滴を二個配置し, 相対 速さVで衝突させた. 主な計算パラメータは、L_x× $L_v \times L_z = 128\Delta x \times 64\Delta x \times 96\Delta x, D = 32\Delta x, V =$ 1.0×10^{-4} , $\rho_{\rm L}/\rho_{\rm G} = 5$ ($\rho_{\rm L} = 5$, $\rho_{\rm G} = 1$), $\mu_{\rm L}/\mu_{\rm G} =$ 55, $3.21 \times 10^{-3} \Delta x \le \mu_{\rm L} \le 3.21 \times 10^{-2} \Delta x$, $5.83 \times$ $10^{-5}\Delta x \le \mu_{\rm G} \le 5.83 \times 10^{-4}\Delta x$, $\sigma = 1.16 \times 10^{-6}\Delta x$ とした. ここで, 液相と気相の密度比について, 実 際には1000程度であるが、液滴のサイズが非常に 小さく重力(浮力)の影響があまり大きくないと予 想されるため、本研究では $\rho_L/\rho_G = 5$ とした. ウェ ーバー数については、雲の場合10⁻³~10⁻²のオー ダであるが、数値安定性の問題からWe = 1.37とし、 液滴直径および相対衝突速さ基準のレイノルズ数 $Re = \rho_L DV / \mu_L$ を0.497 $\leq Re \leq 4.97$ で変化させた. また, 文献[8]のモビリティの値は, $\theta_{\rm M} = 0.5\Delta x$ とし

た(ただし,その値が最適かどうかについては,今 後検討の必要がある).

結果の一例として、衝突パラメータ(液滴の初期 直径に対する無次元オフセット量)をB = 0.7とし、 Re = 4.97, 0.994(それぞれ、 $\tilde{D} = 50\mu$ m、 10μ mに相 当する)に対する液滴の挙動をそれぞれ図 9、図 10 に示す.ここで、二つの液滴には、時刻 $t^* = 0$ でx方 向の初期速度を与えた.図 9のケースでは二つの液 滴が衝突して合体しているが、図 10のケースでは 液滴同士が接近した後、それる挙動を示し衝突は起 こらない結果となった.

次に,種々のパラメータに対して同様の計算を行い,液滴挙動の違いを表したダイアグラムを図 11 に示す.液滴の挙動は 2 つのパターン(合体: coalescence,それる:deviation)に分類されること がわかる.特にRe < 2では、レイノルズ数が小さく なるにつれて,衝突パラメータが小さいケースでも 液滴はそれる(衝突しない)ことがわかる.これは, 液滴サイズがさらに小さくなり,その軌道がまわり の流れ場の影響を受けやすくなるためだと考えら れる.現在,種々の条件下での計算を実行し,液滴 が受ける揚力を調べるなど詳細な検討を行ってい るところである.

3.4 粘弾性変形する物体を含む固液二相流解析

変形を伴いながら移動する物体を含む流れの問題は、医学や工学をはじめとする多くの分野で見る ことができる。例えば血液の流れは、赤血球などの 固体成分が血漿とともに流れる固液二相流である。 赤血球は、粘弾性をもつ膜が内部流体を覆った直径 約8µmの粘弾性皮膜物体(以下では単に物体と記す) であり、柔軟に変形するため、それより小さい血管 径の流路においてもスムーズに流動することがで

図 12 狭窄部を過ぎる物体の変形挙動解析

きる[17]. 筆者らは、これまでに、質点-ばねモデ ルに基づく弾性力を等密度の液液二相系 LBM[18] に組み込んだ計算手法[19]を構築した.ここでは、 赤血球を模擬した双凹面形状の物体が、狭窄部を通 過する際の挙動について調べた結果[20]を述べる.

図 12 に示すような中央部に狭窄部をもつ円管を 考える.内部に配置された物体は,赤血球を模擬し た双凹面形状をしており,外部から力を受けると粘 弾性変形する.領域の入口と出口には,圧力差を伴 う周期境界条件を適用した.また,円管の表面には, 埋め込み境界法[21] に基づくすべりなし境界条件 を用いた.主な計算パラメータは, $L_x = 105\Delta x$, $L_p = 40\Delta x$, $L_s = 10\Delta x$, $D_{max} = 49.6\Delta x$, $D_{min} =$ 19.2 Δx , $D_0 = 22\Delta x$, $\rho_{FA} = \rho_{FB} = 1$, $\mu_{FA} = 3.93 \times$ $10^{-2}\Delta x$, $\mu_{FB} = \mu_M = 9.42 \times 10^{-3}\Delta x$ である.ここで, ρ_{FA} および ρ_{FB} はそれぞれ,周囲流体および内部流体 の密度, μ_{FA} , μ_{FB} , μ_M はそれぞれ,周囲流体,内部 流体,および膜の粘度である.その他の値は文献 [20]を参照されたい.なお,重力は考慮していない.

結果の一例として, 狭窄部で変形する物体の形状 変化を図 13 に示す.物体は,狭窄部を通過する際 に流れ方向(x方向)に大きく変形し,上流側が凹 面,下流側が凸面のパラシュート形状になっている. 次に,物体の変形度およびx方向速度uの時間変化 をそれぞれ図 14,図 15 に示す.ここで,物体の x,y,z方向の長さをそれぞれ D_x,D_y,D_z とすると,変 形度は $\Gamma = 2D_x/(D_y + D_z)$ で定義した.また U_{max} は, 物体が存在しない場合のポアズイユ流における最

大流速である.これらの図より,物体が狭窄部を通 過する際の流れ方向(x方向)の長さは,両スパン 方向(yおよびz方向)の平均長さの約1.5~1.6倍で あることがわかる.また,物体は狭窄部に入るとき に若干加速し,狭窄部内では減速し,狭窄部から出 たときに再び大きく加速することもわかる.

今後の課題としては,複数個の物体の挙動解析を 行い,狭窄部における物体の閉塞現象を調べること などがあげられる.

4. おわりに

本稿では、二相系 LBM を用いた微小スケールの 混相流問題の解析結果をいくつか紹介してきた.二 相系 LBM は、VOF 法[13]などの従来の混相流計算 法に比べて、各相の質量および運動量の保存性に優 れており、界面をシャープにとらえることができる 効率の良い数値計算法である.特に最近では、計算 機環境の目ざましい発達のおかげで、LBM を用い た大規模並列計算や GPU による高速計算(例えば 文献[22]など)が行われるようになってきた.した がって、今後ますます複雑な流れ問題への LBM の 適用が期待できる.

その一方で,解決しなければいけない課題もまだ 残されている.例えば,3.3節で述べた雲の成長過 程における微小水滴の挙動解析では,レイノルズ数 を一定にしたまま非常に小さなウェーバー数(10⁻³ ~10⁻²)を実現するためには,界面張力をかなり大 きく(現状の計算の100~1000倍程度大きく)する 必要があり,数値安定性の問題から計算は実行でき ていないのが現状である.また,現在の二相系 LBM では,界面において非圧縮性流体の連続の式を満た すために圧力のポアソン方程式を解く必要があり, その高速解法が課題である.

最後に,最近 Inamuro ら[23]は,高密度比の二相 流に対しても圧力のポアソン方程式を解く必要の ない,画期的な改良二相系 LBM を提案した.この 改良二相系 LBM を用いることにより,高密度比の 二相流の場合でも数値的に安定で,かつ,計算時間 もかなり短縮されることが期待できる.今後は,新 しい手法を用いて,今まで計算が難しかった条件や 新たな複雑流れの問題にもチャレンジしていきた いと考えている.

謝 辞

本稿で紹介した数値計算は,信州大学大学院修了 生の田中義人 君,村山寿郎 君,勝見真悟 君,深 谷昇弘 君,ならびに現在在籍中の大学院生 澤田純 平 君のご協力により行われました.また,本研究 の一部は,JSPS 科研費 JP23560192,JP26420105, JP15H02218 の助成,ならびに学際大規模情報基盤 共同利用・共同研究拠点 (jh140025, jh150012, jh160012)の支援を受けたものです.ここに記して 謝意を表します.

参考文献

- Succi, S., *The Lattice Boltzmann Equation for Fluid Dynamics and Beyond*, Oxford University Press (2001).
- [2] Inamuro, T., Lattice Boltzmann Methods for Viscous Fluid Flows and for Two-Phase Fluid Flows, Fluid Dyn. Res., 38 (2006) 641.
- [3] Aidun, C. K. and Clausen, J. R., Lattice-Boltzmann Method for Complex Flows, Annu. Rev. Fluid Mech., 42 (2010) 439.
- [4] Gunstensen, A. K. et al., Lattice Boltzmann Model of Immiscible Fluids, Phys. Rev. A, 43 (1991) 4320.

- [5] Shan, X. and Chen, H., Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components, Phys. Rev. E, 47 (1993) 1815.
- [6] Swift, M. R. et al., Lattice Boltzmann Simulation of Nonideal Fluids, Phys. Rev. Lett., 75 (1995) 830.
- [7] Chen, L. et al., A Critical Review of the Pseudopotential Multiphase Lattice Boltzmann Model: Methods and Applications, Int. J. Heat Mass Transfer, 76 (2014) 210.
- [8] Inamuro, T. et al., A Lattice Boltzmann Method for Incompressible Two-Phase Flows with Large Density Differences, J. Comput. Phys., **198** (2004) 628.
- [9] Chorin, A. J., Numerical Solution of the Navier-Stokes Equations, Math. Comput., 22 (1968) 745.
- [10] Qian, Y. H. et al., Lattice BGK Models for Navier-Stokes Equation, Europhys. Lett., 17 (1992) 479.
- [11] Tanaka, Y. et al., Numerical Simulation of Dynamic Behavior of Droplet on Solid Surface by the Two-Phase Lattice Boltzmann Method, Comput. Fluids, 40 (2011) 68.
- [12]澤田純平ら、二相系格子ボルツマン法を用いた 異径液滴衝突の数値解析、混相流シンポジウム 2016 講演要旨集, D323 (2016).
- [13] Hirt, C. W. and Nichols, B. D., Volume of Fluid (VOF) Methods for the Dynamics of Free Boundaries, J. Comput. Phys., **39** (1981) 201.
- [14] Saroka, M. D. et al., Numerical Investigation of Heat-on Binary Drop Collisions in a Dynamically Inert Environment, J. Appl. Fluid Mech., 5 (2012) 23.

- [15]大西領,高橋桂子,雲に見られる乱流現象-気相乱流中での微小水滴の衝突,ながれ,30(2011) 385.
- [16]Yoshino, M. et al., Two-Phase Lattice Boltzmann Simulation of Binary Collisions of Small Water Droplets in Clouds, Abstracts of International Workshop on Cloud Turbulence, Nagoya (2015).
- [17]菅原基晃,前田信治,血液のレオロジーと血流, コロナ社 (2003).
- [18]Inamuro, T. et al., Lattice Boltzmann Simulations of Drop Deformation and Breakup in Shear Flows, Int. J. Mod. Phys. B, **17** (2003) 21.
- [19]Murayama, T. et al., Three-Dimensional Lattice Boltzmann Simulation of Two-Phase Flow Containing a Deformable Body with a Viscoelastic Membrane, Commun. Comput. Phys., 9 (2011) 1397.
- [20]Yoshino, M. and Katsumi, S., Lattice Boltzmann Simulation of Motion of Red Blood Cell in Constricted Circular Pipe Flow, J. Fluid Sci. Tech., 9 (2014) 14-00133.
- [21]Peskin, C. S., Flow Patterns around Heart Valves: A Numerical Method, J. Comput. Phys., 10 (1972) 252.
- [22]Feichtinger, C. et al., Performance Modeling and Analysis of Heterogeneous Lattice Boltzmann Simulations on CPU-GPU Clusters, Parallel Comput., 46 (2015) 1.
- [23]Inamuro, T. et al., An Improved Lattice Boltzmann Method for Incompressible Two-Phase Flows with Large Density Differences, Comput. Fluids, 137 (2016) 55.