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This study focuses on the carbonyl-iron powder (CIP) used in the metal compos-
ite bulk magnetic core for high-efficient/light-weight SiC/GaN power device MHz
switching dc-dc converter, where the fine CIP with a mean diameter of 1.1 µm is
used to suppress the MHz band eddy current inside the CIP body. When applying the
CIP to composite core together with the resin matrix, high electrical resistivity layer
must be formed on the CIP-surface in order to suppress the overlapped eddy current
between adjacent CIPs. In this study, tens nm thick silica (SiO2) was successfully
deposited on the CIP-surface by using hydrolysis of TEOS (Si(OC2H5)4). Also tens
nm thick oxidized layer of the CIP-surface was successfully formed by using CIP
annealing in dry air. The SiC/GaN power device can operate at ambient temperature
over 200 degree-C, and the composite magnetic core is required to operate at such
ambient temperature. The as-made CIP had small coercivity below 800 A/m (10 Oe)
due to its nanocrystalline-structure and had a single vortex magnetic structure. From
the experimental results, both nanocrystalline and single vortex magnetic structure
were maintained after heat-exposure of 250 degree-C, and the powder coercivity
after same heat-exposure was nearly same as that of the as-made CIP. Therefore, the
CIP with thermally stable nanocrystalline-structure and vortex magnetic state was
considered to be heat-resistant magnetic powder used in the iron-based composite
core for SiC/GaN power electronics. C 2016 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Un-
ported License. [http://dx.doi.org/10.1063/1.4944705]

I. INTRODUCTION

Recently, the wide band-gap SiC/GaN power devices have been applying for high-efficient
power electronics systems such as dc-dc converter and dc-ac inverter due to their low on-resistance,
fast switching speed and possible operation at ambient temperature over 200 degree-C.1,2 The power
conversion frequency can be increased beyond 1 MHz to miniaturize the power electronics systems
by using SiC/GaN power device, where the power inductor and transformer, used in the SiC/GaN
based power electronics operating at 200 degree-C over ambient temperature, must have small
power-loss in the MHz band and thermally stable electrical property when exposing it to such high
ambient temperature.

The authors are currently developing a heat-resistant iron-based metal composite bulk mag-
netic core for SiC/GaN power device MHz switching dc-dc converter. The iron-based metal com-
posite magnetic core consists of 1.1 µm diameter carbonyl-iron powder (CIP) and heat-resistant
resin. Such the fine CIP is used to suppress the MHz band eddy current inside the CIP body.
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However, to suppress the power loss of the magnetic core at MHz band, the CIP should have
high electrical-resistivity surface layer to decrease the over-lapped eddy current between adjacent
CIPs in the composite core. In this study, two kinds of high electrical-resistivity thin layer to
suppress the over-lapped eddy current were investigated. One was silica (SiO2) thin layer on the
CIP-surface, which was deposited by using Stöber method.3 Another one was oxidized thin layer of
the CIP-surface, which was formed through annealing in dry air.

Also thermal stabilities of the crystalline-structure and magnetic domain structure of the CIP
were investigated through the heat-exposure at different temperature from 200-400 degree-C in
vacuum in order to clarify a possibility of the heat-resistant iron-based composite magnetic core. In
addition, an influence of the heat- exposure on the powder coercivity was also discussed.

II. AS-MADE CARBONYL-IRON POWDER (CIP)

The carbonyl-iron powder (CIP) for iron-based metal composite bulk magnetic core was pro-
duced through thermal decomposition of iron-pentacarbonyl (Fe(CO)5) distilled previously to high
purity.4 Typical specifications of the as-made CIP are summarized in TABLE I. The as-made CIP
had an onion-skin structure4 due to the spherical iron layers on a nucleus in the Fe-particle growth.

M. Koeda et al.5 reported that the as-made CIP had a nanocrystalline-structure and single
vortex magnetic structure. Such the fine-grain nanostructure causes small crystalline magnetic
anisotropy,6 and the single vortex magnetic structure causes small magneto static energy.

III. EXPERIMENTAL PROCEDURE

A. Formation of high-electrical resistivity thin surface layer on carbonyl-iron
powder (CIP)

1. Formation of silica (SiO2) thin layer on CIP

Silica (SiO2) thin layer was deposited on the CIP-surface by using Stöber method.3 The chemi-
cal reaction of the silica formation is described as follows;

Fe + Si(OC2H5)4 + 2H2O + NH3 → SiO2 on Fe + NH3 + 4C2H5OH, (1)

where NH3 is a catalyst for hydrolysis and polycondensation reaction of the TEOS (Si(OC2H5)4).
The silica formation was done under applying ultrasonic wave at 60 degree-C.

2. Surface oxidization of CIP

The oxidized thin layer of the CIP-surface was formed through annealing in dry air using a
muffle furnace. The CIPs were put in a SUS304 tray so that CIPs dispersed well, and then annealed
in the muffle furnace at temperature of 180-280 degree-C for 6 hours.

B. Heat exposure of carbonyl-iron powder (CIP)

To evaluate an influence of the heat-exposure on the CIP, the CIP was annealed in vacuum at
temperature of 200-400 degree-C for 1 hour. The crystalline structure and magnetic structure of the

TABLE I. Typical specifications of as-made carbonyl-iron powder.

Composition wt.%
Fe content ; up to 97.8%

C ; 1.0%max., N ; 0.9%max., O ; 0.5%max. in Ref. 4

Mean diameter 1.1 µm in Ref. 4
Saturation magnetization 200 emu/g measured using VSM
Coercive force below 800 A/m (10 Oe), measured using coercivity-meter
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TABLE II. Two kinds condition of silica deposition on CIP.

No. CIP C2H5OH TEOS ; Si(OC2H5)4 NH3

1 7 g
2500 ml

7.5 ml
148.5 ml

2 50 g 16.2 ml

Temperature; 60 degrees-C, Time; 4 hours, C2H5OH; solvent for CIP.

annealed CIP were investigated. An influence of the formation process of the oxidized layer of the
CIP-surface on its crystalline structure and vortex magnetic structure was also investigated.

C. Evaluation methods

TEM (Transmission Electron Microscopy) and FE-SEM (Field Emission Scanning Electron Mi-
croscopy) were used to observe the high resistivity thin layer on the CIP. The crystalline structure was
investigated using powder XRD (X-ray Diffraction) and TEM. The magnetic structure was observed
using Electron beam holography. In order to evaluate oxidized layer of the CIP-surface, XPS (X-ray
Photoelectron Spectroscopy) was used. The powder coercivity was measured using coercivity-meter.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Formation of high-electrical resistivity thin surface layer on carbonyl-iron
powder (CIP)

1. Formation of silica (SiO2) thin layer on CIP

Two kinds condition of the silica deposition on the CIP-surface are summarized in TABLE II,
No.1 is TEOS-rich condition of 1.07 ml-TEOS/1 g-CIP and No.2 is TEOS-poor condition of
0.32 ml- TEOS/1 g-CIP.

FIG. 1 shows the cross-sectional SEM images of the silica (SiO2) thin layer deposited on the
CIP-surface. In case of the TEOS-rich silica deposition, not only 40-60 nm thick silica layer on the
CIP-surface but also silica nanoparticle was observed. On the other hand, in case of the TEOS-poor
condition, 20-40 nm thick silica layer was deposited on the CIP-surface without silica nanoparti-
cles. From the EDX spectra shown in FIG. 2, large peaks of “Si” and “O” were observed in the
CIP-surface (symbol “A” in FIG. 1(b)). Therefore, the silica thin layer was successfully deposited
on the CIP-surface through TEOS-poor condition.

2. Surface oxidization of CIP

Although not shown here, surface-oxidized layer thickness of the CIP increased with increasing
annealing temperature. FIG. 3 shows the relationship between surface-oxidized layer thickness of

FIG. 1. Cross-sectional SEM images of silica deposited on CIP by using Stöber method.3
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FIG. 2. EDX analysis for CIP body (region A) and silica layer (region B) in silica coated CIP by TEOS-poor condition.

the CIP and annealing time when temperature of 240 degree-C. The surface-oxidized layer thick-
ness was evaluated from the SEM observation. As shown in FIG. 3, the interface between oxidized
layer and CIP body was clearly observed. The average surface oxidized layer thickness slightly
increased at the annealing time more than 6 hours, and it showed a tendency to be saturated at the
annealing time around 10 hours. It was considered that the oxygen became hard to diffuse into the
CIP body with increasing annealing time. From the experimental results, tens nm thick oxidized
layer was obtained by annealing in dry air within 2 hours.

FIG. 4 shows the powder XRD pattern of the CIP annealed in dry air at different temperature
of 200, 240, and 280 degree-C. In any case of annealing temperature, α-Fe peaks of (110) and
(200) from the CIP body were observed. With increasing annealing temperature, in addition to α-Fe
peaks, strong peaks of the magnetite Fe3O4 appeared and week peaks of the hematite Fe2O3 were
observed. Therefore, the surface-oxidized layer of the CIP was considered to be consisted of a
mixture of the magnetite Fe3O4 and hematite Fe2O3.

FiG. 5 shows the XPS spectra of the surface-oxidized CIP and as-made CIP. It was found
that the as-made CIP had very thin native oxide of the magnetite Fe3O4, which was not observed
in the powder XRD because of very thin native oxide. FIG. 5 exhibited that the hematite Fe2O3

was formed with increasing annealing temperature, which was also confirmed in the powder XRD
pattern shown in FIG. 4. Therefore, it was considered that the oxidized layer of the CIP consisted

FIG. 3. Relationship between surface-oxidized layer thickness of CIP annealed in dry air at 240 degree-C and annealing
time.
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FIG. 4. Powder XRD pattern of CIP annealed in dry air at different temperature for 6 hours.

of very thin Fe2O3 at the vicinity of the oxidized layer surface and the magnetite Fe3O4 inside the
oxidized layer.

Both silica thin layer on the CIP and the surface-oxidized CIP will contribute to increase
volume resistivity of the iron-based metal composite bulk magnetic core even in the closely-packed
CIP composite core.

B. Heat exposure of carbonyl-iron powder (CIP)

The CIP was annealed in vacuum at temperature of 200-400 degree-C for 1 hour to evaluate an
influence of the heat-exposure on the nanocrystalline and vortex magnetic structure of the CIP.

1. Nanocrystalline structure

FIG. 6 shows the powder XRD pattern of the CIP annealed in vacuum at different tempera-
ture from 200-400 degree-C. Both Fe(110) peak intensity and its FWHM were nearly constant at
the annealing temperature less than 250 degrees-C, and then the intensity increased strongly and
FWHM became sharp at the temperature above 300 degree-C. An average grain size of the CIP
vs. annealing temperature is shown in FIG. 7, where the average grain size was estimated using
Sherrer’s formula.7 In FIG. 7, small grain size of 9-10 nm was stable under the heat-exposure up
to 250 degree-C. From the TEM observation, the grain size increased with increasing annealing
temperature over 300 degree-C because of rapid grain growth.

FIG. 5. XPS spectra of surface-oxidized CIP and as-made CIP, some arrows mean the specific peaks of Fe3O4 and Fe2O3.
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FIG. 6. Powder XRD pattern of CIP annealed in vacuum at different temperature.

2. Powder coercivity

FIG. 8 shows the powder coercivity of the CIP annealed in vacuum. The powder coercivity
increased rapidly at 300 degrees-C. The grain size (D) dependence of the powder coercivity was
close to D6 at around 10 nm grain size smaller than the exchange length Lex, where the exchange
length Lex of the CIP was estimated to be about 22 nm using the following equation,6

Lex =


A/K1, (2)

where A is the exchange stiffness and K1 is the crystalline magnetic anisotropy, in case of Fe,
A = 2.0X10−11 J/m and K1 = 4.2X104 J/m3. Therefore, the increase of powder coercivity by heat-
exposure at around 300 degree-C was considered to be owing to the grain growth and the increase of
the crystalline magnetic anisotropy.

From the experimental results, the nanocrystalline-structure of the CIP was maintained after
heat-exposure below 250 degree-C, and the small powder coercivity was also maintained after same
heat-exposure condition.

3. Vortex magnetic structure

FIG. 9 shows the TEM and Electron beam holography images of the CIP annealed in vacuum
at 300 degree-C for 1 hour. The powder XRD pattern shown in FIG. 7 exhibited the CIP had a fine
grain even when annealing in vacuum at 300 degree-C. However, TEM image in FIG. 9(a) revealed
that the annealed CIP had not only fine grains but also large grains. In the Electron beam holography
image of FIG. 9(b), the multi-domain structure was observed and plural magnetic vortex states also

FIG. 7. Average grain size of CIP annealed in vacuum vs. annealing temperature.
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FIG. 8. Annealing temperature and grain size dependences of powder coercivity of CIP annealed in vacuum.

FIG. 9. (a) TEM and (b) Electron beam holography images of CIP annealed in vacuum at 300 degree-C for 1 hour.

FIG. 10. (a) TEM and (b) Electron beam holography images of CIP annealed in dry air at 240 degree-C for 6 hours.

appeared. Since the as-made CIP had a single vortex magnetic structure5, the origin of the plural
magnetic vortex states was considered to be owing to the local grain growth by heat-exposure at
300 degree-C. Therefore, thermal stability of the single vortex magnetic structure was dependent
strongly on the thermal stability of the nanocrystalline-structure.
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C. Vortex magnetic structure of surface-oxidized CIP

There is a possibility of change in the vortex magnetic structure through the surface-oxidation
of the CIP. FIG. 10 shows the TEM and Electron beam holography images of the CIP annealed in
dry air at 240 degree-C for 6 hours. The nanocrystalline-structure inside the CIP body was main-
tained even when the CIP-surface was oxidized in dry air, and the single vortex magnetic structure
was clearly observed as well as the as-made CIP.

Although not shown here in detail, the CIP annealed in dry air at 240 degree-C had three times
larger powder coercivity than that of the CIP annealed in vacuum, which was considered to be
owing to the increase of the internal stress by adding the surface oxide layer. The CIP annealed in
dry air at 200 degree-C for 6 hours had about 30 nm thick surface-oxidized layer and small powder
coercivity of about 800 A/m (10 Oe).

V. CONCLUSION

In order to suppress the eddy current loss of the carbonyl-iron powder (CIP) based composite
magnetic core for SiC/GaN power device MHz operation power electronics, both tens nm thick
silica (SiO2) and oxidized layer were successfully formed on the CIP-surface to reduce the over-
lapped eddy current between adjacent CIPs in the composite core. The CIP annealed in dry air
had the surface-oxidized layer consisting of the hematite Fe2O3 at the vicinity of the surface of
the oxidized layer and the magnetite Fe3O4 inside the oxidized layer. In addition, to realize the
heat resistant composite magnetic core for high temperature operation SiC/GaN power electronics,
thermal stabilities of the nanocrystalline-structure and single vortex magnetic structure of the CIP
were investigated. From the experimental results, both nanocrystalline and single vortex magnetic
structure were maintained after heat-exposure below 250 degree-C, and the small powder coercivity
was also maintained after same heat-exposure condition.
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