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• 10 : 00 ∼ 10 : 40 Z. Şentürk (Istanbul Technical Univ.)
On Locally Conformal Kaehler Manifolds

• 11 : 00 ∼ 11 : 40 K. Takano (Shinshu Univ.)
Some geometric properties of system spaces of autoregressive process of degree 2



Some geometric properties of system spaces

of autoregressive process of degree 2

Kazuhiko Takano

1 Introduction

Let {εt} and {xt} be time series of the input signal and the output signal. The input-output relation of
the system can be expressed by

p∑
i=0

aixt−i =

q∑
i=1

biεt−i+1 (a0 ̸= 0),

where {εt} is a sequence of independent identically normal distributions with zero mean and variance σ2.
If a0 = 1, then it is said to be an autoregressive moving average (ARMA) process of degree (p, q). This
process is denoted by ARMA(p, q). When q = 1 and b1 = 1 (resp. p = 0 and a0 = 1), this model is called
an autoregressive (AR) process of degree p (resp. moving average (MA) process of degree q). It is denoted
by AR(p) (resp. MA(q)). In [2], they studied the (p + q + 1)–dimensional system space of ARMA(p, q)
such that a0 = 1 with the local coordinate system (ρ1, . . . , ρp, δ1, . . . , δq, σ

2), where ρi (i = 1, . . . , p) and
δj (j = 1, . . . , q) denote the roots of p-degree and q-degree polynomials

∑p
i=0 aiz

i = 0 (a0 = 1) and∑q
i=0 biz

i = 0 (b0 = 1) with respect to z, respectively. They calculated the Riemannian metric and α–
connection. Also, in [4], they studied the (p+1)–dimensional system space of AR(p) such that a0 = 1 with
the local coordinate system (ρ1, . . . , ρp, σ

2) and sought the sectional curvature. In [3], we study a system
space of the autoregressive process of degree 1. This space is a 2-dimensional α–flat statistical manifold,
we investigate α–geodesics, almost complex structures which are parallel with respect to the α–connection.

In this time, we introduce some geometric properties of the system space of AR(2).

2 Statistical manifolds and system spaces

Let (M, g) and ∇ be a Riemannian manifold and affine connection, respectively. We define another affine
connection ∇∗ by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ)(2.1)

for vector fields X, Y and Z on M . An affine connection ∇∗ is called conjugate of ∇ with respect to g.
The triple (M, g,∇) is called a statistical manifold if both ∇ and ∇∗ are torsion-free. Clearly (∇∗)∗ = ∇
holds. It is easy to see that 1

2 (∇+∇∗) is a metric connection.

Next, we call a system for which the output xt at time t may be expressed in terms of the previous p
values xt−1, . . . , xt−p and the current input εt as

p∑
i=0

aixt−i = εt (a0 ̸= 0)(2.2)

an autoregressive process of degree p, where εt is a normal distribution with zero mean and variance σ2.
The power spectrum for this model is

S(ω; a) = σ2

∣∣∣∣∣
p∑

s=0

ase
−iωs

∣∣∣∣∣
−2

,(2.3)

where a = (a0, a1, . . . , ap) are called AR parameters ([1]). Let Mp+1 be a system space of AR(p) with
the local coordinate system (a0, a1, . . . , ap). For the local coordinate system, we define components of the
Fisher metric g by

gij =
1

2π

∫ π

−π

∂i logS(ω; a) ∂j logS(ω; a) dω,(2.4)



where ∂i = ∂/∂ai. Moreover we put for a real number α

Γ
(α)
ij,k =

1

2π

∫ π

−π

{∂i∂j logS(ω; a)− α∂i logS(ω; a) ∂j logS(ω; a)} ∂k logS(ω; a) dω(2.5)

and define an α–connection ∇(α) by

g(∇(α)
∂i

∂j , ∂k) = Γ
(α)
ij,k.(2.6)

Then the α–connection is torsion-free and ∇(−α) is conjugate of ∇(α) with respect to the Fisher metric.
Thus the triple

(
M, g,∇(α)

)
is a statistical manifold. ∇(0) is the Levi-Civita connection with respect to the

Fisher metric and is denoted by ∇. We call α–flat if the curvature tensor with respect to the α–connection
vanishes identically. The α–geodesic equations on

(
M, g,∇(α)

)
are defined by

d2ak
dt2

+ Γ
(α) k
ij

dai
dt

daj
dt

= 0 (k = 0, 1, . . . , p),(2.7)

where Γ
(α) k
ij = Γ

(α)
ij,sg

sk and gsk are components of the inverse matrix of the Fisher metric g. The solution
of (2.7) is called α–geodesic. Especially, the 1–geodesic (resp. (−1)–geodesic) is called an e–geodesic (resp.
m–geodesic). Generally, the 0–geodesic is a geodesic.

3 System spaces of the autoregressive process of degree 2

We consider the autoregressive process of degree 2

a xt + b xt−1 + c xt−2 = εt (a ≠ 0),

where εt is a normal distribution with zero mean and variance 1. Its power spectrum is given by
S(ω; a, b, c) = (a2 + b2 + c2 + 2b(a+ c) cosω + 2ac cos 2ω)−1. We put

M3 =
{
(a, b, c) ∈ R3 | a > 0, b2 − 4ac > 0, (a− b+ c)(a+ b+ c) > 0, (a− c)(a− b+ c) > 0

}
.

Then we get components of the Fisher metric g of M from (2.4)

gaa =
2(2a3 − ab2 + 2a2c+ b2c− ac2 − c3)

a2(a− c)(a− b+ c)(a+ b+ c)
,

gab = gba = gbc = gcb = − 2b

(a− c)(a− b+ c)(a+ b+ c)
,

gac = gca = − 2(ac− b2 + c2)

a(a− c)(a− b+ c)(a+ b+ c)
,

gbb = gcc =
2(a+ c)

(a− c)(a− b+ c)(a+ b+ c)
.

Because of (2.5) and (2.6), α–connections are given by

∇(α)
∂a

∂a =
1

a

{
−1 +

α (2a3 − ab2 + 2a2c+ b2c− ac2 − c3)

(a− c)(a− b+ c)(a+ b+ c)

}
∂a

+
b{a2 − b2 + ac+ c2 − α (2a2 − b2 + c2)}

a(a− c)(a− b+ c)(a+ b+ c)
∂b +

ac− b2 + c2 − α (2ac− b2 + 2c2)

(a− c)(a− b+ c)(a+ b+ c)
∂c,

∇(α)
∂a

∂b = ∇(α)
∂b

∂a = − αab

(a− c)(a− b+ c)(a+ b+ c)
∂a

− a2 − b2 + ac− α (2a2 − b2 + ac− c2)

(a− c)(a− b+ c)(a+ b+ c)
∂b +

b{a− α (a− c)}
(a− c)(a− b+ c)(a+ b+ c)

∂c,

∇(α)
∂a

∂c = ∇(α)
∂c

∂a = − α (ac− b2 + c2)

(a− c)(a− b+ c)(a+ b+ c)
∂a −

b{c+ α (a− 2c)}
(a− c)(a− b+ c)(a+ b+ c)

∂b

− a(a+ c)− α (2a2 − b2 + 2ac)

(a− c)(a− b+ c)(a+ b+ c)
∂c,



∇(α)
∂b

∂b =
αa(a+ c)

(a− c)(a− b+ c)(a+ b+ c)
∂a −

b{c+ α (a− 2c)}
(a− c)(a− b+ c)(a+ b+ c)

∂b

− (a+ c){a− α (a− c)}
(a− c)(a− b+ c)(a+ b+ c)

∂c,

∇(α)
∂b

∂c = ∇(α)
∂c

∂b = − αab

(a− c)(a− b+ c)(a+ b+ c)
∂a +

(a+ c){c+ α (a− 2c)}
(a− c)(a− b+ c)(a+ b+ c)

∂b

+
b{a− α (a− c)}

(a− c)(a− b+ c)(a+ b+ c)
∂c,

∇(α)
∂c

∂c =
αa(a+ c)

(a− c)(a− b+ c)(a+ b+ c)
∂a −

b{c+ α (a− 2c)}
(a− c)(a− b+ c)(a+ b+ c)

∂b

+
ac− b2 + c2 − α (2ac− b2 + 2c2)

(a− c)(a− b+ c)(a+ b+ c)
∂c,

where ∂a = ∂/∂a, ∂b = ∂/∂b and ∂c = ∂/∂c. The system space
(
M, g,∇(α)

)
of AR(2) is a statistical

manifold. We define the curvature tensor with respect to the α–connection by

R(α)(X,Y )Z = ∇(α)
X ∇(α)

Y Z −∇(α)
Y ∇(α)

X Z −∇(α)
[X,Y ]Z

for X, Y, Z ∈ TxM . Then we obtain

R(α)(∂a, ∂b)∂a = − c(α) c

2(a− c)
(gac∂b − gab∂c), R(α)(∂a, ∂b)∂b = − c(α) c

2(a− c)
(gab∂b − gbb∂c),

R(α)(∂a, ∂b)∂c = − c(α) c

2(a− c)
(gbb∂b − gbc∂c), R(α)(∂a, ∂c)∂a =

c(α) b

2(a− c)
(gac∂b − gab∂c),

R(α)(∂a, ∂c)∂b =
c(α) b

2(a− c)
(gbc∂b − gbb∂c), R(α)(∂a, ∂c)∂c =

c(α) b

2(a− c)
(gcc∂b − gbc∂c),

R(α)(∂b, ∂c)∂a = − c(α) a

2(a− c)
(gac∂b − gab∂c), R(α)(∂b, ∂c)∂b = − c(α) a

2(a− c)
(gbc∂b − gbb∂c),

R(α)(∂b, ∂c)∂c = − c(α) a

2(a− c)
(gcc∂b − gbc∂c),

where c(α) = (1− α)(1 + α). Hence we have

Lemma 1. We find

(1) curvature tensors with respect to α–connection are spanned by ∂b and ∂c.

(2) R(α) = R(−α) holds.

(3) R(±1) = 0, that is,
(
M, g,∇(±1)

)
is ±1–flat, respectively.

Theorem 1. In the statistical manifold
(
M, g,∇(α)

)
, we get

abR(α)(∂a, ∂b) = bcR(α)(∂b, ∂c) = caR(α)(∂c, ∂a).

Next we obtain components of the Ricci tensor Ric(α) and the scalar curvature r(α) with respect to the
α–connection

Ric(α)aa = − c(α)(ab2 − b2c+ ac2 + c3)

a(a− c)2(a− b+ c)(a+ b+ c)
,

Ric
(α)
ab = Ric

(α)
ba = Ric

(α)
bc = Ric

(α)
cb =

c(α) ab

(a− c)2(a− b+ c)(a+ b+ c)
,

Ric(α)ac = Ric(α)ca =
c(α)(ac− b2 + c2)

(a− c)2(a− b+ c)(a+ b+ c)
,

Ric
(α)
bb = Ric(α)cc = − c(α) a(a+ c)

(a− c)2(a− b+ c)(a+ b+ c)
and r(α) = − c(α) a

a− c
.



Thus we find Ric(α) is symmetric, moreover, Ric(α) = Ric(−α) and Ric(±1) = 0. Also, if we put

||R(α) ||2 = ghigjkgpqgrsR
(α) r
hjp R

(α) s
ikq and ||Ric(α) ||2 = grsgpq Ric(α)rp Ric(α)sq , then we find ||R(α) || = | r(α) |

and ||Ric(α) || = | r(α) |√
2

. Also, we define the derivative of the Ricci tensor by(
∇(α)

X Ric(α)
)
(Y, Z) = X

(
Ric(α)(Y, Z)

)
− Ric(α)

(
∇(α)

X Y, Z
)
− Ric(α)

(
Y,∇(α)

X Z
)

for X, Y, Z ∈ TxM . If α = 0, then we have

Lemma 2. ∇XRic = (X log | r |)Ric holds, that is, (M, g) is the Ricci recurrent manifold.

From (2.7), we get 1–geodesic equations

d2a

dt2
+

a(a+ c)

(a− c)(a− b+ c)(a+ b+ c)

(
da

dt
+

db

dt
+

dc

dt

)2

− 2a

(a− c)(a− b+ c)

db

dt

(
da

dt
+

dc

dt

)
− 2

a− c

da

dt

dc

dt
= 0,

d2b

dt2
− b

(a− b+ c)(a+ b+ c)

(
da

dt
+

db

dt
+

dc

dt

)2

+
2

a− b+ c

db

dt

(
da

dt
+

dc

dt

)
= 0,

d2c

dt2
− c(a+ c)

(a− c)(a− b+ c)(a+ b+ c)

(
da

dt
+

db

dt
+

dc

dt

)2

+
2c

(a− c)(a− b+ c)

db

dt

(
da

dt
+

dc

dt

)
+

2

a− c

da

dt

dc

dt
= 0.

Hence we have

Theorem 2. The 1–geodesic (a(t), b(t), c(t)) of the system space
(
M, g,∇(1)

)
is given by

a(t) =
1

4

{√
A1t+B1 +

√
A2t+B2 +

√(√
A1t+B1 +

√
A2t+B2

)2

− 16(A3t+B3)

}
,

b(t) =
1

2

(√
A1t+B1 −

√
A2t+B2

)
,

c(t) =
1

4

{√
A1t+B1 +

√
A2t+B2 −

√(√
A1t+B1 +

√
A2t+B2

)2

− 16(A3t+B3)

}
,

where Ai, Bi (i = 1, 2, 3) are constants.

Corollary. The 1–geodesic of the system space
(
M, g,∇(1)

)
is given by an intersect curve of two

surfaces A2{(a+ b+ c)2 −B1} = A1{(a− b+ c)2 −B2} and A3{(a+ b+ c)2 −B1} = A1(ac−B3).
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