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Aggressive natural killer-cell leukemia mutational
landscape and drug profiling highlight JAK-STAT
signaling as therapeutic target
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Aggressive natural killer-cell (NK-cell) leukemia (ANKL) is an extremely aggressive malig-
nancy with dismal prognosis and lack of targeted therapies. Here, we elucidate the molecular
pathogenesis of ANKL using a combination of genomic and drug sensitivity profiling. We
study 14 ANKL patients using whole-exome sequencing (WES) and identify mutations in
STAT3 (21%) and RAS-MAPK pathway genes (21%) as well as in DDX3X (29%) and epi-
genetic modifiers (50%). Additional alterations include JAK-STAT copy gains and tyrosine
phosphatase mutations, which we show recurrent also in extranodal NK/T-cell lymphoma,
nasal type (NKTCL) through integration of public genomic data. Drug sensitivity profiling
further demonstrates the role of the JAK-STAT pathway in the pathogenesis of NK-cell
malignancies, identifying NK cells to be highly sensitive to JAK and BCL2 inhibition compared
to other hematopoietic cell lineages. Our results provide insight into ANKL genetics and a
framework for application of targeted therapies in NK-cell malignancies.
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ARTICLE

ggressive natural killer-cell (NK-cell) leukemia (ANKL) is

a rare mature NK-cell neoplasm manifesting as a rapidly

progressing systemic disease with an extremely poor
median survival of just a few months"2. The disease is highly
resistant to treatment and currently available therapy options
include chemotherapy and hematopoietic stem cell transplanta-
tion>*. ANKL is most prevalent in the Asian population and
known to be strongly associated with the Epstein-Barr virus
(EBV) infection®. Little is known about the other aspects of the
molecular pathogenesis of the disease, although some copy-
number aberration analyses® and targeted sequencing of limited
patient cohorts®~® have been performed. In contrast to ANKL, the
closely related extranodal NK/T-cell lymphoma, nasal type
(NKTCL), an extranodal lymphoma commonly presenting in the
nasal cavity, has been more thoroughly studied. NKTCL can be
distinguished from normal NK cells by deregulation of janus
kinase-signal transducer and activator of transcription (JAK-
STAT), AKT, and NF-kB signaling’. Recurrent chromosomal
aberrations in NKTCL include a 6q21 deletion leading to the
silencing of tumor suppressors PRDMI and FOX03'°, Recently,
mutations in the RNA helicase gene DDX3X were identified in
20%!!, and JAK-STAT pathway mutations, including STAT3 and
STATS5B mutations'?>~1%, in a sizeable fraction of NKTCL patients.
However, the exome-wide mutational landscape of ANKL has not
been characterized.

Here, we investigate the mutational landscape of ANKL using
WES and integrate these data to WES data from NKTCL and
other related cancers to understand relationships between these
diseases. Moreover, we characterize cell lines derived from NK
cell neoplasms and normal NK cells using RNA sequencing and
high-throughput drug sensitivity profiling to identify ther-
apeutically actionable drivers in malignant NK cells. We report
mutations in STAT3, the RAS-mitogen-activated protein kinase
(RAS-MAPK) pathway, DDX3X and epigenetic modifiers in
ANKL patients and demonstrate the importance of the JAK-
STAT pathway in NK cells using drug sensitivity profiling,
revealing potential therapeutic targets in NK-cell malignancies.

Results

Spectrum of somatic mutations in ANKL. We performed WES
on four tumor-normal pairs and ten tumor-only samples of
ANKL to elucidate the molecular pathogenesis of ANKL (Sup-
plementary Fig. 1, Supplementary Table 1, Supplementary Data 1,
2). To enable comparison to related cancers, we also reanalyzed
published NKTCL WES data!! and in-house WES data from
three chronic lymphoproliferative disease of NK cells (CPLD-
NK), 15 T-cell large granular lymphocytic leukemia (T-LGLL)
and four T-cell prolymphocytic leukemia (T-PLL) patients using
identical methods (Supplementary Fig. 1, Supplementary Data 3).
The spectrum of single-nucleotide mutations in ANKL showed a
preference for C>T, C>A and A>G substitutions, consistent with
other cancers (Fig. 1a). However, comparison of the trinucleotide
mutation signatures revealed differences, notably a relative
absence of signature 3, associated with failure of DNA double-
strand break repair by homologous recombination'®!” (Fig. 1b).
ANKL cases also largely clustered separately from the other
tumor types by the spectrum of mutational signatures (Supple-
mentary Fig. 2a). We also observed a higher mutation load in
ANKL and NKTCL than in CLPD-NK, T-LGLL and T-PLL,
although reaching statistical significance only between NKTCL
and other cancers (Fig. 1c, Supplementary Fig. 2b). In addition,
we detected a markedly higher fraction of reads mapping to the
EBV genome in all tumor samples compared to controls, con-
firming the presence of EBV in the studied ANKL and NKTCL
cases (Fig. 1d, Supplementary Fig. 2c). However, we did not
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observe connections between EBV status and mutational sig-
natures (Supplementary Fig. 2). The differences in the mutational
signatures suggest that the underlying mutational processes in
ANKL are at least partially different than those in related tumor
types such as NKTCL.

JAK-STAT, RAS-MAPK and epigenetic modifier mutations in
ANKL. In total, we identified several copy-number alterations
(Supplementary Fig. 3) and 419 nonsynonymous somatic muta-
tion candidates in tumor-control pairs and 529 in tumor-only
samples (with an estimated sensitivity of 0.72 and positive pre-
dictive value of 0.36; Supplementary Data 1) involving 852 genes
and including 298 missense, 63 nonsense, and 37 splice-site
mutations as well as 131 frameshift and 81 inframe insertions or
deletions. The complete lists of identified mutations are presented
in Supplementary Data 2. Among the most recurrently mutated
genes in ANKL were DDX3X (29%, 4/14 patients) and STAT3
(21%, 3/14 patients) (Fig. 1d). Markedly, 2/3 discovered STAT3
mutations have previously been reported as activating!>!8, and
they localized to exons 20 and 21 encoding the Src homology 2
(SH2) domain mediating the dimerization and activation of
STAT3 (Fig. 2a). Additionally, in one of the patients with a
STAT3 mutation, we detected a 9p copy number gain containing
JAK?2 (Fig. 2b, Supplementary Fig. 3) and a point mutation in the
protein tyrosine phosphatase (PTP) PTPRK, a commonly deleted
tumor suppressor shown to negatively regulate STAT3 in
NKTCL!. Other mutated PTPs included PTPN4 and PTPN23
(HD-PTP).

In addition to JAK-STAT aberrations, gain-of-function muta-
tions in the RAS-MAPK pathway genes occurred in 3/14 ANKL
patients, including those leading to the constitutive RAS
activation (p.G12D and p.G13D) as well as a BRAF mutation
(p.G469A). We also detected mutations in epigenetic regulators
and histone-modifying enzymes in 7/14 patients, including
mutations in BCOR and KMT2D (MLL2), mutated also in
NKTCL!120, as well as in SETD2, mutated also in enteropathy-
associated T-cell lymphoma®?2, One patient harbored a
nonsense mutation in TET2 (p.Y899X), frequently inactivated
in myeloid cancers and T-cell lymphomas?3. Mutations in the
RNA helicase gene DDX3X, commonly mutated in NKTCL, were
found in four patients. These included a frameshift (p.T231fs), an
inframe deletion, and two point mutations (p.L443V and p.
A483G) localizing to the C-terminal helicase domain and
predicted damaging (Supplementary Data 2). Other mutations
in NKTCL-related genes included a nonsense FAS mutation,
leading to truncation of the death domain’* and a nonsense
mutation in INPP5D?>. One patient harbored a TP53 splice site
mutation co-occurring with a 17p loss and a frameshift mutation
in the DNA mismatch repair gene MSH6. Interestingly, this case
had the highest mutation load among the tumor-normal ANKL
cases and was the only ANKL case with evidence of mutation
signature 3 (Supplementary Fig. 2a, b). Out of the identified genes
with likely functional relevance, DDX3X, BCOR, and STAT3 were
identified in ANKL as recurrent by both the MutSigCV and
Oncodrive-fm algorithms (Fig. 1d, Supplementary Data 4).
Moreover, these genes were abundantly expressed in NK cells,
further supporting their role in ANKL pathogenesis (Fig. 1d,
Supplementary Data 5).

JAK-STAT and PD-L1 gains and PTP mutations in ANKL and
NKTCL. Given the discovery of JAK-STAT alterations in ANKL,
we turned to analyze the extent of such alterations in NKTCL. By
reanalyzing the NKTCL data'!, we discovered two previously
undetected STAT3 mutations and a JAK2 mutation (p.V617F) in
the NKTCL cohort, further expanding the fraction of NKTCL
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Fig. 1 Whole-exome sequencing in ANKL. a Percentages of somatic base substitutions and indel mutations identified by whole-exome sequencing in
tumor-normal paired samples of ANKL (n=4), NKTCL (n=25), CLPD-NK (n=3), T-LGLL (n=15) and T-PLL (n=4). Synonymous mutations were
included in the analysis. b Normalized weights of trinucleotide signatures identified using deconstructSigs in tumor-normal paired samples of ANKL,
NKTCL, CLPD-NK, T-LGLL, and T-PLL. Weights of three most frequent signatures in each cancer type are shown across cancers as separate signatures and
others are included under “other”. Synonymous mutations were included in the analysis. € Numbers of somatic mutations in tumor-normal paired samples
of ANKL, NKTCL, CLPD-NK, T-LGLL, and T-PLL. Synonymous mutations were included in the analysis. Horizontal lines indicate median, error bars indicate
10th and 90th percentiles, boxes represent interquartile ranges, and dots indicate outliers. P values were calculated using the Mann-Whitney U-test. d
Alterations identified by whole-exome sequencing selected based on recurrence and biological significance. Complete lists of identified mutations are
found in Supplementary Data 2. Diagonally split dual-colored rectangle indicates the presence of two alterations of different type in the same sample.
Reads mapping to the EBV genome are reported as counts per million (CPM) under the figure. Results of the MutSigCV and Oncodrive-fm driver gene
analyses are presented on the right side of the figure. Expression estimates of mutated genes in normal NK cells and NK cell lines are shown on the right as
reads per kilobase per million mapped reads (RPKM), with bar length indicating mean and error bars representing range
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Fig. 2 JAK-STAT pathway component alterations are common characteristics in both ANKL and NKTCL. a Somatic mutations identified in STAT3 in ANKL

(n=14) and NKTCL (n = 25) patients. b-c Ideograms of chromosome 9 (b

) and 17 (c¢) showing the areas of copy number alterations identified in ANKL

and NKTCL. Red bars indicate gains and blue bars indicate losses. Patient IDs are indicated on the left and the locations of JAK-STAT genes are displayed.
Only patients with gains are shown. d JAK-STAT and PTP alterations in NKTCL. Both alterations detected in this study using reanalyzed WES data and
alterations detected by Jiang et al.[11] using SNP arrays are shown. Diagonally split dual-colored rectangle indicates the presence of two alterations of
different type in the same sample. e Summary of JAK-STAT alterations identified in this study and in Nakashima et al.?

patients with JAK-STAT mutations (Fig. 2a). Furthermore, the
reanalysis revealed various alterations other than point mutations
affecting JAK-STAT signaling. Specifically, the JAK2 region was
amplified in 2/25 NKTCL cases (Fig. 2b, Supplementary Fig. 3b),
with the copy gain spanning also CD274 (PD-LI) and PDCDILG2
(PD-L2) in one case. Furthermore, we noted chromosome 17
gains in three NKTCL patients (12%), including one focal copy
gain of STAT3 and larger gains including also STAT5A and
STAT5B in two cases (Fig. 2¢, Supplementary Fig. 3b). In total,
JAK-STAT amplifications were discovered in 16% of NKTCL
cases (Fig. 2d). Review of the literature suggested recurrence of
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these findings, uncovering 9p24 gains containing JAK2, CD274
and PDCDILG2 in 2/10 ANKL and 1/27 NKTCL patients, as well
as 17q21.2 gains containing STAT3, STAT5A, and STAT5B in 1/
10 ANKL and 3/17 NKTCL cases® (Fig. 2e). Moreover, we found
8 receptor type and 3 non-receptor type PTPs to harbor muta-
tions in 13/25 NKTCL cases in addition to the common 6q21
deletion containing PTPRK (Fig. 2d, Supplementary Table 2).
Several of these genes have been implicated in negative regulation
of JAK-STAT signaling, including PTPRC (CD45)*°, PTPRT?,
and PTPN2 (TC-PTP)*3. Most identified mutations were pre-
dicted damaging (Supplementary Table 2), suggesting a potential
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were calculated using the Mann-Whitney U-test

tumor suppressor role for PTPs in NK cells. The JAK-STAT copy
gains and phosphatase mutations highlight previously unappre-
ciated mechanisms of JAK-STAT alteration in NK-cell
neoplasms.

Drug sensitivity profiling in malignant NK cells. Next, we
aimed to understand how the commonly altered pathways in NK
cells, importantly JAK-STAT, are reflected in drug response
phenotypes. We subjected nine NK cell lines, including three
ANKL and two NKTCL lines*®=’, to drug sensitivity profiling
(Supplementary Table 3). Reassuringly, the mutational spectrum
of these cell lines identified by RNA sequencing and targeted
next-generation sequencing mimicked that of primary ANKL and
NKTCL (Supplementary Fig. 4a, Supplementary Data 6). Muta-
tions in STAT genes were detected in four cell lines, including a
STAT5B mutation occurring at codon 642 (p.N642H) in DERL-7.
In addition, mutations in epigenetic modifiers (IDHI, BCOR)
targeting pathways mutated in ANKL3® and tumor suppressors
implicated in ANKL and NKTCL (FAS**, CASPS8 belongin§ to the
same apoptotic pathway, DDX3X, MGA'! and PRDM1'") were
discovered. Furthermore, transcriptomic comparison of the cell
lines and primary NKTCL and T-LGLL as well as normal NK and
T cells demonstrated the similarity of the cell lines to primary

| (2018)9:1567

NKTCL and normal NK cells rather than T-LGLL and normal
T cells, suggesting that the transcriptomes of the cell lines reflect
characteristics of the NK lineage and NK-cell malignancies
(Supplementary Fig. 4b, c). Taken together, these results indicate
utility of the cell lines as a useful model for drug sensitivity and
resistance testing (DSRT).

In total, we quantified drug sensitivities of 459 approved and
investigational oncology compounds over a 10,000-fold con-
centration range (Supplementary Data 7). Focusing on targeted
agents, we found the JAK inhibitor ruxolitinib and the BCL2
family inhibitor navitoclax to be highly effective across the cell
lines (Fig. 3a). Other effective drug classes were heat shock
protein 90 (HSP90) inhibitors, Polo-like kinase (PLK) and
Aurora kinase (AURK) inhibitors, cyclin-dependent kinase
inhibitors as well as histone deacetylase inhibitors (Fig. 3a).
Comparison of the drug sensitivity profile of NK cell lines to
other hematologic cell lines, including acute and chronic
myeloid leukemia and T-cell acute lymphoblastic leukemia
cells, revealed that the JAK inhibitors ruxolitinib and tofacitinib
were most selective towards NK cells, together with navitoclax
and methotrexate also exhibiting NK-cell selectivity (Fig. 3b-d).
In contrast, most NK cell lines were resistant to MEK
inhibitors. Thus, the most highly active targeted agents in NK
malignancies also show specificity towards NK cells compared
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resting (n=1) and IL-2-stimulated normal primary NK cells (n =1). g Ruxolitinib dose-response curves of different PBMC populations in the presence of
2.5ng/mL IL-2. Shown are representative results from one out of two experiments. Dots indicate mean and error bars the range of three replicate wells. h
JAK inhibitor dose-response curves of the cell lines DERL-7 (NK-cell characteristics) and DERL-2 (T-cell characteristics) established in parallel from the
same patient with y8 lymphoma. Both cell lines were cultured in 2.5 ng/mL IL-2. Dots indicate mean and error bars the range of two independent

experiments

to other malignancies, suggesting these drugs to target key
biological pathways in NK cells.

Specific sensitivity of NK cells to JAK and BCL2 inhibition. To
investigate in more detail whether the observed drug sensitivity
pattern depended on the NK-cell phenotype and was similar to
normal NK cells, we compared the drug responses of NK cells
from healthy donors cultured in IL-2 to healthy bone marrow
mononuclear cells (BM MNC) and NK cell lines. Healthy NK
cells were more sensitive to JAK inhibitors and navitoclax as well
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as HSP90 inhibitors than BM MNC, similar to what we observed
in the cell lines (Fig. 4a-c). Responses to JAK inhibitors and
navitoclax were similar in NK cell lines and normal NK cells that
were cultured in IL-2 or additionally expanded using genetically
engineered K562 cells®® (Fig. 4b, ¢, Supplementary Fig. 5a, c). In
contrast, the BCL2 inhibitor venetoclax and mTOR inhibitors
were effective only in malignant NK cell lines, whereas responses
to conventional chemotherapeutics were detected in both NK cell
lines and expanded normal NK cells, likely reflecting their efficacy
in actively proliferating cells (Fig. 4d, Supplementary Fig. 5).
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Interestingly, glucocorticoids were highly effective in healthy NK
cells compared to other cell types but induced responses only in
few cell lines, implying glucocorticoid resistance in a subset of
malignant NK cells (Fig. 4a, e, Supplementary Fig. 5a, c). Pairwise
correlation of drug sensitivities revealed sensitivity to MEK
inhibitors in the glucocorticoid-sensitive cells (Supplementary

Fig. 6). Taken together, we found JAK inhibitors and navitoclax
uniformly effective in the NK lineage, whereas mTOR inhibitors
and glucocorticoids induced responses only in cell lines or normal
NK cells, respectively.

JAK and HSP90 inhibitors as well as the NAE inhibitor
pevonedistat were more effective in IL-2-stimulated than resting
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NK cells, suggesting that the sensitivity of NK cells to JAK and
HSP90 inhibition resulted largely from inhibition of IL-2-derived
JAK-STAT activation (Fig. 4f). This finding is consistent with the
role of HSP90 in JAK-STAT regulation®”. We therefore tested
whether also other peripheral blood mononuclear cell (PBMC)
populations acquired sensitivity to JAK inhibition upon IL-2
stimulation. NK cells, and to a lesser extent NKT cells, were
markedly more sensitive to ruxolitinib than other hematopoietic
cell types in the presence of IL-2, including T cells for which IL-2
is a key growth factor! (Fig. 4g). Moreover, the Y8 lymphoma
line DERL-7 harboring NK-cell characteristics was more sensitive
to JAK inhibitors compared to the sister T-cell line DERL-2
established in parallel from the same patient? (ruxolitinib IC50
45.4nM vs. 396.8 nM, respectively) (Fig. 4h). We conclude that
NK cells show particular sensitivity to inhibition of IL-2-JAK-
STAT signaling compared to other hematopoietic cells.

Given the effectiveness of JAK inhibition and strong genetic
evidence for JAK-STAT pathway involvement, we tested whether
combining ruxolitinib with other promising compounds found
selective in normal NK cells or NK cell lines would lead to
enhanced in vitro activity. We tested ruxolitinib in combination
with the BCL2 family inhibitors navitoclax and the clinically
approved venetoclax as well as the mTOR inhibitor temsirolimus
and the AURK inhibitor alisertib, in dose-response matrices to
identify synergistic relationships. Comparison of delta scores, a
measure of the observed combination effect beyond the expected
interaction between drugs*?, revealed synergistic behavior of
venetoclax and alisertib across the cell lines when combined with
ruxolitinib (Fig. 5a). Variation in the degree of synergy was
observed between cell lines and drug combinations, with the JAK/
AURK inhibitor combination being more effective in some cell
lines (e.g. NKL) and the JAK/BCL2 inhibitor combination in
others (e.g. KAI3) and some exhibiting equal efficacy (e.g. SNK-6)
(Fig. 5a-d, Supplementary Fig. 7, 8). Interestingly, the BCL2-
selective venetoclax was less effective as a single agent compared
to the more broad-spectrum BCL2 family inhibitor navitoclax
(Fig. 4c, d), but it increased the sensitivity to ruxolitinib more
consistently. Importantly, venetoclax and alisertib potentiated the
efficacy of ruxolitinib at clinically achievable nanomolar con-
centrations in the cell lines (Fig. 5e). In primary NK cells from a
patient with bone marrow NK lymphoproliferation harboring an
activating STAT3 mutation at codon 661 (p.D661Y), venetoclax
showed higher efficacy in combination with ruxolitinib compared
to alisertib (Fig. 5f). These results suggest that combination of
other targeted agents to JAK inhibition may increase efficacy
compared to single-agent treatment.

Discussion

In this study, we used integrated genomic and drug sensitivity
profiling to study the somatic mutation landscape of ANKL and
identify therapeutic targets in NK-cell malignancies. We identi-
fied alterations in JAK-STAT, RAS-MAPK and epigenetic
modifier genes as well as in DDX3X in ANKL and discovered
high sensitivity of the NK lineage to JAK and BCL2 inhibition.

We found JAK-STAT signaling components to be frequently
altered in ANKL, with 3/14 patients harboring a STAT3 mutation.
Previous reports have described STAT3 mutations in two cases of
EBV-negative ANKL® and a patient with a STAT5B mutation®.
Gain-of-function STAT3 mutations have also been previously
described in diseases of varying aggressiveness, such as NKTCL
and the relatively indolent T-LGLL and CLPD-NK!843, This
suggests that deregulated JAK-STAT signaling alone is unlikely to
explain the aggressive course of ANKL, but that other events such
as alterations in epigenetic modifiers or interplay with EBV-
associated factors are likely involved. Using published NKTCL
and ANKL data, we found JAK2, STAT3, and STAT5B gains as
well as previously undetected JAK2 and STAT3 mutations in
NKTCL, extending the proportion of cases with JAK-STAT
alterations. Together, our findings in ANKL and NKTCL
strengthen the role of JAK-STAT alterations in NK-cell
malignancies.

Furthermore, the JAK2 gain was associated with gains of the
neighboring immune evasion-associated CD274 and PDCDILG2
genes in a minority of both ANKL and NKTCL patients. Together
with the PD-L1 induction associated with EBV infection®?, this
suggests potential for PD-1 blockade immunotherapy also in a
subset of ANKL patients in addition to recently reported sensi-
tivity of NKTCL to PD-1 inhibition*’.

Uncovering the genetic landscape of ANKL enables assessment
of the relationships of pathogenetic mechanisms between related
cancers at the molecular level. In particular, clinicopathologic
similarities between ANKL and NKTCL have raised questions
that ANKL might represent the leukemic phase of NKTCL. Genes
reported as frequently mutated in NKTCL, including DDX3X'!,
STAT3'12, BCOR®, KMT2D'!, and FAS**, harbored mutations
in our ANKL cohort, implying that similar pathogenetic
mechanisms are present in both diseases. Jiang and colleagues
found the co-occurrence of DDX3X and TP53 mutations to
confer a worse prognosis and correlate with more aggressive
phenotype in NKTCL!'!. However, these mutations were not
overrepresented in ANKL compared to NKTCL, with TP53
mutations found in only one ANKL case, arguing against the
hypothesis that ANKL would represent a more advanced form of
NKTCL. Moreover, our ANKL cohort was relatively more enri-
ched in RAS-MAPK pathway alterations than previous NKTCL
cohorts, although the sample sizes are limited for definitive
conclusions. Excluding these borderline differences, we did not
discover specific mutations that would aid in differential diag-
nosis between ANKL and NKTCL. Our analysis of mutational
signatures, however, revealed the lack of a DNA double-strand
break repair-associated signature in ANKL compared to NKTCL,
CLPD-NK, and T-LGLL. This implies that although several driver
mutations appear similar between ANKL and NKTCL, the
underlying mutational processes may differ. We did not identify
mutational signatures correlating with the presence of EBV, and
mutations recurrent among our EBV-positive cases, such as
STAT3 and DDX3X, have also been reported to occur in EBV-
negative cases’S, suggesting that EBV positivity does not

Fig. 5 Drug combination strategies in NK cells. a Delta scores representing the degree of synergy (see Methods) of the selected drug combinations in NK
cell lines. Bar heights indicate mean, and error bars the range of two independent experiments. Drug combinations are ranked according to mean delta
score. b Dose-response matrices of percent inhibition achieved at indicated doses of ruxolitinib combined with venetoclax or alisertib in cell lines SNK-6
and KHYG-1. Shown are representative results from one out of two experiments. ¢ Dose-response matrices of delta synergy scores achieved at indicated
doses of ruxolitinib combined with venetoclax or alisertib in cell lines SNK-6 and KHYG-1. Shown are representative results from one out of two

experiments. d Dose-response curves of percent inhibition achieved at indicated doses of ruxolitinib combined with venetoclax or alisertib in cell lines SNK-
6 and KHYG-1. Dots indicate mean and error bars the range of two independent experiments. e Viability percentages for ruxolitinib, venetoclax and alisertib
as single agents and in combination across NK cell lines normalized to DMSO and BzClI controls. f Dose-response curves and viability percentages for
ruxolitinib, venetoclax, alisertib and combinations in primary NK cells isolated from a patient with a BM NK-cell lymphoproliferation harboring a STAT3

mutation
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strikingly influence the mutational profile. The epigenetic modi-
fier mutations discovered in ANKL suggest similar pathogenetic
mechanisms in a subset of ANKL as in related mature T-cell
neoplasms harboring similar alterations, such as in SETD2 and
TET2?12>%6_ Furthermore, the transcriptional profile of NKTCL
has been shown to resemble a subset of hepatosplenic y§ lym-
phoma, further highlighting the similarity of diseases within these
diagnostic groups?’. Taken together, the genetic etiology of
ANKL appears rather heterogeneous and partially overlapping
with several related diseases, and further studies are required to
better understand the contribution of genetic alterations to clin-
ical presentation.

Drug sensitivity profiling highlighted JAK inhibitors as effec-
tive targeted therapy candidates, in line with the central role of
IL-2 signaling in NK cells and the JAK-STAT pathway alterations
observed in ANKL and NKTCL. The JAK inhibitor ruxolitinib is
approved for the treatment of myeloproliferative neoplasms and
has been shown to impair NK cell function in vivo*®. Moreover,
we identified the BCL2 family inhibitor navitoclax as an effective
compound across the NK cell lines and being selective towards
NK cells compared to other hematopoietic cells. Navitoclax was
previously shown to enhance JAK inhibition in another IL-2-
dependent malignancy, adult T cell leukemia®. Although the
BCL2 inhibitor venetoclax did not show comparable efficacy
against NK cells in vitro as a single agent, it was able to potentiate
response to ruxolitinib more consistently than navitoclax. Navi-
toclax treatment results in dose-dependent thrombocytopenia
due to BCL-X{, inhibition as well as T-cell lymphopenia, the latter
of which is potentially related to the efficacy in the closely related
NK cells found in this study®®. In contrast, venetoclax, approved
for treatment of chronic lymphocytic leukemia, avoids throm-
bocytopenia by higher BCL2 specificity’!. Combining JAK and
BCL2 inhibition in NK-cell malignancies could present a pro-
mising treatment strategy exploiting two NK-cell selective
approaches, with venetoclax less likely to result in severe toxi-
cities. Furthermore, AURK inhibitors showed efficacy as both
single agents and in combination with ruxolitinib. This is con-
sistent with previously identified sensitivity of NKTCL to an
AURK inhibitor that induced responses also in our data, although
rather modest compared to more potent AURK inhibitors*’
(Supplementary Data 7). However, the AURK inhibitor alisertib
had limited efficacy as a single agent and in potentiating sensi-
tivity to ruxolitinib against primary cells from a patient with
STAT3-mutated NK-cell lymphoproliferation as well as in nor-
mal NK cells, suggesting that alisertib may be particularly effec-
tive in highly proliferating cells such as cell lines and expanded
primary NK cells. In contrast to JAK, BCL2, and AURK inhibi-
tion, NK cells were relatively resistant to MEK inhibitors, which
were effective only in a subset of samples. This suggests that
sensitivity to MEK inhibition occurs only in selected cases and is
not a unifying property of malignant NK cells. Our functional
in vitro drug profiling approach thus demonstrates the utility of
discerning essential druggable targets among various activated
signaling processes.

In conclusion, this study provides understanding of the land-
scape of somatic mutations in ANKL and its relation to other
similar cancers. Together with the integrated drug sensitivity
profiling, our results highlight the central role of the JAK-STAT
pathway and indicate novel possibilities for targeted therapies in
NK-cell malignancies with notoriously poor prognosis.

Methods

Patients. The clinicopathologic characteristics of ANKL patients (n = 14) are
summarized in Supplementary Table 1. Patients diagnosed with ANKL and with
available samples of sufficient quality and quantity for next-generation sequencing
were identified from Shinshu University, Japan, Shimane University, Japan,
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Fukuoka University Hospital, Japan, Chi-Mei Medical Center, Taiwan and Sam-
sung Medical Center, South Korea. ANKL diagnosis was made according to the
WHO classification, with a surface immunophenotype characteristic of NK cells
(CD27CD3~CD56™), systemic involvement including bone marrow and/or per-
ipheral blood and an aggressive clinical course as minimum requirements for
diagnosis. Cases ANKL6-10 have been included in previous studies>!® (Supple-
mentary Table 1). Informed consent was obtained from all patients in accordance
with the Declaration of Helsinki and the study was approved by the ethics com-
mittee of Shinshu University School of Medicine.

Cell lines. Characteristics of NK cell lines (7 =9) included in this study are
summarized in Supplementary Table 3. DERL-2, DERL-7, KHYG-1, NK-92, and
YT cell lines were obtained from the Deutsche Sammlung von Mikroorganismen
und Zellkulturen GmbH (DSMZ). Cell lines KAI3, SNK-6, and NK-YS were
obtained from Dr. Wing C. Chan (City of Hope Medical Center, CA) and NKL
from Dr. Thomas P. Loughran (University of Virginia, VA). IMC-1 cell line was a
generous gift from Dr. I-Ming Chen (University of New Mexico, NM). For cell
lines obtained from cell bank (above) or for which authentication was available
(DERL-2, DERL-7, KHYG-1, KAI3, and NK-92), experiments were performed
within 20 passages of obtaining cells from the cell bank or authentication.
Authentication was performed using GenePrint10 System (Promega). Cell lines
were not tested for mycoplasma contamination. All cell lines were cultured in
RPMI-1640 (Lonza) with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, and
100 pg/mL streptomycin (R10). Culture medium was supplemented with 2.5 ng/mL
recombinant human IL-2 (Peprotech) except in case of IMC-1, for which 20 ng/mL
was used.

Primary cell isolation for DSRT and RNA sequencing. Primary human NK cells
were isolated from peripheral blood mononuclear cells (PBMC) obtained by Ficoll-
Paque separation from buffy coats provided by the Finnish Red Cross. NK cells
were isolated using a human NK cell isolation kit (Miltenyi Biotec). NK cells from
three donors were pooled to achieve enough material for DSRT and RNA
sequencing. The purity of NK cells was evaluated by flow cytometry using CD56-
PE (clone NCAM16.2) and CD3-APC (clone SK7) staining (BD Biosciences), and
the final pool contained >90% CD561TCD3 ™ cells in all replicates. Primary bone
marrow mononuclear cells (BM MNC) were isolated from bone marrow aspirates
from healthy donors using Ficoll-Paque separation. All normal NK cells were
cultured in R10 supplemented with 2.5 ng/mL recombinant human IL-2 (Pepro-
tech). BM MNC were cultured in Mononuclear Cell Medium (PromoCell). To
obtain actively proliferating normal NK cells, NK cells were expanded using an
artificial antigen-presenting cell K562 variant (K562-aAPC) as previously descri-
bed>°. Briefly, PBMC were isolated from buffy coats by Ficoll-Paque separation and
co-cultured with irradiated (100 cGy) K562-aAPCs at a ratio of 1:2 (PBMC:aAPC)
in RPMI1640 with 50 IU/mL IL-2 at 200,000 PBMC/mL. Cultures were refreshed
with half-volume media changes every two to three days, and re-stimulated with
aAPCs at ratio of 1:1 every seven days.

Whole-exome sequencing and targeted DNA sequencing. For tumor-normal
samples, genomic tumor DNA was extracted from either total PBMC/BM MNC
when tumor content was over 90% or from CD37CD56™ cells sorted using
FACSAria (BD Biosciences) for samples with lower tumor content. Germline DNA
was obtained either from healthy non-hematopoietic tissue or NK cell-negative
fraction of sorted PBMC/BM MNC. (Supplementary Data 1). Exome capture was
performed using Nextera Rapid Capture Exome Kit (Illumina). In the case on
tumor-only samples, genomic tumor DNA from samples was extracted from total
BM MNC or formalin-fixed paraffin-embedded bone marrow (sample ANKL11)
without enrichment for tumor cells. Exome capture was then performed using
Agilent SureSelect XT Clinical Research Exome kit (Agilent). Finally, genomic
DNA was extracted from cell lines and targeted sequencing was performed using a
target enrichment SeqCap EZ Comprehensive Cancer Design panel (Roche Nim-
bleGen) comprising 578 cancer genes. In all cases, sequencing libraries were
sequenced using paired end 100 bp read format on an Illumina HiSeq 2000
instrument (Illumina).

Variant analysis. SRA accession identifiers for public datasets are listed in Sup-
plementary Data 1. Pre-processing of short read data was done using the Trim-
momatic software>? and included correction of the sequence data for adapter
sequences, bases with low quality, and reads less than 36 bp in length. Paired-end
reads passing the pre-processing were aligned to human reference genome build 38
(EnsEMBL v82) using BWA-MEM?>? with default parameters. Reads were then
sorted by coordinate using the SortSAM and PCR duplicates were marked using
the MarkDuplicate module of the Picard toolkit (Broad Institute). Calling of var-
iants was done using the Genome Analysis Toolkit (GATK) toolset®® and GATK
resource files that were converted from GRCh37 to GRCh38 using CrossMap®” and
EnsEMBL chain files downloaded from EnsEMBL. Briefly, local indel realignment
was performed around indels using GATK IndelRealigner and base qualities were
recalibrated using GATK BaseRecalibrator®®, and the cross-sample contamination
level was estimated using GATK4 CalculateContamination. Variants were then
called using GATK Mutect2 by using the observed cross-sample contamination
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level and filtered against a panel of normals generated from the exome data of 24
healthy unrelated Finnish individuals. Finally, the levels of 8-oxoguanine and
deamination artifacts were estimated using GATK4 CollectSequencingArtifact-
Metrics and GATK4 FilterByOrientationBias was used to remove these artifacts.
Version information of tools used in the variant calling steps are given in Sup-
plementary Data 1. Accuracy of the tumor-only variant calls by comparison with
the matched tumor-control variant calls is given in Supplementary Data 1,
revealing an average sensitivity of 0.72 and positive predictive value of 0.36.
Sequencing coverage was evaluated by examining reads mapped to exons of protein
coding genes (EnsEMBL v82) with 150 bp padding on each side of the exons using
bedtools coverage software®, revealing a mean coverage of 48x and 72x across the
ANKL tumor and germline samples, respectively, with 63% of the target intervals
with sequence coverage being covered by at least 10x (Supplementary Data 1).

Annotation and filtering of variants was done using the Annovar tool®® against
the RefGene database. Briefly, only variants passing all MuTect2 filters with a
TLOD 2 6.3 alone or a TLOD > 5.0 and supported by two or more independent
COSMIC? samples were taken into account. For the trinucleotide profile and
driver gene analyses, the initial set of somatic variants was filtered for false-
positives by removing variants with a minor allele frequency >1% in the EPS, 1KG,
general EXAC (ExAC), East Asian EXAC (ExAC_EAS), Finnish EXAC (ExAC_FIN)
databases, coverage <10, and variant quality value <40. For other analyses, tumor-
normal somatic variant calls were further filtered by removing synonymous
mutations, while tumor-only samples were further filtered by accepting only
mutations occurring at a frequency <0.01% in the EXAC and ExAC_EAS databases
or mutations without EXAC information, but supported by >2 independent
COSMIC samples and assumed to impair protein function (i.e. nonsense and indel
mutations and mutations predicted as damaging by five or more of the nine variant
effect predictors used; Supplementary Data 1). Finally, mutations included in
Fig. 1d based on their biological significance were manually inspected using
Integrative Genomics Viewer 2.3.66 (Broad Institute).

Identification of mutational signatures within tumor samples was done using
the deconstructSigs!” software with default parameters and cancer profiles
downloaded from the COSMIC web site on September 2017. In the analysis,
conversion of EnsEMBL to UCSC chromosome nomenclature was done using the
function mapSeqlevels from the 6package GenomelnfoDb. Potential driver genes
were identified using MutSigCV® and Oncodrive-fm®!. MutSigCV was executed
using the default mutation rate covariate after fixing its gene names to current
nomenclature with maftools®?, a hg38-compatible coverage file generated with the
CovGen tool, and the default mutation type dictionary file after addition of
Annovar variant categories into it. For Oncodrive-fm, functional impact scores of
missense mutations were gathered from the PolyPhen2 (HumVar), SIFT, and
MutationAssessor annotations of Annovar outputs. Scores were manipulated in
accordance with recommendation®® and Oncodrive-fm executed with default
setting except for setting the minimum number of mutations per gene to 3. A step-
by-step documentation of the variant analysis and version information of tools
used are available in Supplementary Data 1.

Copy-number alteration analysis. SRA accession identifiers for public datasets
are listed in Supplementary Data 1. Raw reads were merged with SeqPrep.
Resulting paired reads were trimmed of B blocks in the quality scores from the end
of the read. Trimmed reads shorter than 36 base pairs were removed. Reads were
aligned using the Burrows-Wheeler Aligner against the human genome GRCh37
reference-genome primary assembly, reads mapping to multiple genomic positions
were removed, alignments were refined using GATK Indel Realignment®, and
potential PCR duplicates filtered by using Picard MarkDuplicates. All exome
sequencing capture kit target regions that were less than 76 bp apart were then
merged with each other. An FPKM (fragment per kilobase of target region length
per million mapped reads) copy number value was calculated separately for each
merged target region. We then filtered out the regions with sequencing coverage
lower than 25x. Finally, the log2 copy number ratios for each sample were divided
by the reference and calculated and segmented using Circular Binary Segmenta-
tion®. The copy number data for all human genes in the Ensembl database v67
were calculated by assigning a gene the value of the copy number variant data
segment with which it overlapped. If a gene overlapped with more than one seg-
ment, the gene was given the lowest segment log2 value when an overlapped
segment had a log2 ratio <—0.6 and the highest segment value when an overlapped
segment had a log2 ratio >0.5. If all segments of the overlapping gene had a log2
ratio >—0.6 and <0.5, the gene was assigned the median log2 ratio of all the
overlapping segments.

Pathogen discovery. All datasets were pre-processed as described above in variant
analysis. Microbial classification of pre-processed paired-end reads was then done
using Centrifuge®’. The uncompressed p-+h-+v Centrifuge index (12/06/2016
version) was used in the process comprising 28718 viral, prokaryotic, and human
genomes and technical artifact sequences. Read counts were converted to counts
per million (CPMs) by dividing them by the total number of reads of the root in
millions. The sensitivity and specificity of the method was established by analyzing
NK cell line data, revealing the scarcity of EBV reads (CPM < 1) in EBV negative
NK cell and presence of significant amounts of EBV reads (CPM > 64) in NK cells
known to have an EBV infection (Supplementary Fig. 4).
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RNA sequencing. Cell lines and healthy NK cells were seeded at 5 x 10° cells/mL
and cultured for 72 h in R10 supplemented with 2.5 ng/mL IL-2 (20 ng/mL for
IMC-1) prior to harvesting for extraction. RNA was extracted using miRNeasy
Mini Kit (Qiagen). Agilent Bioanalyzer RNApico chip (Agilent) was used to
evaluate the integrity of RNA and Qubit RNA kit (Life Technologies) to quantitate
RNA in samples. 1.5 ug of total RNA was used for ScriptSeq v2™ Complete kit for
human/mouse/rat (Illumina) to ribodeplete rRNA and further for RNA-seq library
preparation. SPRI beads (Agencourt AMPure XP, Beckman Coulter) were used for
purification of RNAseq libraries. The library QC was evaluated on High Sensitivity
chips by Agilent Bioanalyzer (Agilent). Sequencing libraries were sequenced using
paired end 100 bp read format on an Illumina HiSeq 2000 instrument (Illumina).

RNA sequencing data were pre-processed similarly to DNA sequencing data.
SRA accession identifiers for public datasets are listed in Supplementary Data 1.
Paired-end reads passing the pre-processing were then aligned to human reference
genome build 38 (EnsEMBL v82) using STAR®” with the default 2-pass per-sample
mapping settings. Reads were then sorted by coordinate using the SortSAM and
PCR duplicates were marked using the MarkDuplicate module of the Picard
toolkit. Calling of variants was done according to the GATK best practice for
calling variants on RNA sequencing data, including splitting of pre-processed and
mapped reads into exon segments using GATK SplitNCigarReads, local indel
realignment around indels using GATK IndelRealigner, and base quality
recalibration using GATK BaseRecalibrator. Variant calling relied on the GATK
HaplotypeCaller and variants were filtered using GATK VariantFiltration
according to the best practice recommendations regarding the RNA-seq variant
analysis workflow. To reduce the number of false positive variants, variants were
annotated and filtered as DNA sequencing variants, except that variants had to pass
all default variant caller filters without relaxation in their TLOD scores. To identify
potentially disease-causing RNA-seq variants, analyses were restricted to protein
function-altering mutations (nonsense and frameshift variants) and variants
supported by two or more independent COSMIC samples. In transcriptome
comparisons, mapped reads were assigned to gene features (EnsEMBL v82) using
FeatureCounts® by allowing multi-mapping reads and assignment of a read to
more than one overlapping feature. Read counts were normalized by Trimmed
Mean of M-values (TMM) normalization®” and CPM and RPKM (reads per
kilobase per million mapped reads) values were computed using edgeR®® with
default parameters. Data for the transcriptomic comparison of NK cell lines and
normal NK cells and data for the transcriptomic comparison of the cell lines and
primary NKTCL and T-LGLL as well as normal NK and T cells were normalized
separately.

Drug sensitivity and resistance testing (DSRT). The oncology compound col-
lection included 145 FDA/EMA approved anti-cancer and other drugs and 314
investigational and preclinical compounds (Supplementary Data 7). All com-
pounds were purchased from commercial chemical vendors and dissolved in either
100% dimethyl sulfoxide (DMSO) or water. DSRT was performed as previously
described®. Briefly, each compound was preprinted on 384-well plates (Corning)
in five different concentrations covering a 10,000-fold concentration range with an
acoustic liquid handling device (Echo 550, Labcyte Inc.). Compounds were dis-
solved in 5yl culture medium on a shaker for 10 min. 20 pl of single-cell sus-
pension of cell lines (3000 cells per well) or primary cells (10,000 cells per well)
were dispensed using Multi-Drop Combi peristaltic dispenser (Thermo Scientific)
or MultiFlo FX Multi-Mode Dispenser (BioTek). Plates were incubated at 37 °C
and 5% CO, for 72 h after which cell viability was measured using CellTiter-Glo 2.0
reagent (Promega) according to the manufacturer’s instructions with a Pherastar
FS plate reader (BMG Labtech). Cell viability luminescence data were normalized
to DMSO-only wells (negative control) and 100 mM benzethonium chloride-
containing wells (positive control). The DSRT data were quantified using the drug
sensitivity score (DSS)**7C. For comparison to other cell lines screened in-house, a
common drug collection of 261 overlapping compounds between all cell lines was
used (Supplementary Data 7).

Flow cytometry. For profiling of ruxolitinib sensitivity of PBMC cell populations,
PBMC from buffy coats were plated on V-bottom 96-well plates at 100,000 cells/
well in 100 pl R10 supplemented with 2.5 ng/mL IL-2 in the presence of indicated
concentrations of ruxolitinib or DMSO as a control, all conditions in triplicate.
After 72 h incubation at 37 °C and 5% CO,, cells were centrifuged, resuspended to
25 pl staining buffer (PBS 4 0.5% BSA + 0.02% NaN3) and stained with antibodies
for CD56-FITC (clone NCAM16.2), CD4-PE-Cy7 (clone RPA-T4), CD3-APC
(clone SK7), CD8-APC-H7 (clone SK1), CD14-V500 (clone M5E2) (all from BD
Biosciences), and CD19-Pacific Blue (clone SJ25-C1, Invitrogen) for 15 min at RT.
Cells were then washed with 100 pl staining buffer and resuspended to 25 pl
Annexin V binding buffer with AnnexinV-PE and 7-AAD (both from BD Bios-
ciences). Cells were acquired using an iQue Screener Plus flow cytometer (Intel-
licyt) and cell populations were gated as shown in Supplementary Figure 9 by first
gating for viable cells based on AnnexinV/7-AAD negativity and then gating
PBMC subpopulations. B cells were gated as CD19" and monocytes as CD14™
cells. Counts of viable cells in each population per well were normalized to counts
in DMSO-only wells (100% viability) and zero viable cells (0% viability).
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Drug combination analysis. Cells were plated on 384-well plates with dose
combination matrices comprising seven different concentrations for each drug with
DMSO controls and DSRT was performed as described above. Drug combination
effect was quantified by comparing the observed joint inhibition level at each dose
combination to the expected combination effect using the zero-interaction potency
(ZIP) model using previously published scripts*2. The ZIP model assumes that two
non-interacting drugs are expected to incur minimal changes in their drug
response curve. It combines the advantages of Loewe additive model and Bliss
independence model. Delta score is an average combination effect of the drugs over
all the tested concentrations. The delta score 0 implies both probabilistic inde-
pendence and dose additivity. The delta score >0 or <0 is synergistic or antagonistic
effect of drugs, respectively.

Statistical analysis. Mann-Whitney U-test and Welch’s t-test were applied using
GraphPad Prism 6 software as indicated in the figure legends according to
assumptions on data normality. False discovery rate (FDR) approach to correct for
multiple comparisons was used where indicated using the corr.test function of the
‘psych’ package in R.

Code availability. Computer code used to generate results is available from
authors upon suitable request.

Data availability. The RNA sequencing data from the cell lines have been
deposited at the GEO database under the accession number GSE106391. All other
patient whole-exome sequencing and RNA-seq data are available from the corre-
sponding author upon suitable request.
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