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For a given parametric probability model, we consider the risk of the max-
imum likelihood estimator with respect to α-divergence, which includes the
special cases of Kullback�Leibler divergence, the Hellinger distance and es-
sentially χ2-divergence. The asymptotic expansion of the risk is given with
respect to sample sizes up to order n−2. Each term in the expansion is ex-
pressed with the geometrical properties of the Riemannian manifold formed
by the parametric probability model.
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1 Introduction

For parametric models of probability distributions, we are naturally concerned with the
following comparisons:
1. Comparison of the risks of estimation among di�erent parameters within a same
model.
2. Overall comparison of the risks between di�erent models.
To carry out these comparisons, particularly the second, we need some way of mea-

suring the risk of estimation that is common to all parametric probability models. The
maximum likelihood method, in which the maximum likelihood estimator (m.l.e.) is
plugged into the unknown parameters, is the most common approach, and is applicable
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to any parametric model. In this paper, we choose the m.l.e., and use its risk with
respect to a certain loss function.
For comparisons above, particularly the �rst, the loss function should be independent

of the choice of the parameter (coordinate). Consider the binomial distribution model
B(n, p), where n is known and we wish to estimate p. Take the quadratic loss function
as an example of a parameter-dependent loss function:

L(p̂, p) = (p̂− p)2.

The m.l.e. p̂ is the sample ratio. The risk of the m.l.e. with respect to this quadratic
loss function is given by

Ep[(p̂− p)2] = V (p̂) = p(1− p)/n,

which says that the estimation of this model reaches the highest risk point when p = 1/2.
In contrast, if we use p−1 as a parameter for the model, the risk of the m.l.e. is given by

Ep−1 [(p̂−1 − p−1)2] = p−3(1− p)/n+ o(n−1).

For a large sample size, the highest risk point is p = 0.
Another consideration for the loss function is the invariance with respect to the trans-

formation between the random variables. If Y (X) is a su�cient statistic for the para-
metric model of a random object X, then the risk of estimation should be measured
independently of the choice of Y and X. In particular, when X ↔ Y is a one-to-one
transformation, the parametric models for the distribution of X and Y are essentially
equivalent. We wish to measure the risk of estimating the model without being concerned
by the form in which the observations were acquired.
Taking these considerations into account, f-divergence is a natural loss function, as it

satis�es both parameter independence and transformation invariance. It also has other
favorable properties (see, e.g., Chapter 9 of Vajda [21] ), and has been widely used
in engineering problems (e.g. [13], [16]). Because f-divergence is quite a general class
of divergence, we need more speci�c forms for a concrete result. Here, we focus on α-
divergence. This is a subclass of f-divergence, but is still a general class of divergence, and
includes the well-known Kullback�Leibler divergence (α = −1), the Hellinger distance
(α = 0). It is also equivalent, when α = −3, to χ2-divergence in a small neighborhood of
the point where the two probabilities coincide. More importantly, from the perspective of
information geometry, α-divergence gives rise to a �dually �at� structure for the manifold
of the given parametric model (see Eguchi [8], Amari [3], and Amari and Cichocki [4]).
Consequently, in this paper, we consider the risk of the m.l.e. with respect to α-

divergence in estimating the parameter. However, an exact calculation of the risk of
the m.l.e is often quite di�cult, even if we choose a mathematically easy-to-handle
quantity such as Kullback�Leibler divergence. Hence, it would be useful if we had an
asymptotic expansion of the risk with respect to the sample size n. The main concern
of this paper is to give this expansion for a general α up to order n−2. The result is
expressed with the geometrical properties of the Riemannian manifold formed by the
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parametric model. The geometric expression of the risk expansion provides an insight
into which geometrical property of the model a�ects the estimation risk. As examples,
we calculate the asymptotic risk expansion for some speci�c families of distributions
such as an exponential family and a mixture family.
The most relevant work to this paper is that of Komaki [11] and Corcuera and Gium-

molè [7]. Both of these papers gave asymptotic expansions of the risk of predictive
distributions with respect to Kullback�Leibler divergence (Theorem 1 of [11]) and α-
divergence (Theorem 3.1 of [7]). They considered a curved exponential family as the
presupposed model, and developed a general method for the asymptotic improvement of
an estimative distribution (that is, a distribution within the model gained by parameter
estimation) using a predictive distribution that belongs to a full exponential family but
lies outside of the model. Note that the whole class of predictive distributions includes
the estimative distributions as special cases, and the distribution with the estimated
parameter by the m.l.e. is a typical estimative distribution. Hence, [11] and [7] treat a
more general class of estimation procedure than m.l.e. under the framework of curved
exponential families. This paper di�ers in two points from these papers. First, we do not
presuppose the exponential families. We gain the main result, Theorem 1 in Section 2,
for a general parametric family. Second, we present all the results through geometrical
terms, which enables us to understand how the geometrical structure of the model is
related to the risk of model estimation.
We now state the formal framework of the problem. First, we consider a parametric

family of probability distributions on a space X (say, P), which is given by a family of
positive-valued densities f(x; θ) on X with respect to a measure µ:

P = {f(x; θ) | θ = (θ1, . . . , θp), θ ∈ Θ}, (1)

where Θ is an open set in Rp, and f(x; θ1) = f(x; θ2) almost everywhere if and only
if θ1 = θ2. We will treat P as a Riemannian manifold, and de�ne several geometrical
properties on it.
α-divergence (−∞ < α <∞) between f(x; θ1) and f(x; θ2) is de�ned as

α

D[θ1 : θ2] =


4

1−α2

{
1−

∫
X
f (1−α)/2(x; θ1)f

(1+α)/2(x; θ2)dµ
}
, if α ̸= ±1,∫

X
f(x; θ2) log

(
f(x; θ2)/f(x; θ1)

)
dµ, if α = 1,∫

X
f(x; θ1) log

(
f(x; θ1)/f(x; θ2)

)
dµ, if α = −1.

(2)

As a general divergence property, this satis�es
α

D[θ1 : θ2] ≥ 0, where the equality holds
if and only if θ1 = θ2. It is not symmetric between θ1 and θ2. Actually, the following
relation holds:

α

D[θ1 : θ2] =
−α

D [θ2 : θ1].

If we adopt α-divergence as a loss function between the m.l.e. θ̂ and the true parameter
θ, the risk of the m.l.e. is given by

α

ED(θ) ≜ Eθ

[ α

D[θ̂(X) : θ]
]
,
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where X = (X1, . . . , Xn) are n independent random samples from the distribution given
by f(x; θ).
The remainder of this paper is organized as follows. In Section 2, we give the main

result (Theorem 1) and its corollaries for some distribution families and speci�c values
of α. In Section 3, we give examples of the adaptation of the main result to some
speci�c distribution. The minimum knowledge of the information geometry and some
preliminary results used for the derivation for Theorem 1 are presented in the appendix.
The lengthy calculation of geometrical properties and the proof of some results are
omitted in this paper. For the detailed description of these parts, refer to Sheena [17].
Before closing this section, we state some technical conditions and notation used

throughout this paper. We assume that f(x; θ) is di�erentiable at least �ve times with
respect to θ, and that di�erentiation and integration on X is always exchangeable. Every
expectation that appears in this context is assumed to be �nite. (We refer to these
conditions as "C.1".) The following notation is used:

∂i ≜
∂

∂θi

fi ≜ fi(x; θ) ≜ ∂if(x; θ), fij ≜ fij(x; θ) ≜ ∂i∂jf(x; θ), · · ·
li ≜ li(x; θ) ≜ ∂i log f(x; θ), lij ≜ lij(x; θ) ≜ ∂i∂j log f(x; θ), · · ·

Eθ[h(x; θ)] ≜
∫
X

h(x; θ)f(x; θ)dµ,∑
i

≜
∑
1≤i≤p

,
∑
i,j

≜
∑

1≤i,j≤p

, · · ·

2 Asymptotic Expansion of the Risk of M.L.E.

In this section we consider the asymptotic expansion of the risk of the maximum
likelihood estimator (m.l.e.) with respect to α-divergence.
Let X = (X1, . . . , Xn) be n independent random sample from the distribution given

by f(x; θ). The m.l.e. of θ based on X is denoted by θ̂(X). The expected divergence at
θ between f(x; θ̂(X)) and f(x; θ) is given by

α

ED(θ) ≜ Eθ

[ α

D[θ̂(X) : θ]
]
.

Using the expansion of divergence (85) in Section 4.3 , then we have

α

ED(θ)

=

p∑
i=1

(
ϵi

α

D[θ : θ]
)
Eθ[(θ̂

i − θi)] +
1

2

p∑
i=1

p∑
j=1

(
ϵiϵj

α

D[θ : θ]
)
Eθ[(θ̂

i − θi)(θ̂j − θj)]

+
1

6

p∑
i=1

p∑
j=1

p∑
k=1

(
ϵiϵjϵk

α

D[θ : θ]
)
Eθ[(θ̂

i − θi)(θ̂j − θj)(θ̂k − θk)]
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+
1

24

p∑
i=1

p∑
j=1

p∑
k=1

p∑
l=1

(
ϵiϵjϵkϵl

α

D[θ : θ]
)
Eθ[(θ̂

i − θi)(θ̂j − θj)(θ̂k − θk)(θ̂l − θl)]

+ Eθ[O(||θ̂ − θ||5)]. (3)

As we see in Section 4.3, the terms

ϵi
α

D[θ : θ], ϵiϵj
α

D[θ : θ], ϵiϵjϵk
α

D[θ : θ], ϵiϵjϵkϵl
α

D[θ : θ]

could be geometrically interpreted. In this section, we will show that the terms

Eθ[(θ̂
i − θi)(θ̂j − θj)], Eθ[(θ̂

i − θi)(θ̂j − θj)(θ̂k − θk)],

Eθ[(θ̂
i − θi)(θ̂j − θj)(θ̂k − θk)(θ̂l − θl)]

(4)

are also interpretable with the geometrical properties of P .
First we evaluate θ̄i ≜ θ̂i − θi following the way of Eguchi and Yanagimoto [10]. Let

ēi(X; θ) ≜ 1

n

n∑
a=1

∂

∂θi
log f(Xa; θ), ēi(X; θ) ≜

p∑
j=1

gij ēj(X; θ)

for 1 ≤ i ≤ p. Since m.l.e. θ̂ maximizes log-likelihood
∑n

a=1 log f(xa; θ)

ēi(X; θ̂) = 0. (5)

Taylor expansion of ēi(X; θ̂) around θ is given by

ēi(X; θ̂)

= ēi(X; θ) +
∑
j

∂ēi(X; θ)

∂θj
θ̄j +

1

2!

∑
j,k

∂2ēi(X; θ)

∂θj∂θk
θ̄j θ̄k

+
1

3!

∑
j,k,l

∂3ēi(X; θ)

∂θj∂θk∂θl
θ̄j θ̄kθ̄l +

1

4!

∑
j,k,l,m

∂4ēi(X; θ∗i )

∂θj∂θk∂θl∂θm
θ̄j θ̄kθ̄lθ̄m,

where θ∗i is on the segment θθ̂. If we add
∑

j gij(θ)θ̄
j on the both sides of the above

expansion and use (5), then we have∑
j

gij(θ)θ̄
j

= ēi(X; θ) +
∑
j

(
∂ēi(X; θ)

∂θj
+ gij(θ)

)
θ̄j +

1

2!

∑
j,k

∂2ēi(X; θ)

∂θj∂θk
θ̄j θ̄k

+
1

3!

∑
j,k,l

∂3ēi(X; θ)

∂θj∂θk∂θl
θ̄j θ̄kθ̄l +

1

4!

∑
j,k,l,m

∂4ēi(X; θ∗i )

∂θj∂θk∂θl∂θm
θ̄j θ̄kθ̄lθ̄m.
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Furthermore if we multiply the both sides with gis and sum them up over i from 1 to p,
then we have

θ̄s = ēs +
∑
j

As
j θ̄

j +
∑
j,k

Bs
jkθ̄

j θ̄k +
∑
j,k

B̄s
jkθ̄

j θ̄k +
∑
j,k,l

Cs
jklθ̄

j θ̄kθ̄l +
∑
jkl

C̄s
jklθ̄

j θ̄kθ̄l

+
∑
j,k,l,m

Ds
jklmθ̄

j θ̄kθ̄lθ̄m, (6)

where we used the following notations: For 1 ≤ j, k, l,m, s ≤ p,

As
j(X; θ) ≜

p∑
i=1

gis(θ)

(
∂ēi(X; θ)

∂θj
+ gij(θ)

)

Bs
jk(X; θ) ≜ 1

2

p∑
i=1

gis(θ)

(
∂2ēi(X; θ)

∂θj∂θk
− Eθ

[
∂2ēi(X; θ)

∂θj∂θk

])

B̄s
jk(θ) ≜

1

2

p∑
i=1

gis(θ)Eθ

[
∂2ēi(X; θ)

∂θj∂θk

]

C̄s
jkl(θ) ≜

1

3!

p∑
i=1

gis(θ)Eθ

[
∂3ēi(X; θ)

∂θj∂θk∂θl

]
Cs

jkl(X; θ) ≜ 1

3!

∑
i

gis(θ)

(
∂3ēi(X; θ)

∂θj∂θk∂θl
− Eθ

[
∂3ēi(X; θ)

∂θj∂θk∂θl

])
,

Ds
jklm(X; θ) ≜ 1

4!

∑
i

gis(θ)
∂4ēi(X; θ∗i )

∂θj∂θk∂θl∂θm
.

Here we impose the moment conditions as follows. The suitably higher-order joint
moments composed of the following variables are bounded with respect to n;

√
n θ̄s(X; θ),

√
n ēs(X; θ),

√
nAs

j(X; θ),
√
nBs

jk(X; θ),
√
nCs

jkl(X; θ), Ds
jklm(X; θ),

(7)

where 1 ≤ j, k, l,m, s ≤ p. (We refer to this condition as "C.2".) We obtain the following
results (for the proof, see [17]). For 1 ≤ s ≤ p,

θ̄s =ēs +
∑
j

As
j ē

j +
∑
j,k

B̄s
jkē

j ēk +
∑
i,j

As
jA

j
i ē

i +
∑
i,j,k

As
jB̄

j
ikē

iēk

+
∑
j,k

Bs
jkē

j ēk + 2
∑
i,j,k

B̄s
jkA

k
i ē

iēj + 2
∑
i,j,k,l

B̄s
jkB̄

k
ilē

iēj ēl

+
∑
j,k,l

C̄s
jklē

j ēkēl +Re(4),

(8)

where Re(4) is the polynomial with respect to the variables θ̄s, ēs, As
j , B

s
jk, C

s
jkl, D

s
jklm

(1 ≤ j, k, l,m, s ≤ p), and each term is of at least fourth order with respect to θ̄s, ēs,
As

j , B
s
jk, C

s
jkl (1 ≤ j, k, l, s ≤ p).
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Combining this evaluation with Lemma 2 in Section 4.2, we can express three ex-
pectations in (4) with geometrical terms (for the detailed calculation, see [17] ). The
results are given as follows. For achieving notational brevity, we use Einstein summation
convention (the summation is carried out as every pair of upper and lower index moves
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from 1 to p).

Eθ[(θ̂
i − θi)(θ̂j − θj)]

= n−1gij + n−2×[
gsjgitglm⟨

e

Asl ,
m

Atm −
e

Atm ⟩+ gsigjtglm⟨
e

Asl ,
m

Atm −
e

Atm ⟩

+ gsjgitglm
e

Γ sl,u

( m

Γ u
tm −

e

Γ u
tm

)
+ gsigjtglm

e

Γ sl,u

( m

Γ u
tm −

e

Γ u
tm

)
+ B̄j

lmg
ikglsgmt

( m

Γ ks,t −
e

Γ ks,t

)
+ B̄i

lmg
jkglsgmt

( m

Γ ks,t −
e

Γ ks,t

)
+ gjkglugisgmt

(
⟨

e

Akl ,
e

Aum ⟩gst +
e

Γ v
kl

e

Γ w
um gvwgst +

e

Γ kl,s

e

Γ um,t +
e

Γ kl,t

e

Γ um,s

)
+ gikglugjsgmt

(
⟨

e

Akl ,
e

Aum ⟩gst +
e

Γ v
kl

e

Γ w
um gvwgst +

e

Γ kl,s

e

Γ um,t +
e

Γ kl,t

e

Γ um,s

)
+ B̄l

msg
jkgitgmugsv

( e

Γ kl,t guv +
e

Γ kl,u gtv +
e

Γ kl,v gtu
)

+ B̄l
msg

ikgjtgmugsv
( e

Γ kl,t guv +
e

Γ kl,u gtv +
e

Γ kl,v gtu
)

+
1

2
gjsgitglugmv

{(
(∂m

e

Γ k
sl )gtk +

e

Γ k
sl

e

Γ km,t − ⟨
e

Asl ,
m

Amt ⟩
)
guv

+
(
(∂m

e

Γ k
sl )guk +

e

Γ k
sl

e

Γ km,u − ⟨
e

Asl ,
m

Amu ⟩
)
gtv

+
(
(∂m

e

Γ k
sl )gvk +

e

Γ k
sl

e

Γ km,v − ⟨
e

Asl ,
m

Amv ⟩
)
gut

}
+

1

2
gisgjtglugmv

{(
(∂m

e

Γ k
sl )gtk +

e

Γ k
sl

e

Γ km,t − ⟨
e

Asl ,
m

Amt ⟩
)
guv

+
(
(∂m

e

Γ k
sl )guk +

e

Γ k
sl

e

Γ km,u − ⟨
e

Asl ,
m

Amu ⟩
)
gtv

+
(
(∂m

e

Γ k
sl )gvk +

e

Γ k
sl

e

Γ km,v − ⟨
e

Asl ,
m

Amv ⟩
)
gut

}
+ 2B̄j

lmg
mtgiuglvgsw

( e

Γ st,u gvw +
e

Γ st,v guw +
e

Γ st,w guv
)

+ 2B̄i
lmg

mtgjuglvgsw
( e

Γ st,u gvw +
e

Γ st,v guw +
e

Γ st,w guv
)

+ 2B̄j
lmB̄

m
stg

ikglugsvgtw
(
gkugvw + gkvguw + gkwguv

)
+ 2B̄i

lmB̄
m
stg

jkglugsvgtw
(
gkugvw + gkvguw + gkwguv

)
+ C̄j

lmtg
ikglsgmugtv

(
gksguv + gkugsv + gkvgsu

)
+ C̄i

lmtg
jkglsgmugtv

(
gksguv + gkugsv + gkvgsu

)
+ gikgjsgltgmu

(
⟨

e

Akl ,
e

Asm ⟩gtu +
e

Γ v
kl

e

Γ w
sm gvwgtu +

e

Γ kl,t

e

Γ sm,u +
e

Γ kl,u

e

Γ sm,t

)
+ B̄j

stg
ikglugsvgtw

( e

Γ kl,u gvw +
e

Γ kl,v guw +
e

Γ kl,w guv
)

+ B̄i
stg

jkglugsvgtw
( e

Γ kl,u gvw +
e

Γ kl,v guw +
e

Γ kl,w guv
)

+ B̄i
lmB̄

j
stg

lkgmugsvgtw
(
gkugvw + gkvguw + gkwguv

)]
+O(n−5/2).

(9)
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Eθ[(θ̂
i − θi)(θ̂j − θj)(θ̂k − θk)]

= n−2
{
gisgjtgku

( m

Γ st,u −
e

Γ st,u

)
+

e

Γ s
st g

itgjk +
e

Γ j
st g

skgit +
e

Γ k
st g

sjgit

+
e

Γ s
st g

jtgik +
e

Γ i
st g

skgjt +
e

Γ k
st g

sigjt

+
e

Γ s
st g

ktgji +
e

Γ j
st g

sigkt +
e

Γ i
st g

sjgkt

+ B̄i
st

(
gstgjk + gjsgkt + gksgjt

)
+ B̄j

st

(
gstgik + gisgkt + gksgit

)
+ B̄k

st

(
gstgji + gjsgit + gisgjt

)}
+O(n−5/2).

(10)

Eθ[(θ̂
i − θi)(θ̂j − θj)(θ̂k − θk)(θ̂l − θl)] = n−2

(
gijgkl + gikgjl + gilgjk

)
+O(n−5/2). (11)

From (86)�(88), (93) in Section 4.3 and (9)�(11), we obtain the following result (for the
detailed calculation, see [17]).

Theorem 1. Under the conditions C.1 and C.2, the following expansion holds.

α

ED

=
p

2n
+

1

24n2

×
[
(α′)2

{
3

e

F + 3T ijkTijk − 6⟨
e

Aj
i , (

m

Ai
j −

e

Ai
j )⟩ − 3⟨

e

Ai
i , (

m

Aj
j −

e

Aj
j )⟩+ 3p2 + 6p

}
+ α′{3 e

F − 5T ijkTijk − 6T i
isT

js
j + 6⟨

e

Aj
i , (

m

Ai
j −

e

Ai
j )⟩+ 3⟨

e

Ai
i , (

m

Aj
j −

e

Aj
j )⟩

− 3p2 − 6p
}

+ 12⟨
e

Ai
j ,

e

Aj
i ⟩ − 2⟨

e

Ai
j ,

m

Aj
i ⟩ − ⟨

e

Ai
i ,

m

Aj
j ⟩+ TijkT

ijk + 9T i
isT

js
j + 8

e

R ij
ij − 9

e

F

]
+ o(n−2), (12)

where α′ = (1− α)/2, and for 1 ≤ i, j, k, l ≤ p,(
gij(θ)

)
≜

(
gij(θ)

)−1

, (13)

Tijk(θ) ≜
m

Γ ij,k (θ)−
e

Γ ij,k (θ) (14)

T k
ij(θ) ≜

∑
j

Tijl(θ)g
lk(θ), (15)

T jk
i (θ) ≜

∑
l,m

Timl(θ)g
mj(θ)glk(θ), (16)

T ijk(θ) ≜
∑
t,m,l

Ttml(θ)g
ti(θ)gmj(θ)glk(θ), (17)

e

R kl
ij (θ) ≜

∑
s

e

R l
ijs (θ)gsk(θ), (18)
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e

Aj
i ≜

∑
k

e

Aik g
kj,

m

Aj
i ≜

∑
k

m

Aik g
kj, (19)

α

F (θ) ≜
∑
i,k,s

gks(θ)∂sT
i
ik(θ)−

∑
i,j,s,t

gti(θ)
α

Γ it,s (θ)T
js
j (θ),

e

F (θ) ≜
1

F (θ), (20)

which are the variations from the following fundamental geometric properties of Rieman-
nian manifold P (for their formal de�nitions, see Section 4.1);

gij(θ) : Fisher information metric,
e

Γ ij,k (θ),
m

Γ ij,k (θ) : Christo�el's second symbol for e-connection and m-connection,
e

R l
ijk (θ) : Riemann curvature for e-connection

e

Aij (θ),
m

Aij (θ) : Second fundamental form for e-connection and m-connection.

Roughly speaking,
e

Γ ij,k ,
m

Γ ij,k and
e

R l
ijk give us information on the intrinsic curvature

of P , while
e

Aij ,
m

Aij tell us how the manifold P is located in the ambient space (extrinsic
curvature). Since P is torsion-free, the following equivalence holds;

P is intrinsically e-�at ⇐⇒ P is intrinsically m-�at

⇐⇒
e

Γ ij,k (θ) = 0 for some coordinate system

⇐⇒
m

Γ ij,k (θ) = 0 for some coordinate system

⇐⇒
e

R l
ijk (θ) = 0 for any(some) coordinate system.

If
e

Aij (θ) = 0
( m

Aij (θ) = 0
)
for any(some) coordinate system, it means P is extrinsically

e-�at (m-�at).

All properties from (13) to (19) are tensors.
e

F is parameter invariant (see [17] for the
proof ). Consequently every term in the right-hand side of (12) is parameter invariant
as is expected from the parameter independence of α-divergence. This means that we
can choose any coordinate system with which we can easily calculate the terms in (12).
For example, if we have another coordinate system η ≜ (ηα, ηβ, ηγ, . . .) for P , we can
choose to calculate such a term as TαβγT

αβγ instead of TijkT
ijk.

We easily notice that TijkT
ijk and T i

isT
js
j is nonnegative (see [17] for the proof), but

other terms in the bracket in (12) could be negative. As we will see in Section 3, the
n−2 term could be negative.
Note that the n−1 term equals p/2n, hence the risk in estimating a model by m.l.e.

is primarily determined by the number of the parameters, in other words, �model com-
plexity�. The number of the parameters p also appears in A.I.C. as the penalty to the
model complexity. This is natural since A.I.C. (and some other information criteria for

model selection) is considered to be an estimator of
−1

ED.
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A geometrical expression (12) immediately leads us to the simpli�ed form for an
exponential family or a mixture family. The canonical form of an exponential family is
given by

f(x; θ) = exp
(
θ1h1(x) + · · ·+ θphp(x)− ψ(θ)

)
, (21)

where hi(x)(i = 1, . . . , p) is a measurable function on X, while the one for a mixture
family is given by

f(x; θ) = θ1g1(x) + · · ·+ θpgp(x) + (1−
p∑

i=1

θi)g0(x), (22)

where gi(x)(i = 0, . . . , p) is a probability density function. These families are charac-
terized respectively as being extrinsically e-�at and m-�at. Namely

e
aij(x; θ) = 0 for an

exponential family, and
m
aij(x; θ) = 0 for a mixture family. Furthermore an exponential

family is intrinsically e and m-�at. A mixture family is also e and m-�at. This means
e

R ij
ij vanishes for both families.
Consequently we have the following corollaries.

Corollary 1. If the model P is an exponential family,

α

ED

=
p

2n
+

1

24n2

×
[
(α′)2

{
3

e

F + 3T ijkTijk + 3p2 + 6p
}

+ α′{3 e

F − 5T ijkTijk − 6T i
isT

js
j − 3p2 − 6p

}
+ TijkT

ijk + 9T i
isT

js
j − 9

e

F

]
+ o(n−2). (23)

Proof. If the model P is an exponential family, the terms

⟨
e

Aj
i ,

e

Ai
j ⟩, ⟨

e

Ai
i ,

e

Aj
j ⟩, ⟨

e

Aj
i ,

m

Ai
j ⟩, ⟨

e

Ai
i ,

m

Aj
j ⟩,

e

R ij
ij

vanish.

Corollary 2. If P is a mixture family,

α

ED

=
p

2n
+

1

24n2

×
[
(α′)2

{
3

e

F + 3T ijkTijk + 6⟨
e

Ai
j ,

e

Aj
i ⟩+ 3⟨

e

Ai
i ,

e

Aj
j ⟩+ 3p2 + 6p

}
+ α′{3 e

F − 5T ijkTijk − 6T i
isT

js
j − 6⟨

e

Ai
j ,

e

Aj
i ⟩ − 3⟨

e

Ai
i ,

e

Aj
j ⟩ − 3p2 − 6p

}
+ 12⟨

e

Ai
j ,

e

Aj
i ⟩+ TijkT

ijk + 9T i
isT

js
j − 9

e

F

]
+ o(n−2). (24)
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Proof. If P is a mixture family, the terms

⟨
e

Aj
i ,

m

Ai
j ⟩, ⟨

e

Ai
i ,

m

Aj
j ⟩,

e

R ij
ij

vanish.

It is notable that the asymptotic risk for an exponential family depends only on the
intrinsic properties of the family.

For a speci�c α, the following result holds: If α = −1, then
α

D[θ1 : θ2] is Kullback-
Leibler divergence, and

−1

ED

=
p

2n
+

1

24n2

×
[
−3

e

F − T ijkTijk + 3T i
isT

js
j + 12⟨

e

Ai
j ,

e

Aj
i ⟩ − 2⟨

e

Ai
j ,

m

Aj
i ⟩ − ⟨

e

Ai
i ,

m

Aj
j ⟩+ 8

e

R ij
ij

]
+ o(n−2); (25)

if α = 0, then
α

D[θ1 : θ2] is equivalent to Hellinger-distance, and

0

ED

=
p

2n
+

1

24n2

×
[
−(27/4)

e

F − (3/4)T ijkTijk + 6T i
isT

js
j + (21/2)⟨

e

Ai
j ,

e

Aj
i ⟩ − (3/4)⟨

e

Ai
i ,

e

Aj
j ⟩

− (1/2)⟨
e

Ai
j ,

m

Aj
i ⟩ − (1/4)⟨

e

Ai
i ,

m

Aj
j ⟩+ 8

e

R ij
ij − (3/4)p2 − (3/2)p

]
+ o(n−2); (26)

if α = −3, then
α

D[θ1 : θ2] is asymptotically equivalent to χ2-divergence, and

−3

ED

=
p

2n
+

1

24n2

×
[
9

e

F + 3T ijkTijk − 3T i
isT

js
j + 24⟨

e

Ai
j ,

e

Aj
i ⟩+ 6⟨

e

Ai
i ,

e

Aj
j ⟩ − 14⟨

e

Ai
j ,

m

Aj
i ⟩ − 7⟨

e

Ai
i ,

m

Aj
j ⟩

+ 8
e

R ij
ij + 6p2 + 12p

]
+ o(n−2). (27)
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Generally speaking, the components in the n−2 term are not explicitly gained. For the
feasibility of the calculation, the expression of these components by the expectation of the
derivatives of log-likelihood is useful. De�ne the following notations; for 1 ≤ i, j, k, l ≤ p,

L(ij) ≜ Eθ[lij], Lij ≜ Eθ[lilj],

L(ij)k ≜ Eθ[lijlk], Lijk ≜ Eθ[liljlk]

L(ij)(kl) ≜ Eθ[lijlkl], L(ijk)l ≜ Eθ[lijkll], L(ij)kl ≜ Eθ[lijlkll], Lijkl ≜ Eθ[liljlkll],

L11 = gijgklL(il)jk, L12 = gijgklL(ij)kl, L13 = gijgklLijkl,

L14 = gijgklL(ik)(jl), L15 = gijgklL(ij)(kl),

L21 = gijgklgsuL(ik)sLjlu, L22 = gijgklgsuL(ij)kLlsu, L23 = gijgklgsuLiksLjlu,

L24 = gijgklgsuLijkLlsu, L25 = gijgklgsuL(ik)sL(jl)u, L26 = gijgklgsuL(ij)kL(su)l.

Then we have the following equations (see [17] for the proof ).

gij = Lij = −L(ij), (28)
α

F = gijgks
(
2L(is)jk + L(ks)ij + Lijks

)
− gksgujgliLijk

(
2L(su)l + Lsul

)
− gtigujgks

(
L(it)s + ((1− α)/2)Lits

)
Ljuk

= 2L11 + L12 + L13− 2L21− L23− L22− α′L24, (29)

TijkT
ijk = LijkLstug

isgjtgku = L23, (30)

T i
isT

js
j = LijkLstug

ijgstguk = L24, (31)
e

R ij
ij = gijgsk

(
L(ki)(js) − L(ij)(ks) + L(ki)js − L(ij)ks

)
+ gskgtiguj

(
−L(ki)jL(st)u + L(it)sL(uj)k + LsitL(uj)k − LstuL(ij)k

)
= L14− L15 + L11− L12− L25 + L26 + L22− L21, (32)

⟨
e

Aj
i ,

e

Ai
j ⟩ = gjkgliL(ik)(jl) − gjkgligstL(ik)sL(jl)t − p

= L14− L25− p, (33)

⟨
e

Ai
i ,

e

Aj
j ⟩ = gikgjlL(ik)(jl) − gikgjlgstL(ik)sL(jl)t − p2

= L15− L26− p2, (34)

⟨
e

Aj
i ,

m

Ai
j ⟩ = gjkgliL(ik)jl + gjkgliL(ik)(jl)

− gjkgligstL(ik)sL(jl)t − gjkgligstL(ik)sLjlt

= L11 + L14− L25− L21, (35)

⟨
e

Ai
i ,

m

Aj
j ⟩ = gikgjlL(ik)jl + gikgjlL(ik)(jl)

− gikgjlgstL(ik)sL(jl)t − gikgjlgstL(ik)sLjlt

= L12 + L15− L26− L22. (36)

Using these expressions, we could �nd the value of the components of the n−2 term by
simulation.
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3 Examples

In this section, we take three parametric models as the examples and investigate the

concrete form of
α

ED up to the n−2 term.

�Example 1�
First we consider a discrete model, that is, a multinomial distribution. Consider the

family consisting of p+ 1 dimensional multinomial distributions given by

P (X = xi) = mi, i = 0, 1, . . . , p,

where
∑p

i=0mi = 1. We use m ≜ (m1, . . . ,mp) as a free parameter.
The multinomial distribution is an exponential family, then from (23), we notice that

we only need to calculate three terms TijkT
ijk, T i

isT
js
j ,

e

F . Because of the following
relation (for the proof, see [17]),

e

F =
m

F + T i
isT

js
j ,

m

F ≜
−1

F , (37)

we only have to calculate
m

F instead of
e

F . Actually we have the following results (for
the proof, see [17]);

TijkT
ijk =M − 3p− 1 (38)

T i
isT

js
j =M − (p+ 1)2 (39)
m

F = −M + p+ 1, (40)

where M ≜
∑p

t=0m
−1
t . Consequently we have

α

ED(m)

=
p

2n
+

1

24n2

{
(α′)2(3M − 6p− 3) + α′(−11M + 18p+ 11) + 10M − 12p− 10

}
+ o(n−2)

=
p

2n
+

1

24n2

{
(1− α)2

4
(3M − 6p− 3) +

1− α

2
(−11M + 18p+ 11) + 10M − 12p− 10

}
+ o(n−2)

=
p

2n
+

1

96n2

{
(3α2 + 16α + 21)(M − 1) + (−6α2 − 24α− 18)p

}
+ o(n−2)

=
p

2n
+

1

96n2

{
(3 + α)(7 + 3α)(M − 1)− 6(α + 3)(α + 1)p

}
+ o(n−2). (41)

Note that this result could be gained in a more straightforward way, since the risk of
m.l.e w.r.t.α-divergence for the multinomial distribution could be expressed in a simple
form (see [17] for the straightforward derivation of (41)).
The n−1 term is determined by the dimension of the multinomial distribution, while

the n−2 order term depends only on M once p is �xed. If (3 + α)(7 + 3α) > 0, then

14



Table 1: Approximated
−1

ED (m1) for B(10,m1)

m1 0.5 0.4 0.3 0.2 0.1 0.01 0.001
−1

ED(m1) 0.0525 0.0526 0.0531 0.0544 0.0584 0.1333 0.8833

n−2 order term is a monotonically increasing function of M . When M is minimized,

that is when m0 = m1 = · · · = mp,
α

ED(m) is minimized. The asymptotically lowest
risk among the possible distributions is attained by the equi-probable distribution. The
estimation becomes harder as M increases. The term M could be very large when some
mi is close to zero. This justi�es the treatment of merging a category of a possibly very
low probability with another category for a better inference. The α that is statistically
often used such as α = ±1, 0, 3 satis�es the condition (3 + α)(7 + 3α) > 0. However
when −3 < α < −7/3, these phenomena are vice versa. The equi-probable distribution
is the asymptotically highest risk point.
When α = −1, 0,−3, we have the following results;

−1

ED(m) =
p

2n
+

1

24n2
(2M − 2) + o(n−2), (42)

0

ED(m) =
p

2n
+

1

24n2
((21/4)M − (9/2)p− 21/4) + o(n−2). (43)

−3

ED(m) =
p

2n
+ o(n−2), (44)

Rather surprisingly, the n−2 term for χ2-divergence vanishes, hence the asymptotic risk
up to n−2 order is uniform in m.

Figure 1 and Table 1 show the approximated value of
−1

ED(m1) up to the n−2 term for
the case p = 1, n = 10, i.e. B(10,m1) as m1 varies. We observe that the risk of the
estimation rapidly increases outside of the interval (0.1, 0.9). It is really a hard task to
estimate the probability which is less than 1/10 based on just 10 observations.

�Example 2�
Second example is the p-dimensional multivariate normal distribution with zero means,

that is,
X ∼ Np(0,Σ), Σ = (σij).

The m.l.e. is the sample variance-covariance matrix. Note that if α equals ±1, the
divergence is explicitly given (so called Stein's loss function), hence we can derive the

expansion of
±1

ED(Σ) in a more straightforward way (e.g., for the case α = −1, see [17]) .
For this model, we can use the parameter σij( 1 ≤ i ≤ j ≤ p) or σij( 1 ≤ i ≤ j ≤ p),

where
σij = (Σ−1)ij, 1 ≤ i, j ≤ p.

We use the notation (i, j), 1 ≤ i ≤ j ≤ p to specify the element of the parameters.
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Figure 1: Approximated
−1

ED (m1) for B(10,m1)

Since this model is also an exponential family, from (23) and (37), we only have to

calculate TijkT
ijk, T i

isT
js
j ,

m

F . These turn out to be as follows (see [17] for the proof) ;

T(i,j)(k,l)(s,t)T
(i,j)(k,l)(s,t) = TσijσklσstT

σijσklσst = TσijσklσstT σijσklσst

= p3 + 3p2 + 4p, (45)

T
(i,j)
(i,j)(s,t)T

(k,l)(s,t)
(k,l) = T σij

σijσst
T σklσst
σkl

= T σij

σijσstT σklσst

σkl

= 2p3 + 8p2 + 8p, (46)
m

F = −p3 − 2p2 − p. (47)

Therefore we have

α

ED(Σ)

=
p(p+ 1)

4n

+
1

24n2

[
(α′)2(6p3 + 30p2 + 39p)− α′(14p3 + 48p2 + 53p) + 10p3 + 21p2 + 13p

]
+ o(n−2). (48)
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Especially when α = −1, 0,−3,

−1

ED(Σ) =
p(p+ 1)

4n
+

1

24n2
(2p3 + 3p2 − p) + o(n−2), (49)

0

ED(Σ) =
p(p+ 1)

4n
+

1

32n2
(6p3 + 6p2 − 5p) + o(n−2). (50)

−3

ED(Σ) =
p(p+ 1)

4n
+

1

8n2
(2p3 + 15p2 + 21p) + o(n−2), (51)

Notably
α

ED(Σ) is not only parameter-invariant but also constant. The risk in estimating
the true parameter Σ by m.l.e. is independent of Σ. Actually we have the following
lemma.

Lemma 1. Let x|θ denote the probability distribution on X under the parameter θ(∈ Θ).
Suppose that there exists one to one transformations,

G(x) : X → X, G̃(θ) : Θ → Θ

satisfying the relation

x|G̃(θ) d
= G(x)|θ or equivalently G−1(x)|G̃(θ) d

= x|θ. (52)

Then
α

ED(θ) ≜ Eθ

[ α

D[θ̂(X) : θ]
]
is equal to

α

ED(G̃(θ)) ≜ EG̃(θ)

[ α

D[θ̂(X) : G̃(θ)]
]
.

Proof. We use the notation
α

D[x|θ1 : x|θ2] instead of
α

D[θ1 : θ2] for the divergence between
the two distributions x|θ1 and x|θ2.

Eθ

[ α

D[x|θ̂(X) : x|θ]
]

= Eθ

[ α

D[G−1(x)|G̃(θ̂(X)) : G−1(x)|G̃(θ)]
]
(because of (52))

= Eθ

[ α

D[G−1(x)|θ̂(G(X)) : G−1(x)|G̃(θ)]
]
(note that θ̂(G(X))

d
= G̃(θ̂(X)) because of (52))

= EG̃(θ)

[ α

D[G−1(x)|θ̂(X) : G−1(x)|G̃(θ)]
]
(because of (52))

= EG̃(θ)

[ α

D[x|θ̂(X) : x|G̃(θ)]
]
(because of the invariance property of α-divergence).

For arbitrary Σ1 and Σ2, if we de�ne

G(X) = Σ
1/2
2 Σ

−1/2
1 X, G̃(Σ) = Σ

1/2
2 Σ

−1/2
1 ΣΣ

−1/2
1 Σ

1/2
2 ,

then we have X|G̃(Σ) d
= G(X)|Σ, hence

α

ED(Σ1) =
α

ED(G̃(Σ1)) =
α

ED(Σ2).
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Figure 2: Approximated
−1

ED for N10(0,Σ)

Table 2: Approximated
−1

ED for N10(0,Σ)

n 100 200 300 400 500 800 1000
−1

ED 0.2845 0.1399 0.0927 0.0693 0.0554 0.0345 0.0276
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We observe �the curse of dimension� in this example. Notice that n−1 and n−2 terms
increase with the second and third power of p respectively. If we increases n and p
with the constant ratio p/n, the both terms explode. Figure 2 and Table 2 show the

n−2-order-approximated values of
−1

ED as n varies, when p =10. When the dimension
is 10, we need approximately 500 observations for the same risk as B(10, 0.5) (that is, a
10-times coin toss problem) in estimating the true parameter by m.l.e.

�Example 3�
As a last example, we take a mixture family. For most cases of the mixture family, it

is di�cult to gain the components of (24) explicitly so that we need to calculate them
numerically.
If we use the canonical form (22) with the notation hi(x) ≜ gi(x)− g0(x), we have

li =
hi
f
, lij = −hihj

f 2
= −lilj,

lijk = 2
hihjhk
f 3

= 2liljlk, lijkl = −6
hihjhkhl

f 4
= −6liljlkll.

Using these relations, the components of (24) are expressed as follows;

e

F = −2gijgksLijks + gksguigjkLijkLsul + gtigujgksListLjku,

T ijkTijk = LijkLstug
isgjtgku,

T i
isT

js
j = LijkLstug

ijgstgku,

⟨
e

Ai
j ,

e

Aj
i ⟩ = gjkgliLikjl − gjkgligstLiksLjlt − p,

⟨
e

Ai
i ,

e

Aj
j ⟩ = gikgjlLikjl − gikgjlgstLiksLjlt − p2.

As a more speci�c example, we consider the mixture of two normal distributions. Let

X ∼ (1− θ1) ∗N(0, σ2) + θ1 ∗N(1, σ2), (53)

where σ2 is a known parameter.

We numerically calculated
e

F , T ijkTijk, T
i
isT

js
j and ⟨

e

Ai
j ,

e

Aj
i ⟩ from the above expression

by Monte Carlo simulation. We actually calculated those components by generating 105

random variables following the mixture distribution (53) under the values of θ1 from 0.1

to 0.99 by 0.01 increment, from which the n−2-order-approximation of
−1

ED was gained.
From (24), we notice that

−1

ED =
p

2n
+

1

24n2 (−3
e

F − T ijkTijk + 3T i
isT

js
j + 12⟨

e

Ai
j ,

e

Aj
i ⟩) + o(n−2).

In Figure 3, we can see four U-curves each of which corresponds to the approximated
−1

ED of the model (53) with σ2 = 1/2, 1/5, 1/10 from the top where n = 10 is �xed. The
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U-curve at the lowest position corresponds to the approximated
−1

ED for B(10, θ1). It
is much harder to specify the model (53) with a large variance compared to the model
B(10, θ1), since many observations from the model (53) have no trace on whether it
comes from N(0, σ2) or N(1, σ2). In contrast, if the variance is small, we can judge from
the value of the observation which normal distribution it came from (see Figure 4) .
This information helps the inference on θ1 and the risk in estimating the parameter gets
closer to the one for B(10, θ1) where head or tail is completely clear.

4 Appendix

4.1 Basic concepts of Information Geometry

Amari [2], Amari and Nagoka [5], Murray and Rice[15] and Calin and Udri³te [6] serve
as a a general guidance to the information geometry. We only brie�y introduce the
basic concepts of di�erential geometry and their concrete forms in the case of statistical
manifolds.
We consider an ambient space

M ≜ {f(x) | f(x) is a measurable function on X.}

and a scale extension model of P

P̃ ≜ {f̃(x; θ̃) ≜ eθ
0

f(x; θ) | θ̃ = (θ0, θ) = (θi)i=0,1,...,p, θ ∈ Θ, −∞ < θ0 <∞}.

Then P ⊂ P̃ ⊂ M. We will explain how to construct a Riemmanian manifold structure
in P̃ and P following the way of Amari ([2]).
We start with M. Consider the variation g(x;u), −ϵ < u < ϵ in M and the corre-

sponding tangent vector ∂u at g(x; 0). The α-representation (−∞ < α < ∞) of ∂u at
g(x; 0) is de�ned as

{g(x; 0)}−(1+α)/2ġ(x; 0),

where

ġ(x; 0) ≜ ∂

∂u
g(x;u)

∣∣∣∣
u=0

.

Suppose that another variation h(x; t), −ϵ < t < ϵ such as g(x; 0) = h(x; 0) is given.
The inner product between ∂u and ∂t at g(x; 0) is de�ned as

⟨∂u, ∂t⟩ ≜
∫
X

(α-representation of ∂u)× (α-representation of ∂t)× gα(x; 0)dµ

=

∫
X

{g(x; 0)}−1ġ(x; 0)ḣ(x; 0)dµ

=

∫
X

(α-representation of ∂u)× (−α-representation of ∂t)dµ

=

∫
X

g(x; 0) ˙lg(x; 0) ˙lh(x; 0)dµ,
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where

˙lg(x; 0) ≜ ∂

∂u
log g(x;u)

∣∣∣∣
u=0

, ˙lh(x; 0) ≜ ∂

∂t
log h(x; t)

∣∣∣∣
t=0

.

Let A(θ̃) be a vector �eld in M along P̃ . Its α-representation at θ̃ is denoted by
α
a(x; θ̃).

Consider a vector ∂i ≜ ∂/∂θi(i = 0, . . . , p). The α-covariant-derivative (α-connection)

(−∞ < α < ∞) of A in the space of M in the direction of ∂i,
α

∇∂iA, is de�ned as the
vector �eld along P̃ so that its α-representation at θ̃ is given by ∂i

α
a(x; θ̃).

Now we introduce the geometrical properties of P̃ . First a base of tangent vectors are
given by ∂i(i = 0, . . . , p). The variation of f̃(x; θ̃) in P̃ when θi changes gives rise to the
tangent vector ∂i at each θ̃, and its α-representation is given by

{f̃(x; θ̃)}−(1+α)/2f̃i(x; θ̃),

where f̃i(x; θ̃) = ∂if̃(x; θ̃). Components of a Riemannian metric on P̃ are de�ned by

g̃ij(θ̃) ≜ ⟨∂i, ∂j⟩θ̃ ≜
∫
X

{f̃(x; θ̃)}−1f̃i(x; θ̃)f̃j(x; θ̃)dµ

=

∫
X

f̃(x; θ̃) l̃i(x; θ̃) l̃j(x; θ̃)dµ

= eθ
0

Eθ[l̃i(x; θ̃) l̃j(x; θ̃)],

where l̃i(x; θ̃) ≜ ∂i log f̃(x; θ̃). Actually g̃ij(θ̃) is given by

g̃ij(θ̃) =


eθ

0
gij(θ) if 1 ≤ i, j ≤ p,

0 if (i, j) = (0, 1), . . . , (0, p), (1, 0), . . . , (p, 0)

eθ
0

if i = j = 0,

(54)

where gij(θ) ≜ ⟨∂i, ∂j⟩θ(1 ≤ i, j ≤ p) is the components of the metric (Fisher information
metric) on P de�ned by

gij(θ) ≜ Eθ[li(x; θ) lj(x; θ)]. (55)

The second case of (54) indicates ∂i ⊥ ∂0 (i = 1, . . . , p), which is derived from∫
X

{f̃(x; θ̃)}−1 f̃i(x; θ̃) f̃0(x; θ̃)dµ

=

∫
X

f̃i(x; θ̃) dµ = eθ
0

∫
X

fi(x; θ)dµ = eθ
0

∂i

∫
X

f(x; θ)dµ = 0. (56)

Another expression of the metric on P

gij(θ) = −Eθ[lij(x; θ)] (57)

is obtained from the relationship

Eθ[li(x; θ) lj(x; θ) + lij(x; θ)] =

∫
X

fij(x; θ)dµ = ∂i∂j

∫
X

f(x; θ)dµ = 0.
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We use the notation g̃ij(θ̃), gij(θ) respectively for the components of the inverse matrix
of (g̃ij(θ̃)), (gij(θ)).
∂i (0 ≤ i ≤ p) is the vector �eld along P̃ , hence its α-covariant-derivative (α-

connection) in the space of M in the direction of ∂j (0 ≤ j ≤ p),
α

∇∂j∂i, could be

considered. Its α-representation at θ̃ is given by

∂j[{f̃(x; θ̃)}−(1+α)/2f̃i(x; θ̃)]

= −1 + α

2
{f̃(x; θ̃)}−(3+α)/2f̃i(x; θ̃)f̃j(x; θ̃) + {f̃(x; θ̃)}−(1+α)/2f̃ij(x; θ̃).

We are mainly concerned with the case α = ±1. In those cases, more familiar names
exist. e-representation and e-covariant-derivative (e-connection) for the case α = 1; m-
representation and m-covariant-derivative (m-connection) for the case α = −1. It turns
out that

e-representation of
e

∇∂j∂i at θ̃

= l̃ij(x; θ) =

{
lij(x; θ), if 1 ≤ i, j ≤ p,

0, otherwise,

and

m-representation of
m

∇∂j∂i at θ̃

= f̃ij(x; θ) =


eθ

0
fij(x; θ), if 1 ≤ i, j ≤ p,

eθ
0
fi(x; θ), if (i, j) = (1, 0), . . . , (p, 0),

eθ
0
fj(x; θ), if (i, j) = (0, 1), . . . , (0, p),

eθ
0
f(x; θ), if (i, j) = (0, 0).

Consider the two variations in M,

f̃(x; θ̃) exp(ulij(x; θ)), |u| < ϵ, (58)

f̃(x; θ̃) + teθ
0

fij(x; θ), |t| < ϵ, (59)

for 1 ≤ i, j ≤ p. ∂u and ∂t respectively equals
e

∇∂i∂j and
m

∇∂i∂j since the representations
coincide.
Let Tθ̃P̃ denote the tangent space of P̃ at θ̃ (i.e. f̃(x; θ̃)). Suppose that A is a tangent

vector of M at f̃(x; θ̃). The orthogonal projection π̃ of A onto Tθ̃P̃ is given by

π̃(A) =
∑

0≤i,j≤p

⟨A, ∂i⟩ g̃ij ∂j.

α-covariant-derivative (α-connection) in the space of P̃ (denoted by
α

∇̃∂i∂j, 0 ≤ i, j ≤
p) is de�ned as the orthogonal projection of

α

∇∂i∂j. Actually the following equations
hold;

α

∇̃∂i∂j ≜ π̃
( α

∇∂i∂j
)
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=
∑

0≤s,t≤p

⟨
α

∇∂i∂j, ∂s⟩ g̃st ∂t

=
∑

0≤s,t≤p

α

Γ ij,s g̃
st ∂t

= e−θ0
∑

1≤s,t≤p

α

Γ ij,s g
st ∂t + e−θ0

α

Γ ij,0 ∂0

where for 0 ≤ i, j, k ≤ p, −∞ < α <∞,

α

Γ ij,k (θ̃) ≜ ⟨
α

∇∂i∂j, ∂k⟩θ̃

=

∫
X

(α-representation of
α

∇∂i∂j at θ̃)× (α-representation of ∂k at θ̃)

× f̃α(x; θ̃)dµ

= −1 + α

2

∫
X

f̃i(x; θ̃)f̃j(x; θ̃)f̃k(x; θ̃)f̃
−2(x; θ̃)dµ

+

∫
X

f̃ij(x; θ̃)f̃k(x; θ̃)f̃
−1(x; θ̃)dµ

=
1− α

2

∫
X

l̃i(x; θ̃)l̃j(x; θ̃)l̃k(x; θ̃)f̃(x; θ̃)dµ

+

∫
X

l̃ij(x; θ̃)l̃k(x; θ̃)f̃(x; θ̃)dµ, (60)

where l̃ij(x; θ) ≜ ∂i∂j log f̃(x; θ̃).

The notation
α

Γ ij,k is called Christo�el's second symbol. We also use Christo�el's �rst

symbol
α

Γ k
ij (0 ≤ i, j, k ≤ p) de�ned by

α

Γ k
ij (θ̃) ≜

p∑
t=0

α

Γ ij,t (θ̃) g̃
kt(θ̃),

=

e−θ0
∑p

t=1

α

Γ ij,t (θ̃)g
kt(θ), if 1 ≤ k ≤ p,

e−θ0
α

Γ ij,0 (θ̃), if k = 0.

Cristo�el's symbols are not tensors. For example, when the coordinates are changed
from (i, j, k, . . .) to (α, β, γ, . . .), the following exchange rule holds.

α

Γ ij,k =
α

Γαβ,γB
α
i B

β
j B

γ
k +Bα

kB
γ
ijgαγ (61)

When α = ±1, Christo�el's symbols are denoted by
e

Γ ij,k ,
e

Γ k
ij (α = 1) and

m

Γ ij,k ,
m

Γ k
ij

(α = −1). The concrete forms of
e

Γ ij,k and
m

Γ ij,k are given by

e

Γ ij,k (θ̃) =

∫
X

l̃ij(x; θ̃)l̃k(x; θ̃)f̃(x; θ̃)dµ, (62)
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m

Γ ij,k (θ̃) =

∫
X

(
l̃ij(x; θ̃)l̃k(x; θ̃) + l̃i(x; θ̃)l̃j(x; θ̃)l̃k(x; θ̃)

)
f̃(x; θ̃)dµ. (63)

From (62) and (63), we notice that

α

Γ ij,k (θ̃) =
e

Γ ij,k (θ̃) +
1− α

2

( m

Γ ij,k (θ̃)−
e

Γ ij,k (θ̃)
)

(64)

The following relation is an important property for information geometry. It shows
the duality between α-covariant derivative and −α-covariant derivative. Let A,B,C be
vector �elds on P̃ , then

A
(
⟨B, C⟩

)
= ⟨

α

∇̃AB, C⟩+ ⟨
-α

∇̃AC, B⟩. (65)

Especially for 0 ≤ i, j, k ≤ p, it turns out that

∂kg̃ij = ⟨
α

∇̃∂k∂i, ∂j⟩+ ⟨
−α

∇̃∂k∂j, ∂i⟩

= ⟨
α

∇∂k∂i, ∂j⟩+ ⟨
−α

∇∂k∂j, ∂i⟩

=
α

Γ ik,j +
−α

Γ jk,i . (66)

We de�ne α-covariant derivative in the space of P (denoted by
α

∇∂i∂j, 1 ≤ i, j ≤ p) as

the tangent vector �eld whose value at θ is the orthogonal projection of
α

∇̃∂i∂j at (0, θ)
on the tangent space of P at θ. Since ∂i ⊥ ∂0 (1 ≤ i ≤ p), we easily notice that

α

∇∂i∂j =
∑

1≤s,t≤p

α

Γ ij,s (θ)g
st(θ)∂t =

p∑
t=1

α

Γ t
ij (θ)∂t,

where
α

Γ ij,s (θ) ≜
α

Γ ij,s ((0, θ)) and
α

Γ t
ij (θ) ≜

α

Γ t
ij ((0, θ)).

Now we de�ne the second fundamental forms
α

Aij (θ̃)(0 ≤ i, j ≤ p,−∞ < α < ∞) of
P̃ as

α

Aij (θ̃) ≜
α

∇∂i∂j −
α

∇̃∂i∂j. (67)

Its α-representation,
α
aij(x; θ̃), is given by

α
aij(x; θ̃)

= (α-representation of
α

∇∂i∂j)− (α-representation of
α

∇̃∂i∂j)

= −1 + α

2
{f̃(x; θ̃)}−(3+α)/2f̃i(x; θ̃)f̃j(x; θ̃) + {f̃(x; θ̃)}−(1+α)/2f̃ij(x; θ̃)

− e−θ0
∑

1≤s,t≤p

α

Γ ij,s (θ̃) g
st(θ){f̃(x; θ̃)}−(1+α)/2f̃t(x; θ̃)

− e−θ0
α

Γ ij,0 (θ̃){f̃(x; θ̃)}−(1+α)/2f̃0(x; θ̃).
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For the case α = ±1, we use the notations
e

Aij (θ̃),
e
aij(x; θ̃) (α = 1) and

m

Aij (θ̃),
m
aij(x; θ̃)

(α = −1). The concrete forms of
e
aij(x; θ̃) and

m
aij(x; θ̃) are given as follows;

e
aij(x; θ̃) = l̃ij(x; θ̃)− e−θ0

∑
1≤t≤p

e

Γ t
ij (θ̃) l̃t(x; θ̃) + e−θ0 g̃ij(θ̃),

m
aij(x; θ̃) = f̃ij(x; θ̃)− e−θ0

∑
1≤t≤p

m

Γ t
ij (θ̃) f̃t(x; θ̃)− e−θ0 f̃(x; θ̃)

∫
X

f̃ij(x; θ̃)dµ.

Especially when 1 ≤ i, j ≤ p

e
aij(x; θ̃) = lij(x; θ)− e−θ0

∑
1≤t≤p

e

Γ t
ij (θ̃) lt(x; θ) + gij(θ), (68)

m
aij(x; θ̃) = f̃ij(x; θ̃)− e−θ0

∑
1≤t≤p

m

Γ t
ij (θ̃) f̃t(x; θ̃), (69)

since ∫
X

f̃ij(x; θ̃)dµ = eθ
0

∫
X

fij(x; θ)dµ = eθ
0

∂i∂j

∫
X

f(x; θ)dµ = 0.

From the de�nition of the covariant derivative, the α-representation of
α

∇∂h

α

Aij is given
by ∂h

α
aij(x; θ̃). The following equation holds;∫

X

(
∂h

α
aij(x; θ̃)

)
f̃k(x; θ̃){f̃(x; θ̃)}(α−1)/2dµ =

⟨ α

∇∂h

α

Aij , ∂k
⟩
θ̃

= −
⟨ α

Aij ,
−α

∇∂h∂k
⟩
θ̃

= −
⟨ α

Aij ,
−α

∇∂h∂k − π̃
(−α

∇∂h∂k
)⟩

θ̃

= −
⟨ α

Aij ,
−α

A hk

⟩
θ̃
, (70)

where the second and third equations hold since ⟨
α

Aij , ∂k⟩θ̃ = 0.
We often use another type of second fundamental form

α

Aj
i (θ̃) ≜

α

Aik (θ̃)g
kj(θ̃) =

α

Aki (θ̃)g
kj(θ̃). (71)

The simpli�ed notations
α

Aij (θ),
α

Aj
i (θ) are also used instead of

α

Aij ((0, θ)) and
α

Aj
i ((0, θ)).

Lastly, we refer to Riemannian curvature tensor of P . For vector �elds A,B,C on P ,
Riemannian curvature tensor with respect to

α

∇ is de�ned as

α

R(A,B) C ≜ α

∇A

( α

∇BC
)
−

α

∇B

( α

∇AC
)
−

α

∇AB−BAC.

The components of Riemannian curvature tensor,
α

R l
ijk (θ) , are de�ned as the unique

function on P which satis�es

α

R(∂i, ∂j) ∂k =

p∑
l=1

α

R l
ijk (θ)∂l.
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More speci�cally it is given by

α

R l
ijk (θ) = ∂i

α

Γ l
jk (θ)− ∂j

α

Γ l
ik (θ) +

α

Γ l
ir (θ)

α

Γ r
jk (θ)−

α

Γ l
jr (θ)

α

Γ r
ik (θ). (72)

4.2 Geometric Interpretation of Derivatives of Log-likelihood

The expectation of the derivatives of the log-likelihood l(x; θ) can be expressed in the
geometric terms introduced in the previous subsection.

Lemma 2. For 1 ≤ i, j, h, k ≤ p, The following relations hold.

Eθ[li(x; θ)] = 0, (73)

Eθ[li(x; θ)lj(x; θ)] = −Eθ[lij(x; θ)] = gij(θ), (74)

Eθ[lij(x; θ)lk(x; θ)] =
e

Γ ij,k (θ), (75)

Eθ[li(x; θ)lj(x; θ)lk(x; θ)] =
m

Γ ij,k (θ)−
e

Γ ij,k (θ), (76)

Eθ[lijk(x; θ)] = −
( e

Γ ij,k (θ) +
e

Γ ik,j (θ) +
m

Γ jk,i (θ)
)
, (77)

Eθ[lijh(x; θ)lk(x; θ)] =

p∑
t=1

(
∂h

e

Γ t
ij (θ)

)
gtk(θ) +

p∑
t=1

e

Γ t
ij (θ)

e

Γ th,k (θ)

− ⟨
e

Aij (θ),
m

Ahk (θ)⟩, (78)

Eθ[lij(x; θ)lkh(x; θ)] = ⟨
e

Aij (θ),
e

Akh (θ)⟩+
p∑

t=1

e

Γ t
ij (θ)

e

Γ kh,t (θ)

+ gij(θ)gkh(θ), (79)

Eθ[lij(x; θ)lk(x; θ)lh(x; θ)] = ⟨
e

Aij (θ),
( m

Akh (θ)−
e

Akh (θ)
)
⟩ − gij(θ)gkh(θ)

+

p∑
s=1

e

Γ ij,s (θ)
( m

Γ s
kh (θ)−

e

Γ s
kh (θ)

)
, (80)

Eθ[lijkh(x; θ)] = −
(
∂k

e

Γ ij,h (θ) + ∂k
e

Γ ih,j (θ) + ∂k
m

Γ jh,i (θ)
)

−
p∑

t=1

(
∂h

e

Γ t
ij (θ)

)
gtk(θ)−

p∑
t=1

e

Γ t
ij (θ)

e

Γ th,k (θ)

+ ⟨
e

Aij (θ),
m

Ahk (θ)⟩. (81)

- Proof -
Equation (74) is the result already mentioned in (55) and (57). (75) and (76) are special
cases of (62) and (63) when θ̃ = (0, θ) and 1 ≤ i, j, k,≤ p. In the following proof, we
will abbreviate f(x; θ), li(x; θ), lij(x; θ), · · · respectively to f , li, lij, · · · .
- Proof of (73)-

Eθ[li] =

∫
X

fi(x; θ)dµ = ∂i

∫
X

f(x; θ)dµ = 0.
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- Proof of (77)-
By di�erentiating the both sides of lij = −lilj + fij/f , we get the following equation.

lijk = −liklj − liljk +
fijk
f

− fijfk
f 2

= −liklj − liljk +
fijk
f

−
(
fij
f

− fi
f

fj
f

+
fi
f

fj
f

)(
fk
f

)
= −(lijlk + liklj + ljkli)− liljlk +

fijk
f
.

Take expectation of both sides of the above equation, and use (75), (76) and the relation

Eθ[fijk/f ] =

∫
X

fijkdµ = ∂i∂j∂k

∫
X

fdµ = 0,

then we obtain the results.
- Proof of (78)-
From (68) for the case θ̃ = (0, θ),

lij(x; θ) =
e
aij(x; θ) +

p∑
t=1

e

Γ t
ij (θ)lt(x; θ)− gij(θ). (82)

By di�erentiating both sides of this equation, we have

lijh(x; θ) = ∂h
e
aij(x; θ) +

p∑
t=1

(∂h
e

Γ t
ij (θ))lt(x; θ) +

p∑
t=1

e

Γ t
ij (θ)lth(x; θ)− ∂hgij(θ).

Consequently

Eθ[lijhlk]

= Eθ[(∂h
e
aij)lk] +

p∑
t=1

(∂h
e

Γ t
ij (θ))Eθ[ltlk] +

p∑
t=1

e

Γ t
ij (θ)Eθ[lthlk]− (∂hgij(θ))Eθ[lk]

= −⟨
e

Aij ,
m

Ahk ⟩θ +
p∑

t=1

(∂h
e

Γ t
ij (θ))gtk(θ) +

p∑
t=1

e

Γ t
ij (θ)

e

Γ th,k (θ),

where the second equation comes from (70) (for the case θ̃ = (0, θ) and α = 1), (73),
(74) and (75).
- Proof of (79)-

From the de�nition of the second fundamental form, it turns out that ⟨
e

Aij , ∂t⟩ = 0 (0 ≤
i, j, t ≤ p), hence, for 1 ≤ i, j, t ≤ p,

Eθ[
e
aijlt] = Eθ[

e
aij] = 0.
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Using (82) for lij, lkh and the relation (73), (74), we notice the following equation holds.

Eθ[lijlkh] = Eθ[
e
aij

e
akh] +

∑
1≤s,t≤p

e

Γ t
ij

e

Γ s
khEθ[ltls] + gijgkh

= ⟨
e

Aij ,
e

Akh ⟩+
p∑

t=1

e

Γ t
ij

e

Γ kh,t + gijgkh.

- Proof of (80)-
Since lklh = fkh/f − lkh,

Eθ[lijlklh] =

∫
X

lij(fkh/f − lkh)fdµ =

∫
X

lijfkhdµ− Eθ[lijlkh]. (83)

From (69) for the case θ̃ = (0, θ), we have

fkh(x; θ) =
m
akh(x; θ) +

p∑
t=1

m

Γ t
kh (θ) ft(x; θ). (84)

If we substitute lij and fkh in the integrand of (83) with the right-hand sides of (82) and
(84) respectively, we have∫

X

lijfkhdµ

=

∫
X

(
e
aij

m
akh +

e
aij

p∑
t=1

m

Γ t
kh ft +

m
akh

p∑
t=1

e

Γ t
ij lt

+

p∑
t=1

e

Γ t
ij lt

p∑
s=1

m

Γ s
kh fs − gij

m
akh − gij

p∑
t=1

m

Γ t
kh ft

)
dµ

= ⟨
e

Aij ,
m

Akh ⟩+
p∑

t=1

m

Γ t
kh ⟨

e

Aij , ∂t⟩+
p∑

t=1

e

Γ t
ij ⟨∂t,

m

Akh ⟩

+
∑

1≤s,t≤p

m

Γ s
kh

e

Γ t
ij gst − gij⟨

m

Akh , ∂0⟩ − gij

p∑
t=1

m

Γ t
kh ⟨∂t, ∂0⟩

= ⟨
e

Aij ,
m

Akh ⟩+
p∑

s=1

m

Γ s
kh

e

Γ ij,s .

since ⟨
e

Aij , ∂k⟩ = ⟨
m

Aij , ∂k⟩ = 0 for 0 ≤ i, j, k ≤ p, and ⟨∂t, ∂0⟩ = 0 for 1 ≤ t ≤ p. Combine
this equation with (79) and (83), then we obtain the results.
- Proof of (81)-
If we di�erentiate both sides of the equation∫

X

lijh(x; θ)f(x; θ)dµ = −(
e

Γ ij,h (θ) +
e

Γ ih,j (θ) +
m

Γ jh,i (θ)) (see (77)),
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then we have

∂k

∫
X

lijh(x; θ)f(x; θ)dµ = −(∂k
e

Γ ij,h (θ) + ∂k
e

Γ ih,j (θ) + ∂k
m

Γ jh,i (θ))

The left hand side equals Eθ[lijkh] + Eθ[lijhlk]. From (78), we have

Eθ[lijkh] = −(∂k
e

Γ ij,h + ∂k
e

Γ ih,j + ∂k
m

Γ jh,i )− Eθ[lijhlk]

= −(∂k
e

Γ ij,h + ∂k
e

Γ ih,j + ∂k
m

Γ jh,i )

−
p∑

t=1

(∂h
e

Γ t
ij )gtk −

p∑
t=1

e

Γ t
ij

e

Γ th,k + ⟨
e

Aij ,
m

Ahk ⟩.

4.3 Expansion of Divergence

Substitute θ1 and θ2 in (2) respectively with θ and θ0. Fix θ0 in
α

D[θ : θ0] and treat it as

the function of θ. Then Taylor expansion of
α

D(θ) =
α

D[θ : θ0] around θ0 is given by

α

D(θ)

=

p∑
i=1

(
ϵi

α

D[θ0 : θ0]
)
(θi − θi0) +

1

2

p∑
i=1

p∑
j=1

(
ϵiϵj

α

D[θ0 : θ0]
)
(θi − θi0)(θ

j − θj0)

+
1

6

p∑
i=1

p∑
j=1

p∑
k=1

(
ϵiϵjϵk

α

D[θ0 : θ0]
)
(θi − θi0)(θ

j − θj0)(θ
k − θk0)

+
1

24

p∑
i=1

p∑
j=1

p∑
k=1

p∑
l=1

(
ϵiϵjϵkϵl

α

D[θ0 : θ0]
)
(θi − θi0)(θ

j − θj0)(θ
k − θk0)(θ

l − θl0)

+O(||θ − θ0||5), (85)

where ϵi is the partial di�erentiation of
α

D[θ1 : θ2] with respect to θi1.
According to Eguchi's relationship (see [8]),

ϵi
α

D[θ0 : θ0] = 0, (86)

ϵiϵj
α

D[θ0 : θ0] = gij(θ0), (87)

ϵiϵjϵk
α

D[θ0 : θ0] =
α

Γ ij,k (θ0) +
α

Γ ik,j (θ0) +
−α

Γ kj,i (θ0), (88)

where gij and
α

Γ ij,k are respectively the components of Fisher information metric and
α-connection of Riemannian manifold P (see Section 4.1).
In this section we reveal the geometrical meaning of the forth derivative term

ϵiϵjϵkϵl
α

D[θ0 : θ0]
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(see Eguchi [9] as a related work ). Let δi(i = 1, . . . , p) denote the partial derivative

w.r.t. θi2 of
α

D[θ1 : θ2]. From (88) and (64), we have

ϵiϵjϵk
α

D[θ : θ] =
α

Γ ij,k (θ) +
α

Γ ik,j (θ) +
−α

Γ kj,i (θ)

=
e

Γ ij,k (θ) +
e

Γ ik,j (θ) +
e

Γ kj,i (θ)

+
3− α

2

( m

Γ ij,k (θ)−
e

Γ ij,k

(
θ)) (see (64)). (89)

Di�erentiate both sides of this equation in θl, then we have

ϵiϵjϵkϵl
α

D[θ : θ] = −δlϵiϵjϵk
α

D[θ : θ] + ∂l
e

Γ ij,k (θ) + ∂l
e

Γ ik,j (θ) + ∂l
e

Γ kj,i (θ)

+
3− α

2
∂l
( m

Γ ij,k −
e

Γ ij,k

)
. (90)

From (2), we have

δlϵiϵjϵk
α

D[θ1 : θ2]

= −(1− α)2

4

∫
X

li(x; θ1)lj(x; θ1)lk(x; θ1)ll(x; θ2)f
(1−α)/2(x; θ1)f

(1+α)/2(x; θ2)dµ

− 1− α

2

∫
X

lik(x; θ1)lj(x; θ1)ll(x; θ2)f
(1−α)/2(x; θ1)f

(1+α)/2(x; θ2)dµ

− 1− α

2

∫
X

li(x; θ1)ljk(x; θ1)ll(x; θ2)f
(1−α)/2(x; θ1)f

(1+α)/2(x; θ2)dµ

− 1− α

2

∫
X

lij(x; θ1)lk(x; θ1)ll(x; θ2)f
(1−α)/2(x; θ1)f

(1+α)/2(x; θ2)dµ

−
∫
X

lijk(x; θ1)ll(x; θ2)f
(1−α)/2(x; θ1)f

(1+α)/2(x; θ2)dµ.

Consequently we have

δlϵiϵjϵk
α

D[θ : θ] = −(1− α)2

4
Eθ[liljlkll]

− 1− α

2

{
Eθ[likljll] + Eθ[ljklill] + Eθ[lijlkll]

}
− Eθ[lijkll]. (91)

The relation

∂lEθ[liljlk] = ∂l

∫
X

liljlkfdµ

=

∫
X

lilljlkfdµ+

∫
X

liljllkfdµ+

∫
X

liljlkldµ+

∫
X

liljlkllfdµ

= Eθ[lilljlk] + Eθ[liljllk] + Eθ[liljlkl] + Eθ[liljlkll],
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and (76) lead to

Eθ[liljlkll] = ∂l
( m

Γ ij,k −
e

Γ ij,k

)
−

(
Eθ[lilljlk] + Eθ[liljllk] + Eθ[liljlkl]

)
. (92)

Substitute (92), (78) and (80) into (91), and let α′ denote (1− α)/2, Then we have

δlϵiϵjϵk
α

D[θ : θ]

= −(α′)2∂l
m

Γ ij,k + (α′)2∂l
e

Γ ij,k

+ (α′)2
(
⟨

e

Ail ,
m

Ajk ⟩ − ⟨
e

Ail ,
e

Ajk ⟩ − gilgjk +

p∑
s=1

e

Γ il,s

m

Γ s
jk −

p∑
s=1

e

Γ il,s

e

Γ s
jk

+ ⟨
e

Ajl ,
m

Aik ⟩ − ⟨
e

Ajl ,
e

Aik ⟩ − gjlgik +

p∑
s=1

e

Γ jl,s

m

Γ s
ik −

p∑
s=1

e

Γ jl,s

e

Γ s
ik

+ ⟨
e

Akl ,
m

Aij ⟩ − ⟨
e

Akl ,
e

Aij ⟩ − gklgij +

p∑
s=1

e

Γ kl,s

m

Γ s
ij −

p∑
s=1

e

Γ kl,s

e

Γ s
ij

)
− α′

(
⟨

e

Aik ,
m

Ajl ⟩ − ⟨
e

Aik ,
e

Ajl ⟩ − gikgjl +

p∑
s=1

e

Γ ik,s

m

Γ s
jl −

p∑
s=1

e

Γ ik,s

e

Γ s
jl

+ ⟨
e

Ajk ,
m

Ail ⟩ − ⟨
e

Ajk ,
e

Ail ⟩ − gjkgil +

p∑
s=1

e

Γ jk,s

m

Γ s
il −

p∑
s=1

e

Γ jk,s

e

Γ s
il

+ ⟨
e

Aij ,
m

Akl ⟩ − ⟨
e

Aij ,
e

Akl ⟩ − gijgkl +

p∑
s=1

e

Γ ij,s

m

Γ s
kl −

p∑
s=1

e

Γ ij,s

e

Γ s
kl

)
−

p∑
t=1

(
∂k

e

Γ t
ij

)
gtl −

p∑
t=1

e

Γ t
ij

e

Γ tk,l + ⟨
e

Aij ,
m

Akl ⟩,

where the de�nition and the geometrical meaning of each notation are described in
Section 4.1. From this equation and (90), we have

ϵiϵjϵkϵl
α

D[θ : θ]

= (α′)2∂l
m

Γ ij,k − (α′)2∂l
e

Γ ij,k

− (α′)2
(
⟨

e

Ail ,
m

Ajk ⟩ − ⟨
e

Ail ,
e

Ajk ⟩ − gilgjk +

p∑
s=1

e

Γ il,s

m

Γ s
jk −

p∑
s=1

e

Γ il,s

e

Γ s
jk

+ ⟨
e

Ajl ,
m

Aik ⟩ − ⟨
e

Ajl ,
e

Aik ⟩ − gjlgik +

p∑
s=1

e

Γ jl,s

m

Γ s
ik −

p∑
s=1

e

Γ jl,s

e

Γ s
ik

+ ⟨
e

Akl ,
m

Aij ⟩ − ⟨
e

Akl ,
e

Aij ⟩ − gklgij +

p∑
s=1

e

Γ kl,s

m

Γ s
ij −

p∑
s=1

e

Γ kl,s

e

Γ s
ij

)
+ α′

(
⟨

e

Aik ,
m

Ajl ⟩ − ⟨
e

Aik ,
e

Ajl ⟩ − gikgjl +

p∑
s=1

e

Γ ik,s

m

Γ s
jl −

p∑
s=1

e

Γ ik,s

e

Γ s
jl
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+ ⟨
e

Ajk ,
m

Ail ⟩ − ⟨
e

Ajk ,
e

Ail ⟩ − gjkgil +

p∑
s=1

e

Γ jk,s

m

Γ s
il −

p∑
s=1

e

Γ jk,s

e

Γ s
il

+ ⟨
e

Aij ,
m

Akl ⟩ − ⟨
e

Aij ,
e

Akl ⟩ − gijgkl +

p∑
s=1

e

Γ ij,s

m

Γ s
kl −

p∑
s=1

e

Γ ij,s

e

Γ s
kl

)
+ (α′ + 1)∂l

( m

Γ ij,k −
e

Γ ij,k

)
+ ∂l

e

Γ ij,k + ∂l
e

Γ ik,j + ∂l
e

Γ kj,i

+

p∑
t=1

(
∂k

e

Γ t
ij

)
gtl +

p∑
t=1

e

Γ t
ij

e

Γ tk,l − ⟨
e

Aij ,
m

Akl ⟩. (93)
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