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For a regression model, we consider the risk of the maximum likelihood
estimator with respect to α-divergence, which includes the special cases
of Kullback-Leibler divergence, Hellinger distance and χ2 divergence. The
asymptotic expansion of the risk with respect to the sample size n is given
up to the order n−2. We observed how the risk convergence speed (to zero) is
a�ected by the error term distributions and the magnitude of the joint mo-
ments of the standardized explanatory variables under three concrete error
term distributions: a normal distribution, a t-distribution and a skew-normal
distribution. We try to use the (approximated) risk of m.l.e. as a measure
of the di�culty of estimation for the regression model. Especially comparing
the value of the (approximated) risk with that of a binomial distribution,
we can give a certain standard for the sample size required to estimate the
regression model.
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1 Introduction

We consider the following regression model;

y = β′x̃+ σϵ, (1)
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where
β′ = (β0, β1, . . . , βp)

is the p+ 1-dimensional parameter vector, while

x̃′ = (x0, x
′), x0 ≡ 1, x′ = (x1, . . . , xp),

and x′ = (x1, . . . , xp) is a p-dimensional explanatory random vector. ϵ is the error term.
We assume that the distributions of ϵ is known, but the distribution of x is unknown.
The unknown parameters to be estimated are β ∈ Rp+1 and σ(> 0). Without loss of
generality, we can assume that x′ = (x1, . . . , xp) is standardized, i.e.

E[xi] = 0, i = 1, . . . , p, E[xixj] =

{
1, if 1 ≤ i = j ≤ p,

0, if 1 ≤ i ̸= j ≤ p.
(2)

Let f(ϵ) and h(x) respectively be the p.d.f.'s of ϵ and x, then the p.d.f. of (y, x) is
given by

f(y, x | β, σ) ≜ fx(y| β, σ)h(x), (3)

where

fx(y| β, σ) ≜
1

σ
f

(
y − β′x̃

σ

)
.

We assume that f(ϵ) is positive and di�erentiable three times over the real line.
Let's consider the maximum likelihood estimators (say β̂, σ̂) of β, σ. One way to eval-

uate the performance of m.l.e. is the closeness of the predictive distribution designated
by the p.d.f

f(y, x | β̂, σ̂) = fx(y| β̂, σ̂)h(x) =
1

σ̂
f

(
y − β̂′x̃

σ̂

)
h(x) (4)

to the true distribution given by (3).
We adopt divergences as the measure of closeness between two given distributions.

A divergence is a premetric. Namely a divergence function D[d1 : d2] evaluated at two
distributions d1 and d2 on a same sigma �eld X satis�es

D[d1 : d2] ≥ 0 for any distributions d1 and d2

with equality i� d1 = d2, but it is asymmetric, and the "triangular inequality" does not
always hold.
Among possible divergences, f-divergence is natural in dealing with probability distri-

butions. (See Amari and Nagaoka [3], Vajda [9].) First f -divergence is parameter-free.
If we change the way of parametrization of a parametric model, f -divergence is invariant
in the following sense. Suppose a distribution d on X can be designated by a parameter θ
in a parametric model Pθ = {(d|θ) |θ ∈ Θ}, while it is expressed in another parametriza-
tion as (d|η) in Pη = {(d|η) | η ∈ H}. If (d|θi) and (d|ηi) is the same distribution for
i = 1, 2,

D[(d|θ1) : (d|θ2)] = D[(d|η1) : (d|η2)].
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Second it is invariant with respect to the transformation between the random variables
that retains information. Let Y (X) be a su�cient statistic for the parametric model of
a random object X, then f -divergence satis�es

D[(X|θ1) : (X|θ2)] = D[(Y |θ1) : (Y |θ2)],

where (X|θi) is the distribution of X given by a parameter θi (i = 1, 2) .
In order to proceed a practical investigation of regression models, we need a more

speci�c form of f -divergence. In this paper we focus on an α-divergence. It is an
important subclass of f -divergence. Generally a divergence gives a geometrical structure
on the manifold of a parametric distribution model, Pθ = {(d|θ)|θ ∈ Θ}. (See Eguchi [5],
Amari and Nagoka [3].) The possible geometrical structures given by f -divergence can
be realized by α-divergences. Furthermore it is a basic divergence from the perspective
of information geometry since it gives rise to a "dual" structure between α and −α for
the manifold of the given parametric model (see Eguchi [5], Amari [1], and Amari and
Cichocki [2]). Speci�cally α-divergence (−∞ < α < ∞) between the two distributions,
each of which is given respectively by the p.d.f. f(x; θ1) and f(x; θ2), is de�ned as

α

D[θ1 : θ2] =


4

1−α2

{
1−

∫
X
f (1−α)/2(x; θ1)f

(1+α)/2(x; θ2)dµ
}
, if α ̸= ±1,∫

X
f(x; θ2) log

(
f(x; θ2)/f(x; θ1)

)
dµ, if α = 1,∫

X
f(x; θ1) log

(
f(x; θ1)/f(x; θ2)

)
dµ, if α = −1.

(5)

α-divergence is a broad class of divergences. Actually it includes Kullback�Leibler di-
vergence (α = −1), the Hellinger distance (α = 0) and χ2 divergence (α = 3).
We will measure the performance of m.l.e. β̂, σ̂ by the expected α-divergence between

two distributions (3) and (4);

α

ED(β, σ) ≜ E
[ α

D[(β̂(y,x), σ̂(y,x)) : (β, σ)]
]
, (6)

where (y,x) =
(
(y1, x1), . . . , (yn, xn)

)
are n independent random samples from the true

distribution (3). In other words, we evaluate the performance of m.l.e. using the risk of
m.l.e. with respect to an α-divergence. However, this risk of m.l.e. can not be gained
explicitly in many (most in a practical sense) cases, hence its asymptotic expansion with
n is useful since it gives a good approximation under a large size of samples. Sheena

[7] gave the asymptotic expansion of
α

ED up to the n−2 order for a general parametric

model. (Henceforth, we will call the truncated
α

ED up to the n−2 order by the name of

"the approximated
α

ED".) In this paper, we focused ourselves on the regression model

(1), and derived the approximated
α

ED for it.
The result for a general regression model (1) is still too lengthy to be out of use for a

practical purpose. So we narrowed our scope further to some speci�c error distributions.
(See Mathematica program in Appendix of Sheena [8] which enables us to calculate the

approximated
α

ED, once the p.d.f. (and its derivatives) of an arbitrary error distribution
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is given.) This paper is constructed as follows; In Section 2, we explained how the
general result of [7] is applied to the regression model. In Section 3, we considered
three speci�c error term distributions and observed an explicit form of the expansion of
α

ED: a normal distribution (Section 3.1), a t-distribution (Section 3.2), a skew-normal
distribution (Section 3.3). In Section 3.4, we made a comparison among these three
error distributions. Throughout Section 3, we considered the case where the explanatory
variable x has a homogeneous distribution (i.e. invariant w.r.t. the permutations of the
xi, i = 1, . . . , p). We combined the above error term distributions with various types of

joint moments of x to gain a concrete form of the approximated
α

ED as the function of

n, p, α. We observed how n, p, α a�ect
α

ED. In Section 4, we treated two real datasets,
which give us examples for non-homogeneous distribution of x.

As one of the possible applications of
α

ED, we considered the sample size problem, that
is, "how large sample size is required to estimate the parameters of the regression model
(1) ?". When a parametric distribution model is given, the di�culty of estimation (spec-
i�cation) of the parameter for that model could be measured in various ways. Sheena [7]

proposed to measure it by the approximated
α

ED. In the paper, the author tried to use

the approximated
α

ED of a binomial distribution model B(n, p) as a benchmark since it
gives us an intuitive interpretation. For example, if a parametric distribution model has

a similar value of
α

ED(θ) (at a given θ) to B(10, 0.01), we can understand that the task
of the estimation is hard, since the value 0.01 is too small to be estimated from as little

as 10 samples. On the contrary,
α

ED(θ) of the model is close to that of B(10, 0.5), it is
a relatively easy task to estimate the parameter.
In this paper, we formalized this idea and proposed two indicators (I.D.E. and R.S.S.)

that could be used for a sample size problem. In Section 2, we gave the de�nition of the
both indicators. In Section 3 and 4, we calculated their concrete values under the given
error distributions and the moments of x, and tried to give a solution to the sample size
problem.

2 Asymptotic risk of m.l.e. w.r.t. α-divergence

First we introduce a general result of Sheena [7] on the asymptotic risk of m.l.e. with
respect to α-divergence. In order to improve readability, we use Einstein's summation
convention, that is, the summation carried out as every pair of upper and lower index
moves from 1 to p.
Let P be a parametric family of probability distributions on a space X, which is given

by a family of positive-valued densities f(x; θ) on X with respect to a measure µ:

P = {f(x; θ) | θ = (θ1, . . . , θp) ∈ Θ}, (7)

where Θ is an open set in Rp.
Consider the maximum likelihood estimator θ̂(X) of θ based on n samples X =

(X1, . . . , Xn) independently chosen from the distribution f(x; θ). Closeness θ̂ and the
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true parameter θ is measured by (5), namely
α

D[θ̂(X) : θ]. The risk is de�ned as the
expectation of this random variable;

α

ED(θ) ≜ Eθ

[ α

D[θ̂(X) : θ]
]
. (8)

The asymptotic expansion of
α

ED w.r.t. n is given by

α

ED

=
p

2n
+

1

24n2

×
[
(α′)2

{
3

e

F + 3T ijkTijk − 6⟨
e

Aj
i , (

m

Ai
j −

e

Ai
j )⟩ − 3⟨

e

Ai
i , (

m

Aj
j −

e

Aj
j )⟩+ 3p2 + 6p

}
+ α′{3 e

F − 5T ijkTijk − 6T i
isT

js
j + 6⟨

e

Aj
i , (

m

Ai
j −

e

Ai
j )⟩+ 3⟨

e

Ai
i , (

m

Aj
j −

e

Aj
j )⟩

− 3p2 − 6p
}

+ 12⟨
e

Ai
j ,

e

Aj
i ⟩ − 2⟨

e

Ai
j ,

m

Aj
i ⟩ − ⟨

e

Ai
i ,

m

Aj
j ⟩+ TijkT

ijk + 9T i
isT

js
j + 8

e

R ij
ij − 9

e

F

]
+ o(n−2), (9)

where α′ = (1 − α)/2. The main term equals p/2n. p/n is the ratio of the number of
the parameters to the sample size. (We will call this quantity �p − n ratio� hereafter.)
The coe�cient of n−2, i.e. the terms inside the bracket have a geometrical meaning if
we view P as a Riemannian manifold. We omit the geometrical explanation (see Sheena
[7] ), and just describe their formal de�nitions.
De�ne the following notations; for 1 ≤ i, j, k, l ≤ p,

L(ij) ≜ Eθ[lij], Lij ≜ Eθ[lilj],

L(ij)k ≜ Eθ[lijlk], Lijk ≜ Eθ[liljlk]

L(ij)(kl) ≜ Eθ[lijlkl], L(ijk)l ≜ Eθ[lijkll], L(ij)kl ≜ Eθ[lijlkll], Lijkl ≜ Eθ[liljlkll],

(10)

L11 ≜ gijgklL(il)jk, L12 ≜ gijgklL(ij)kl, L13 ≜ gijgklLijkl,

L14 ≜ gijgklL(ik)(jl), L15 ≜ gijgklL(ij)(kl),

L21 ≜ gijgklgsuL(ik)sLjlu, L22 ≜ gijgklgsuL(ij)kLlsu,

L23 ≜ gijgklgsuLiksLjlu, L24 ≜ gijgklgsuLijkLlsu,

L25 ≜ gijgklgsuL(ik)sL(jl)u, L26 ≜ gijgklgsuL(ij)kL(su)l,

(11)

where (gij) is the inverse matrix of (gij) given by

gij ≜ Lij(≡ −L(ij)),

and

li ≜ li(x; θ) ≜
∂

∂θi
log f(x; θ), lij ≜ lij(x; θ) ≜

∂2

∂θi∂θj
log f(x; θ), · · · ,
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Eθ[h(x; θ)] ≜
∫
X

h(x; θ)f(x; θ)dµ.

Then each term of (9) is de�ned as follows.

e

F = gijgks
(
2L(is)jk + L(ks)ij + Lijks

)
− gksgujgliLijk

(
2L(su)l + Lsul

)
− gtigujgksL(it)sLjuk

= 2L11 + L12 + L13− 2L21− L23− L22, (12)

TijkT
ijk = LijkLstug

isgjtgku = L23, (13)

T i
isT

js
j = LijkLstug

ijgstguk = L24, (14)
e

R ij
ij = gijgsk

(
L(ki)(js) − L(ij)(ks) + L(ki)js − L(ij)ks

)
+ gskgtiguj

(
−L(ki)jL(st)u + L(it)sL(uj)k + LsitL(uj)k − LstuL(ij)k

)
= L14− L15 + L11− L12− L25 + L26 + L22− L21, (15)

⟨
e

Aj
i ,

e

Ai
j ⟩ = gjkgliL(ik)(jl) − gjkgligstL(ik)sL(jl)t − p

= L14− L25− p, (16)

⟨
e

Ai
i ,

e

Aj
j ⟩ = gikgjlL(ik)(jl) − gikgjlgstL(ik)sL(jl)t − p2

= L15− L26− p2, (17)

⟨
e

Aj
i ,

m

Ai
j ⟩ = gjkgliL(ik)jl + gjkgliL(ik)(jl)

− gjkgligstL(ik)sL(jl)t − gjkgligstL(ik)sLjlt

= L11 + L14− L25− L21, (18)

⟨
e

Ai
i ,

m

Aj
j ⟩ = gikgjlL(ik)jl + gikgjlL(ik)(jl)

− gikgjlgstL(ik)sL(jl)t − gikgjlgstL(ik)sLjlt

= L12 + L15− L26− L22. (19)

Now we apply (9) to the case where P is given by

P = {f(y, x | β, σ) | β ∈ Rp+1, σ > 0},

where f(y, x | β, σ) is given by (3).
Accordingly we de�ne the following notations; for i, j, k, l = 0, 1, . . . , p, σ

L(ij) ≜ Eβ,σ[lij], Lij ≜ Eβ,σ[lilj],

L(ij)k ≜ Eβ,σ[lijlk], Lijk ≜ Eβ,σ[liljlk]

L(ij)(kl) ≜ Eβ,σ[lijlkl], L(ijk)l ≜ Eβ,σ[lijkll], L(ij)kl ≜ Eβ,σ[lijlkll], Lijkl ≜ Eβ,σ[liljlkll],

where

li ≜ ∂i log f(y, x|β, σ), lij ≜ ∂i∂j log f(y, x|β, σ), lijk ≜ ∂i∂j∂k log f(y, x|β, σ)
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with ∂i(i = 0, 1, . . . , p, σ) de�ned by

∂i =

{
∂
∂βi

if 0 ≤ i ≤ p,
∂
∂σ

if i = σ,

and

Eβ,σ[h(y, x; β, σ)] =

∫
Rp

∫
R

h(y, x; β, σ)f(y, x|β, σ)dydx.

We also de�ne other notations.
For 0 ≤ i, j ≤ p,

δij =

{
1 if i = j,

0 if i ̸= j.

For 0 ≤ i, j, k, l ≤ 4,

η[i, j, k, l] ≜
∫ ∞

−∞

(d3 log f(y)
dy3

)i(d2 log f(y)
dy2

)j(d log f(y)
dy

)k

ylf(y)dy. (20)

For i, j, k, l ∈ {0, 1, . . . , p, σ}

m[i, j, k] ≜ E[ẋiẋjẋk] =

∫
Rp

ẋiẋjẋkh(x)dx,

m[i, j, k, l] ≜ E[ẋiẋjẋkẋl] =

∫
Rp

ẋiẋjẋkẋlh(x)dx,

(21)

where

ẋi =

{
xi if i ∈ I ≜ {1, 2, . . . , p},
1 if i ∈ S ≜ {0, σ}.

Straightforward calculation leads to the following results (see Appendix A of [8] for
the detailed calculation).

gij = δijσ
−2η[0, 0, 2, 0] = −δijσ

−2η[0, 1, 0, 0], 0 ≤ i, j ≤ p. (22)

giσ =

{
σ−2η[0, 0, 2, 1] = −σ−2η[0, 1, 0, 1] if i = 0,

0 if 1 ≤ i ≤ p.
(23)

gσσ = σ−2(1 + 2η[0, 0, 1, 1] + η[0, 0, 2, 2]).

= −σ−2(1 + η[0, 1, 0, 2] + 2η[0, 0, 1, 1]) (24)

gij = δijσ
2η−1[0, 0, 2, 0], 1 ≤ i, j ≤ p. (25)

g0i = gσi = 0, 1 ≤ i ≤ p. (26)

g00 = σ2∆−1(1 + 2η[0, 0, 1, 1] + η[0, 0, 2, 2]). (27)

g0σ = σ2∆−1η[0, 1, 0, 1]. (28)

gσσ = σ2∆−1η[0, 0, 2, 0]. (29)

(∆ = η[0, 0, 2, 0](1 + 2η[0, 0, 1, 1] + η[0, 0, 2, 2])− η2[0, 1, 0, 1])
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For i, j, k, l = 0, 1, . . . , p, σ,

L(ij)k = σ−3m[i, j, k]η(ij)k (30)

Lijk = σ−3m[i, j, k]ηijk (31)

L(ij)(kl) = σ−4m[i, j, k, l]η(ij)(kl) (32)

L(ijk)l = σ−4m[i, j, k, l]η(ijk)l (33)

L(ij)kl = σ−4m[i, j, k, l]η(ij)kl (34)

Lijkl = σ−4m[i, j, k, l]ηijkl, (35)

where for 0 ≤ i, j, k, l ≤ p,

η(ij)k = −η[0, 1, 1, 0] (36)

η(iσ)k = −(η[0, 1, 1, 1] + η[0, 0, 2, 0]) (37)

η(ij)σ = −(η[0, 1, 0, 0] + η[0, 1, 1, 1]) (38)

η(iσ)σ = −(η[0, 1, 0, 1] + η[0, 1, 1, 2] + η[0, 0, 2, 1]) (39)

η(σσ)i = −(η[0, 1, 1, 2] + 2η[0, 0, 2, 1]) (40)

η(σσ)σ = −(1 + 3η[0, 0, 1, 1] + η[0, 1, 0, 2] + 2η[0, 0, 2, 2] + η[0, 1, 1, 3]) (41)

ηijk = −η[0, 0, 3, 0] (42)

ηijσ = −(η[0, 0, 2, 0] + η[0, 0, 3, 1]) (43)

ηiσσ = −(2η[0, 0, 2, 1] + η[0, 0, 3, 2]) (44)

ησσσ = −(1 + 3η[0, 0, 1, 1] + 3η[0, 0, 2, 2] + η[0, 0, 3, 3]) (45)

η(ij)(kl) = η[0, 2, 0, 0] (46)

η(iσ)(kl) = η[0, 2, 0, 1] + η[0, 1, 1, 0] (47)

η(iσ)(jσ) = η[0, 2, 0, 2] + 2η[0, 1, 1, 1] + η[0, 0, 2, 0] (48)

η(ij)(σσ) = η[0, 1, 0, 0] + η[0, 2, 0, 2] + 2η[0, 1, 1, 1] (49)

η(iσ)(σσ) = η[0, 1, 0, 1] + η[0, 2, 0, 3] + 3η[0, 1, 1, 2] + 2η[0, 0, 2, 1] (50)

η(σσ)(σσ) = 1 + η[0, 2, 0, 4] + 4η[0, 0, 2, 2] + 2η[0, 1, 0, 2]

+ 4η[0, 0, 1, 1] + 4η[0, 1, 1, 3] (51)

η(ijk)l = η[1, 0, 1, 0] (52)

η(ijk)σ = η[1, 0, 0, 0] + η[1, 0, 1, 1] (53)

η(ijσ)k = 2η[0, 1, 1, 0] + η[1, 0, 1, 1] (54)

η(iσσ)j = 4η[0, 1, 1, 1] + 2η[0, 0, 2, 0] + η[1, 0, 1, 2] (55)

η(ijσ)σ = 2η[0, 1, 0, 0] + η[1, 0, 0, 1] + 2η[0, 1, 1, 1] + η[1, 0, 1, 2] (56)

η(iσσ)σ = 4η[0, 1, 0, 1] + η[1, 0, 0, 2] + 4η[0, 1, 1, 2] + 2η[0, 0, 2, 1] + η[1, 0, 1, 3] (57)

η(σσσ)i = 6η[0, 1, 1, 2] + 6η[0, 0, 2, 1] + η[1, 0, 1, 3] (58)

η(σσσ)σ = 2 + 6η[0, 1, 0, 2] + 6η[0, 0, 1, 1] + η[1, 0, 0, 3]

+ 2η[0, 0, 1, 1] + 6η[0, 1, 1, 3] + 6η[0, 0, 2, 2] + η[1, 0, 1, 4] (59)

η(ij)kl = η[0, 1, 2, 0] (60)

8



η(ij)kσ = η[0, 1, 1, 0] + η[0, 1, 2, 1] (61)

η(iσ)jk = η[0, 1, 2, 1] + η[0, 0, 3, 0] (62)

η(ij)σσ = η[0, 1, 0, 0] + 2η[0, 1, 1, 1] + η[0, 1, 2, 2] (63)

η(iσ)jσ = η[0, 1, 1, 1] + η[0, 0, 2, 0] + η[0, 1, 2, 2] + η[0, 0, 3, 1] (64)

η(σσ)ij = η[0, 0, 2, 0] + 2η[0, 0, 3, 1] + η[0, 1, 2, 2] (65)

η(iσ)σσ = η[0, 1, 0, 1] + 2η[0, 1, 1, 2] + 2η[0, 0, 2, 1] + η[0, 1, 2, 3] + η[0, 0, 3, 2] (66)

η(σσ)iσ = 2η[0, 0, 2, 1] + η[0, 1, 1, 2] + η[0, 0, 2, 1] + 2η[0, 0, 3, 2] + η[0, 1, 2, 3] (67)

η(σσ)σσ = 1 + 4η[0, 0, 1, 1] + η[0, 1, 0, 2] + 5η[0, 0, 2, 2]

+ 2η[0, 1, 1, 3] + 2η[0, 0, 3, 3] + η[0, 1, 2, 4] (68)

ηijkl = η[0, 0, 4, 0] (69)

ηijkσ = η[0, 0, 3, 0] + η[0, 0, 4, 1] (70)

ηijσσ = η[0, 0, 2, 0] + 2η[0, 0, 3, 1] + η[0, 0, 4, 2] (71)

ηiσσσ = 3η[0, 0, 2, 1] + 3η[0, 0, 3, 2] + η[0, 0, 4, 3] (72)

ησσσσ = 1 + 4η[0, 0, 1, 1] + 6η[0, 0, 2, 2] + 4η[0, 0, 3, 3] + η[0, 0, 4, 4]. (73)

If we insert these results (25),...,(35) into (11), we can calculate the values of (12)
to (19). Note that the summation (by Einstein's convention) in (11) to (19) is carried
over the range 0, 1, . . . , p, σ for each index. The calculation process is so lengthy that we
used Mathematica [6]. The general result expressed with abstract notations η[i, j, k, l]
(see (20)) and m[i, j, k],m[i, j, k, l] (see (21)) could be given, but it is too complicated
to be out of use. Instead we put the Mathematica program in Appendix B of [8] so that

we can easily calculate the approximated
α

ED once the error term distribution and the
moments of the explanatory variables are given, which respectively determine η[i, j, k, l]
and m[i, j, k],m[i, j, k, l].

Generally
α

ED for the parametric model (7) depends on θ. However
α

ED for the re-
gression model (1) is independent of β, σ. This is obvious from the fact that (25),...,(35)
include only σ, but it vanishes at (11). We report that if the support of f(ϵ) is not the

whole real line (e.g. f(ϵ) = 0 for negative values of ϵ), η[i, j, k, l], hence
α

ED could be
dependent on (β, σ).
In the next section, we give the explicit result when an error distribution and the

moments of x are speci�ed. We consider three speci�c cases where the error term
distribution is respectively a normal distribution, a t-distribution and a skew-normal
distribution. The di�erent sets of the moments of x are combined with these error
distributions to give illustrating examples.

Now we mention one of the possible applications of the approximated
α

ED. For a
parametric distribution model (7), we naturally raise the following questions;

1. At which point θ, is the parameter most di�cult to be estimated ?

2. Compared with another model, this model is easier or harder to be estimated ?

9



We propose to use the approximated
α

ED to give an answer to these questions. Maximum
likelihood is the most common estimation method and intrinsic to the model, hence it
is natural to measure �the di�culty of estimating the model � by its performance such
as the risk w.r.t a certain loss function. As we mentioned in Introduction, the risk w.r.t.
α-divergence has favorable properties to answer to the above questions. In this paper

we will use the approximated
α

ED as a measure of the estimation di�culty.
In the case of the regression model (1), the answer to the �rst question is obvious.

Since
α

ED is constant (independent of β, σ2), the di�culty of estimation is same all over
the parameter space. Concerning the second question, we take the binomial distribution
model B(n,m) (n: the sample size, m: the probability of an event) as the benchmark
for comparison.

The asymptotic expansion of
α

ED for the binomial distribution B(n,m) is given by

α

ED

=
1

2n
+

1

24n2

[
(α′)2(3M − 9) + α′(−11M + 29) + 10M − 22

]
+ o(n−2), (74)

where α′ = (1−α)/2 and M ≜ 1/m+1/(1−m). (See the subsection 3.2 of Sheena [7].)
For Kullback-Leibler divergence, put α = −1, then we have

−1

ED =
1

2n
+

1

12n2
(M − 1) + o(n−2). (75)

The graph of the approximated
−1

ED for B(10,m) is given in Figure 1. We notice that the

approximated
−1

ED is stable around the area 0.1 ≤ m ≤ 0.9, however it rapidly increases
outside this area.

Let
α

EDB(n,m) denote the approximated
α

ED for B(n,m) and
α

EDR(n) denote that for a
speci�c regression model where all the elements of the regression model (p, the error term

distribution, the moments of x) are speci�ed, hence
α

EDR is considered as the function
of the sample size n. Here we propose an indicator of the di�culty of estimation.
�Indicator of the Di�culty of Estimation (I.D.E.)�

Use a k times binomial experiment B(k,m) as a benchmark. Solve the
equation on m

α

EDB(k,m) =
α

EDR((p+ 2)k) (76)

We easily notice the equation (76) is independent of k. Taking the sample size for
the regression model as (p + 2)k, we get the same p − n ratio 1/k between the two
models. Hence it makes sense to compare the n−2 order terms. The solution m tells
us intuitively how di�cult the parameter estimation is for the regression model. For
example if m = 0.001, then we easily understand the estimation is di�cult since it is
di�cult to estimate m as small as 0.001 based on just 10 samples. On the contrary, if we

10



Figure 1:
−1

ED of B(10,m)

have m = 0.8, then the estimation from 10 samples seems not so hard unless we require
high precision.
The above equation (76) might have no real roots, that is, the left-hand side of the

equation is larger than the right-hand side for any m. In this case, we can conclude that
the regression model could be estimated more easily than the binomial model with the
same p− n ratio.

In a reverse way, we can use the approximated
α

ED of the regression model for giving
an answer to the sample size problem, that is, how large sample size is required to
estimate the parameters of the regression model (1).
�Required Sample Size (R.S.S.)�

Use a 10 times normal coin toss B(10, 0.5) as a benchmark. Solve the
equation

α

EDB(10,0.5) =
α

EDR(n). (77)

The solution n indicates the sample size large enough to guarantee as easy estimation
as 10 times normal coin toss.
The equation (77) could have no real roots. This means that the left-hand side of the

equation is larger than the right-hand side for any n. Since the equation is based on

the �approximated�
α

ED, we must notice that this does not necessarily mean just a small
sample (e.g. p+2 samples) is enough for the estimation of the regression model. For the
approximation to work well, the appropriate sample size is needed. If we want a concrete
solution on the sample size problem, it could be gained by choosing an appropriately
large k of B(k, 0.5) instead of 10 on the left-hand side of (77).
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Figure 2: p.d.f.'s of three error distributions.

3 Homogeneous Explanatory Variables

In this section, we consider three concrete forms of error distribution: a normal dis-
tribution, a t-distribution and a skew-normal distribution. A normal distribution is a
theoretically basic error distribution. We are interested in how the fat tail property of a
t-distribution or the skewness of a skew-normal distribution a�ects the (approximated)
α

ED. For contrasting these properties, we choose 3 for the d.f. of the t distribution and
3 for the shape parameter of the skew-normal distribution. Figure 2 is the graph of
the p.d.f.'s of the three error distributions; the standard normal distribution (N(0, 1)),
the t-distribution with the d.f. of 3 (t(3)), the skew-normal distribution with the shape
parameter of 3 (SN(3)).

α

ED also depends on the moments of x. As we can see from the de�nition (30)�(35),
the maximum order of the joint moments of x is four that appear in the expansion of
α

ED up to the n−2 order. In this section, we consider the homogeneous case where the
distribution of x = (x1, . . . , xp) is invariant w.r.t. any permutation of the elements. This
is not practical but this case helps us observe the e�ect of the dimension p, so called
"the curse of dimension".
Here we de�ne the notations of the homogeneous moments of x as follows. For all

distinguished i, j, k, l (1 ≤ i, j, k, l ≤ p),

m4 ≜ E[x4
i ], m31 ≜ E[x3

ixj], m22 ≜ E[x2
ix

2
j ],

m211 ≜ E[x2
ixjxk], m1111 ≜ E[xixjxkxl], (78)

m3 ≜ E[x3
i ], m21 ≜ E[x2

ixj], m111 ≜ E[xixjxk], (79)

m2 ≜ E[x2
i ] = 1, m11 ≜ E[xixj] = 0, (80)

m1 ≜ E[xi] = 0, (81)

m0 ≜ E[x0] = 1. (82)

Under these homogeneous moments, we can state the approximated
α

ED explicitly for

12



each error distribution as a function of n, p, α and these moments . The result is given
in the following subsections.
We used the following four distributions of x as speci�c examples of the moments of

x when we want to analyze the approximated
α

ED in a more concrete form:

1. The standard p-dimensional normal distributions, Np(0, Ip)

m4 = 3, m31 = 0, m22 = 1, m211=0, m1111 = 0,

m3 = 0, m21 = 0, m111 = 0.

2. The standard p-dimensional t-distribution, tp(0, Ip, ν), that is, the p dimensional
multivariate t-distribution with zero mean vector, the unit matrix as the scale
matrix and the degree of freedom ν. Its p.d.f. is given by

h(x) ∝
(
1 + ν−1

p∑
i=1

x2
i

)−(ν+p)/2

Note that E[xi] = 0, i = 1, . . . , p and

Cov(xi, xj) = E[xixj] =

{
ν/(ν − 2) if i = j,

0 if i ̸= j.

for ν > 2. Therefore after the normalization (2), we have

E[x2
ix

2
j ] =

{
3(ν − 2)/(ν − 4) if i = j,

(ν − 2)/(ν − 4) if i ̸= j,

under the condition ν > 4. Notice that the e�ect of the fourth moment is enhanced
by (ν−2)/(ν−4) compared to the case x ∼ Np(0, Ip). We want to check the e�ect
of the fat tail property of a t-distribution. Here we put ν as 4.2, then we have

m4 = 33, m31 = 0, m22 = 11, m211 = 0, m1111 = 0,

m3 = 0, m21 = 0, m111 = 0.

3. A completely controlled distribution, where each xi, i = 1, . . . , p is independently
and identically distributed as P (xi = 1) = P (xi = −1) = 1/2.

m4 = 1, m31 = 0, m22 = 1, m211 = 0, m1111 = 0,

m3 = 0, m21 = 0, m111 = 0.

4. Pareto distributions, where each xi, i = 1, . . . , p is independently and identically
distributed as P (b), Pareto distributions with Pareto index b. Its p.d.f. is given
by

h(x) =

{∏p
i=1 bx

−(b+1)
i if xi > 1 for i = 1, . . . , p,

0 otherwise.

13



After the normalization (2), we have

m3 = Skewness of P(b) =
2(b+ 1)

b− 3

√
b− 2

b
, b > 3,

m4 = Kurtosis of P(b) =
6 (b3 + b2 − 6b− 2)

b(b− 3)(b− 4)
+ 3 b > 4.

We are interested in the e�ect of the strong skewness and heavy tail of Pareto
distribution. Here we put b as 4.2. Consequently

m4 =
8129

21
, m31 = 0, m22 = 1, m211 = 0, m1111 = 0,

m3 =
26

63

√
231, m21 = 0, m111 = 0.

In the following subsections, we will state the approximated
α

ED for each error distri-
bution. For more speci�c forms under a �xed α or given moments of x, see Section 3 of
[8]. The derivation of η[i, j, k, l] of (20) is also stated there.

3.1 Normal Error Term Distribution

α

ED

=
p+ 2

2n

+
1

96n2

(
3p(−27− 8α + 3α2)m4 + 3p(p− 1)(−27− 8α + 3α2)m22

4α2(12p+ 21) + 4α(6p2 + 36p+ 50)

+ 4(12p2 + 60p+ 75)
)

+ o(n−2) (83)

The n−2 order term has the following properties;

1. The maximum dimension of p is two, hence
α

ED is asymptotically determined by
the p− n ratio.

2. Other moments than m4 and m22 do not appear.

3. The coe�cients of m4 and m22 are non-positive when 3α2 − 8α− 27 ≤ 0, that is,

−1.95 · · · ≤ α ≤ 4.62 · · · . (84)

For α within this interval, the larger m22 or m4 gets, the less
α

ED becomes. The
divergences often used in statistical literature are all included in this interval: K-L
divergence (α = −1), K-L dual divergence (α = 1), Hellinger Divergence (α = 0),
χ2 divergence (α = 3).

14



Figure 3:
−1

ED when ϵ ∼ N(0, 1)

Figure 4:
−6

ED when ϵ ∼ N(0, 1)

We made a numerical comparison to see the e�ect of the joint moments of x. We
set p = 10 and n = 12k, which means p − n ratio equals 1/k since the number of the
parameters of the regression model (1) equals 12 when p = 10. Figure 3 is the graph of

the approximated
−1

ED's corresponding to each distribution of x above-mentioned as k
varies from 5 to 100. (The graph for the controlled distribution is always quite similar
to that for the normal distribution, hence for the clarity of the �gures we will omit it in

every �gure hereafter.) We put as the benchmark the approximated
−1

ED of the binomial
model B(k, 0.5), that is, the k-times normal coin toss model.
We notice that heavy tail property of Pareto distribution P (4.2) or t-distribution t(4.2)

Table 1: I.D.E. & R.S.S. for N(0, 1) error distribution

I.D.E. R.S.S.
x ∼ N10(0, I10) * 111(10)

x ∼ t10(0, I10, 4.2) * 322(40)
x is controlled * 112(10)
x is i.i.d.P (4.2) * 741(110)
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decreases di�culty in estimating the parameter, especially the large m4 value 8129/21
of P (4.2) makes the estimation easier. On the contrary, if m4 and m22 are as small as
those of N10(0, I10) (or the controlled distribution), then the di�culty of estimation is
close to the normal coin toss.
Here we refer to the question how large sample size is required for the good approx-

imation of
α

ED by the expansion up to the n−2 order term. It is very di�cult to give a
general answer to this question, but at least for a speci�c model, obviously we should not
use the approximation unless it is positive or decreasing with respect to n. For example,
in Figure 3, we see that the approximation for t10 should be used for k > 10, namely
n > 120.
We observed that the e�ects of m4 and m22 depends on α. If α is outside the interval

(84), the large value ofm44 orm22 enhances the di�culty of the estimation. For example,
if α = −6, the order of various distributions of x is completely reversed to that for the
case α = −1 as we can see from Figure 4.
Now we consider I.D.E. and R.S.S. introduced in Section 2. We take Kullback-Leibler

divergence (α = −1) as an example. Let p be 10. When x is distributed as Np(0, Ip),
we have

−1

ED(n) =
6

n
− 217

12n2
.

�Indicator of the di�culty of estimation� is given as the solution of m for the equation

1

2k
+

1

12k2
(M − 1) =

1

2k
− 217

12× (12k)2

(See (75) for the left-hand side.) Actually this quadratic equation of m does not have
the real roots. The left-hand side is always larger than the right-hand side. This means
the estimation of the regression model is easier than the coin toss problem under the
same p− n ratio.
Sample size determination is solving the next equation;

1

20
+

1

400
=

6

n
− 217

12n2
.

where n = 111 is the rounded solution. For the other distributions (joint moments) of x,
we can similarly calculate I.D.E. and R.S.S..The result is given in Table 1. "*" indicates
that the equation has no solutions. The number in the parenthesis in R.S.S. shows the
sample size of the binomial model in the left-hand side of (77) (see the last paragraph
of Section 2.) With the sample size given by R.S.S., the p − n ratio of the regression
model equals 12/R.S.S., while that of the coin toss model is equal to the reciprocal of the
number in the parenthesis. Hence R.S.S divided by the number in the parenthesis could
be another indicator. It is smaller for t10(0, I10, 4.2) or P (4.2) than that for N10(0, I10)
or the controlled distribution. The large joint moments m4, m22 for t10(0, I10, 4.2) or
P (4.2) make estimation easier. We can guess that the large oscillation of x is helpful to
estimate the values of β. Nevertheless of these di�erences, in general, the estimation for
the regression model under the normal error distribution is not so troublesome, since 10
times as large sample size as the dimension of the parameter guarantees relatively easy
estimation.
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3.2 t Error Term Distribution

α

ED

=
p+ 2

2n

+
1

384n2

(
6p(−45− 17α + 3α2)m4 + 6p(p− 1)(−45− 17α + 3α2)m22

+ α2(78 + 60p) + α(154 + 144p+ 30p2)

+ 861 + 888p+ 195p2
)

+ o(n−2) (85)

The n−2 order term has similar properties as in the case of N(0, 1).

1. The dimension of p is two, hence
α

ED is asymptotically determined by the p − n
ratio.

2. Other moments than m4 and m22 do not appear.

3. The coe�cients of m4 and m22 are non-positive when 3α2 − 17α− 45 ≤ 0, that is,

−1.97 · · · ≤ α ≤ 7.63 · · · . (86)

For α within this interval, the larger m22 or m4 gets, the less
α

ED becomes. The
divergences often used in statistical literature are all included in this interval.

We noticed that if the error term distribution is the standard normal distribution (see
(83)) or t(3) distribution (see (85)), only m4 and m22 among the moments (78) and (79)

appear in the asymptotic expansion of
α

ED up to the n−2 order. On this phenomena, we
have the following general result.

Proposition 1. If the error term distribution is quadratic, namely f(ϵ) = g(ϵ2) for

some function g(·), then the asymptotic expansion of
α

ED up to the order n−2 includes
only m4 and m22 among the third and forth order joint moments of x.

<Proof> From (11), we notice that the third or forth order moments of x in the

expansion of
α

ED up to the order n−2 are generated from the terms m[i, j, k, l] and
m[i, j, k]m[s, t, u].
The forth order moments arise from m[i, j, k, l](1 ≤ i, j, k, l ≤ p) in L11 to L15. Since

m[i, j, k, l] is multiplied with gijgkl as in (11), and gij vanishes unless i = j, the possible
moments coming from E[xixjxkxl] are only m4 and m22.
On the other hand, m[i, j, k]m[s, t, u] come from either term of L21, . . . , L26. We no-

tice that if the third moments are generated from these terms, they are always multiplied
with η[0, 1, 1, 0] or η[0, 0, 3, 0]. (See (30), (31).) If f(ϵ) = g(ϵ2), then we have

d
dy

log f(y) = 2y g′(y2)
g(y2)

,
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Figure 5:
−1

ED when ϵ ∼ t(3)

d2

dy2
log f(y) = 2

g2(y2)

(
g′(y2) + 2y2g′′(y2)g(y2) + 2y2(g′(y2))2

)
.

Therefore η[0, 1, 1, 0] and η[0, 0, 3, 0] vanishes. Q.E.D.

We made a numerical comparison under the condition p = 10 and n = 12k, which

means p − n ratio equals 1/k. Figure 5 is the graph of the approximated
−1

ED's corre-
sponding to each distribution above-mentioned except for the controlled distribution as

k varies from 5 to 100. We put as the benchmark the approximated
−1

ED of the binomial
model B(k, 0.5).
Just like the case of N(0, 1), heavy tail property of Pareto distribution P (4.2) or

t-distribution t(4.2) eases di�culty in estimating the parameter. On the contrary, if
m4 and m22 are as small as those of N(0, 1) (or the controlled distribution), then the
di�culty of estimation is close to the normal coin toss.
It was also observed that the e�ects of m4 and m22 depends on α. If α is outside the

interval (86), the large value of m44 or m22 enhances the di�culty of the estimation. For

example, see Figure 6 for α = −6, where the
−6

ED for the t or Pareto distribution is larger
than that of the normal distribution.
We considered I.D.E. and R.S.S. w.r.t. Kullback-Leibler divergence under the condi-

tion p = 10 for each distribution of x. Table 2 shows the result.The same comments
hold as in the case of N(0, 1). The large value of m4 or m22 of the t-distribution or
Pareto distribution makes the estimation easier compared to the normal distribution or
the controlled distribution. Generally speaking, irrespective of the above di�erence, the
estimation of the regression model under t-distribution error is not so hard. With 10
times as large sample size as the parameter dimension, we can estimate the parameter
without much trouble.
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Figure 6:
−6

ED when ϵ ∼ t(3)

Table 2: I.D.E. & R.S.S. for t(3) error distribution

I.D.E. R.S.S.
x ∼ N10(0, I10) * 117(10)

x ∼ t10(0, I10, 4.2) * 246(30)
x is controlled * 118(10)
x is i.i.d.P (4.2) * 689(90)

3.3 Skew-Normal Error Term Distribution

Since η[i, j, k, l] for the skew-normal distribution can not be analytically gained, the

following
α

ED is calculated from the numerically gained η[i, j, k, l]'s.

α

ED

=
p+ 2

2n

+
1

n2

(
0.175p(−8.570− 2.451α + α2)m4

+ 0.175p(p− 1)(−8.570− 2.451α + α2)m22

+ 0.217p(−0.302 + α)m2
3

+ p(0.065p2 + 0.130αp2 − 0.522p+ 0.457− 0.130α)m2
21

+ 0.087p(−1.504p2 + αp2 + 4.513p− 3αp− 3.001 + 2α)m2
111

+ 0.260p(p− 1)(0.500 + α)m3m21

+ (0.988 + 0.689p)α2 + (2.352 + 2.074p+ 0.385p2)α

+ 3.385 + 2.823p+ 0.583p2
)

+ o(n−2) (87)

Note that the numbers above are rounded o� to three decimal place. We observe the
following points for n−2 order term.
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Figure 7:
−1

ED when ϵ ∼ SN(3)

Table 3: I.D.E. & R.S.S. for SN(3) error distribution

I.D.E. R.S.S.
x ∼ N10(0, I10) * 101(10)

x ∼ t10(0, I10, 4.2) * 536(70)
x is controlled * 105(10)
x is i.i.d.P (4.2) * 1499(210)

1. The dimension of p is three, hence if p increases with a constant p − n ratio, n−2

order term could diverge for some given α and the moments of x. Then it is not
enough to increase the sample size proportionally to the number of the explanatory

variables in order to keep
α

ED at a certain level.

2. m3, m21 and m111 appear in the expansion that do not appear in the case of
Np(0, Ip) or tp(0, Ip, ν). The e�ect of these moments are rather complicated and
depends on α and p, For example, when p is large enough, the larger absolute value

of m21 decreases the approximated
α

ED for α = −1, but vice versa for α = 1, 0, 2.

3. The larger m4 and m22 decreases
α

ED if α2 − 2.451α− 8.570 < 0, namely

−1.95 · · · < α < 4.40 · · · .

Again α's such as −1, 0, 1, 3 are all included in this interval.

We made a numerical comparison under the condition p = 10 and n = 12k, which

means p − n ratio equals 1/k. Figure 7 is the graph of the approximated
−1

ED's corre-
sponding to each distribution above-mentioned except for the controlled distribution as

k varies from 5 to 100. We put as the benchmark the approximated
−1

ED of the binomial

model B(k, 0.5). The graph of the approximated
−1

ED for the case where x has Pareto
distribution is still decreasing when k is around 100, hence the approximation is only
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Figure 8:
−6

ED when ϵ ∼ SN(3)

feasible when k > 100. We observe again that large values of m4 and m22 of Pareto
distribution P (4.2) or t-distribution t(4.2) lead to easier estimation than the case of
normal distribution N(0, 1) when α = −1. However, just like the case when the error
term has a normal distribution or t-distribution, the order of di�culty in the estimation
is completely reversed with another α. For example, see Figure 8 for the case when
α = −6.
We considered I.D.E. and R.S.S. w.r.t. Kullback-Leibler divergence under the condi-

tion p = 10 for each distribution of x. Table 3 shows the result. I.D.E. tells us that with
any case of the moments of x, the regression model is easier to be estimated than the
binomial model with the same p − n ratio. If we divide R.S.S. with the number in the
parenthesis, it is always less than 12. This means the p − n ratio is always larger than
that of the binomial model which has the same level of estimation di�culty as the regres-
sion model. Especially when the distribution (moments) of x is given as t-distribution
or Pareto distribution, it makes the estimation easier.

3.4 Comparison between di�erent error distributions

In this subsection, under a �xed distribution (moments) of x, we compared the approx-

imated
α

ED's for the three error distributions: the standard normal distribution (say
α

EDn), the t-distribution with the d.f. of 3 (say
α

EDt) and the skew-normal distribution

with the shape parameter of 3 (say
α

EDs). All comparisons are made under the condition
p = 10, n = 12k.

The order of the approximated
α

ED among the three error distributions depends on α.
We pick up two values of α, α = −1 and α = −6 as contrasting cases and summarized
the results in Table 4. We notice that the order is completely reversed between α = −1

and α = −6. Under the �xed α,
α

EDn,
α

EDt,
α

EDs keep the same order irrespective of the
distribution of x.

We also present the graphs of
−1

EDn,
−1

EDt,
−1

EDs for each �xed distribution (moments)
of x with the reference to that of the normal coin toss model B(k, 0.5). We notice that
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Table 4: Comparison between di�erent error distributions

α = −1 α = −6

x ∼ N10(0, I10)
−1

EDt >
−1

EDn >
−1

EDs

−6

EDs >
−6

EDn >
−6

EDt

x ∼ t10(0, I10, 4.2)
−1

EDt >
−1

EDn >
−1

EDs

−6

EDs >
−6

EDn >
−6

EDt

x is controlled
−1

EDt >
−1

EDn >
−1

EDs

−6

EDs >
−6

EDn >
−6

EDt

x is i.i.d.P (4.2)
−1

EDt >
−1

EDn >
−1

EDs

−6

EDs >
−6

EDn >
−6

EDt

there is only little di�erence among the three error distributions and the normal coin
toss model for the Kullback-Leibler divergence, especially when the distribution of x is
N10(0, I10) or controlled.
As for I.D.E. and R.S.S., we can make the comparison between di�erent error term

distributions if we look through Tables 1, 2 and 3 with a �xed distribution of x. I.D.E.
again indicates that the regression model can be more easily estimated than the coin
toss model with any of the three error distributions.Though R.S.S. shows the sample size
required do not di�er so much among the error term distributions, if pressed, t(3) requires
a bit larger size of samples. If we divide R.S.S with the number in the parenthesis, we
notice that t(3) is always larger than the other distributions.

4 Real Data �non-homogeneous explanatory

variables�

In this section we deal with two real datasets. As well as examples of non-homogeneous
explanatory variables, these datasets serves as concrete cases to which the general re-
sults in the previous sections can be applied. We calculate the sample moments of the
explanatory variables of those datasets and use them as examples of the following mo-
ments of x (These datasets also include the dependent variables, but we do not use them
here.)

m[i, j, k] = E[xixjxk] m[i, j, k, l] = E[xixjxkxl] 1 ≤ i, j, k, l ≤ p. (88)

First in order to standardize x as in (2), we transform x into its principal component
scores. Then we calculate the moments of the transformed x,

n−1

n∑
t=1

xtixtjxtk n−1

n∑
t=1

xtixtjxtkxtl 1 ≤ i, j, k, l ≤ 11,

and use them instead of (88) for the calculation of the aggregated sample moments

M2a ≜
∑

i,j,k∈I

m2[i, j, k] (89)
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Figure 9:
−1

ED when x ∼ N10(0, I10)

Figure 10:
−1

ED when x ∼ t10(0, I10, 4.2)

Figure 11:
−1

ED when x is controlled

Figure 12:
−1

ED when x is i.i.d. as Pareto(4.2)
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M2b ≜
∑

i,j,k∈I

m[i, i, k]m[j, j, k] (90)

M1 ≜
∑
i,k∈I

m[i, i, k, k]. (91)

Actually
α

ED is a�ected by the moments of x only through these aggregated moments.
(See the last part of Appendix A of [8].)
Since the results for those datasets are quite similar among di�erent α's (α = −1, 0, 1,−6, 6),

we focus ourselves on the case α = −1.

� Example 1: Wine Quality �
This is the famous dataset on wine quality used in Cortez et.al. [4]. The data �le is avail-
able at U.C.I. Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets
/Wine+Quality). We used the white wine dataset. The dataset is as follows;
y (dependent variable) = (yt)1≤t≤n: the quality score of the wine form 0 to 10.
x (explanatory variables) = (xti)1≤t≤n,1≤i≤11: n × 11 real value data on the quantity of
the chemical substances in the wines . Each column is the data for the corresponding
explanatory variable. x1: ��xed acidity�, x2: �volatile acidity�, ... , x11: �alcohol�.
n (sample size): 4898

The values of (89) to (91) for this dataset are as follows;

M2a = 0.000326899, M2b = 0.000230836, M1 = 0.116967. (92)

M2a or M2b is the summation over 113 pieces of the squared 3-dimensional joint mo-

ments of x. Since their averages M2a/11
3 and M2b/11

3 are quite small compared to the
unit variance of xi, this indicates x are quite symmetric around the origin. M1/11

2 is
also much smaller than 1, hence the distribution of x has shorter tail than the normal

distribution.
α

ED is given as

α

ED =



6.5

n
+

6.386α2 + 48.804α + 91.026

n2
if ϵ ∼ N(0, 1),

6.5

n
+

1.927α2 + 13.948α + 89.043

n2
if ϵ ∼ t(3),

6.5

n
+

8.586α2 + 71.639α + 104.856

n2
if ϵ ∼ SN(3).

(93)

Figure 13 (k varies from 5 to 200) shows the graphs of
−1

ED for three error distributions

under this moments of x and n = 13k. We also put the graph of
−1

ED of B(0.5, k) as a

reference. We see that
−1

ED's of the four cases are quite close to each other. There is
almost no di�erence among the error distributions. Besides, the estimation di�culty of
the regression model is similar to that of the normal coin toss with the same p− n ratio
irrespective of the error distributions.
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Figure 13:
−1

ED for the wine data

Table 5: I.D.E. & R.S.S. for the wine data

I.D.E. R.S.S.
N(0, 1) 0.66 130(10)
t(3) 0.81 135(10)

SN(3) * 130(10)

I.D.E. and R.S.S. is stated in Table 5. I.D.E. shows that when the error distribution
is SN(3), then the estimation is the easiest and that when ϵ ∼ t(3), the estimation
gets slightly more di�cult. As for R.S.S., we notice that there is very little di�erence
among the three error distributions and that the estimation is relatively easy. Around
130 samples guarantee as easy estimation as the 10-times normal coin toss problem.
We can evaluate the actual sample size 4898 of this dataset by answering the following

question; how large sample size n for the normal coin toss model B(0.5, n) is required
in order to attain the same level of easiness in the estimation as the regression model
with the moments of x as in (92) and the sample size 4898 ? For example, if the error
distribution is N(0, 1), then the answer is given as the solution of the equation

1

2n
+

1

8n2
((α′)2 − 5α′ + 6) =

6.5

4898
+

6.386α2 + 48.804α + 91.026

48982
, (94)

where the left-hand side is (74) with M = 4.
The rounded solution when α = −1 equals 376 or 377 for the three error distributions,
which means the sample size 4898 for the regression is equivalent to the 376 (377) times
normal coin toss in view of the estimation di�culty. We see that the estimation is fairly
easy with this sample size.

� Example 2: Communities and Crime �
This data combines socio-economic data for each community within USA from the 1990
US Census, law enforcement data from the 1990 US LEMAS survey, and crime data from
the 1995 FBI U.C.R.. You can download the data �le from U.C.I. Machine Learning
Repository (https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime).
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The original data contains 124 explanatory variables from �population� to �PolicBudg-
PerPop�. We excluded the explanatory variables that contains missing data (denoted by
"?" in the original dataset) . Besides we excluded the variable "numbUrban","PctRecImmig8"
and "OwnOccMedVal" because the following correlations exceed 0.99: Corr(�population�,
�numUrban�), Corr(�PctRecImmig5�,�PctRecImmig8�), Corr(�PctRecImmig8�,�PctRecImmig10�),
Corr(�OwnOccLowQuart�,�OwnOccMedVal�). After this process, the dataset is as fol-
lows;
y (dependent variable) = (yt)1≤t≤n: The candidates of y are 18 attributes from �mur-
ders� (the number of the murders committed in the community) to �nonViolPerPop�(the
number per capita of non-violent crimes committed in the community). They are the
numbers of the committed crimes categorized in various ways.
x (explanatory variables) = (xti)1≤t≤n,1≤i≤99: n×99 real value data on the socio-economic
character of the community. x1: �population�, x2: �household�(mean people per house-
hold) ,..., x99: �LemasPctO�cDrugUn�(the percent of o�cers assigned to drug units ).
n (sample size): 2215
We used principle component sores as the standardized x. The aggregated sample mo-
ments are given by

M2a = 1708.97, M2b = 1749.28, M1 = 2604.5.

M2a/99
3, M2b/99

3 and M1/99
2 are much smaller than unit. Like the wine data, the

distribution of x is symmetric and short-tailed. Using these values we calculated
α

ED,
which is given by

α

ED =



50.5

n
+

294.547α2 + 1949.71α + 2953.58

n2
if ϵ ∼ N(0, 1),

50.5

n
+

137.758α2 + 111.409α + 3376.96

n2
if ϵ ∼ t(3),

50.5

n
+

526.088α2 + 3232.22α + 1976.26

n2
if ϵ ∼ SN(3).

(95)

Figure 14 (k varies from 5 to 200) shows the graphs of
−1

ED for the three error distributions

under these moments of x and n = 101k. We also put the graph of
−1

ED of B(0.5, k) as

a reference. The comment for Example 1 holds for this data. We see that
−1

ED's for the
three error distributions are almost same. Compared to the normal coin toss with the
same p− n ratio, the regression model is on the same level for the estimation di�culty.
You can see I.D.E. and R.S.S. in Table 6. We notice that it is slightly harder to

estimate the parameters when ϵ ∼ t(3), but, generally speaking, for the regression
model with these moments of x, estimating the parameters is not a hard task if we have
around 1000 samples. We evaluate the sample size 2215 in a similar way to (94). If the
error distribution is N(0, 10), then solving the equation

1

2n
+

1

8n2
((α′)2 − 5α′ + 6) =

50.5

2215
+

294.547α2 + 1949.71α + 2953.58

22152
(96)
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Figure 14:
−1

ED for the crime data

Table 6: I.D.E. & R.S.S. for the crime data

I.D.E. R.S.S.
N(0, 1) * 987(10)
t(3) 0.72 1025(10)

SN(3) * 947(10)

gives us an evaluation of the actual sample size. When α = −1, the rounded solution
is 22 or 23 for the three error distributions. Though this number is much smaller than
376(377) in Example 1, the estimation is still not a hard task since 22-times normal coin
toss gives us plenty of information.

5 Summary and Discussion

•
α

ED is constant for the parameter β, σ.

• The main term (n−1 term) of the asymptotic expansion of
α

ED is (p + 2)/n, that
is, p− n ratio.

• For the second term (n−2 term) of the expansion, we observe the following points.

1. The maximum dimension of p depends on the error term distribution. It can
be more than two as in the case ϵ ∼ SN(3), where it is not enough to increase
the sample size proportionally to p for reliable estimation (so called "the curse
of dimension").

2. The joint moments that appear in the term is maximally of the forth order.
What moments appear is di�erent among the error term distributions. If it is
a quadratic distribution (e.g. N(0, 1), t(ν) ), then the moments m4 and m22

only appear.

3. The e�ect of m4 and m22 depends on α. When α = −1, 0, 1, 3, the larger
m4 and m22 decreases the di�culty of the estimation. In a geometrical view,
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there is no preference among α's. Each α gives its own geometrical structure
to Riemannian manifold formed by the parametric distribution model (see
e.g. Amari and Nagaoka [3]). However there might be values for α that is
�natural� in a statistical sense or �appropriate� for a purpose of the statistical
analysis.

4. The e�ect of the error term distributions also depends on α. For example,
the order of the estimation di�culty among the three error distributions is
quite di�erent between α = −1 and α = −6.

5. The di�erence between the three error term distributions we investigated is
relatively small if we use Kullback-Leibler divergence.This might be due to
the assumption that we know the error term distributions, hence are able to
use m.l.e. In most applications, the actual error term distribution is unknown,
and m.l.e. is not applicable. It is of much interest what would happen to the
risk of the predictive distribution, if we use another estimator such as the
least squares estimator.

• We proposed measuring the (asymptotic) di�culty of estimation by the approxi-

mated
α

ED and tried to give a suggestion on the sample size. It is a method com-

paring the approximated
α

ED of the regression model to that of a binomial model
B(n,m). I.D.E. tells the di�culty of estimation by the value of m of B(k,m),
which has the same p − n ratio as the regression model (1) of the sample size
(p + 2)k. R.S.S. gives the sample size n for the regression model which leads to
the same di�culty of estimation as B(10, 0.5) (If it is needed, a more large value
than 10 will be used for the binomial model).

1. Though there exist small di�erence between the error term distributions and
the moments of x, in most cases we investigated, the regression model is easier
to be estimated than the normal coin toss B(k, 0.5) under the same p−n ratio
1/k.

2. The sample size n = 10(p + 2) guarantees the good performance of the esti-
mation at the same level as the 10-times normal coin toss irrespective of the
error term distributions and the moments of x which we investigated in this
paper.
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