Past history of hepatocellular carcinoma is an independent risk factor of treatment failure in patients with chronic hepatitis C virus infection receiving

direct-acting antivirals

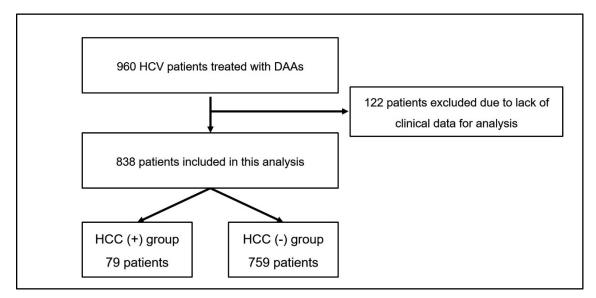

Ayumi Sugiura, Satoru Joshita, Takeji Umemura, Tomoo Yamazaki, Naoyuki Fujimori, Takefumi Kimura, Akihiro Matsumoto, Koji Igarashi, Yoko Usami, Shuichi Wada, Hiromitsu Mori, Soichiro Shibata, Kaname Yoshizawa, Susumu Morita, Kiyoshi Furuta, Atsushi Kamijo, Akihiro Iijima, Satoko Kako, Atsushi Maruyama, Masakazu Kobayashi, Michiharu Komatsu, Makiko Matsumura, Chiharu Miyabayashi, Tetsuya Ichijo, Aki Takeuchi, Yuriko Koike, Yukio Gibo, Toshihisa Tsukadaira, Hiroyuki Inada, Kendo Kiyosawa, Eiji Tanaka

Table of contents

Supplementary Figure	12
----------------------	----

Supplementary Figure 1.

Selection flowchart of patients enrolled in this study.

Abbreviations: DAA, direct-acting antiviral; HCC, hepatocellular carcinoma

Past history of hepatocellular carcinoma is an independent risk factor of 1 $\mathbf{2}$ treatment failure in patients with chronic hepatitis C virus infection receiving 3 direct-acting antivirals 4 Ayumi Sugiura ¹⁾^{\$}, Satoru Joshita ^{1) 2)}^{\$}, Takeji Umemura ^{1) 2)}^{*}, Tomoo Yamazaki ¹⁾, 5Naoyuki Fujimori ¹⁾, Takefumi Kimura ¹⁾, Akihiro Matsumoto ^{1) 3)}, Koji Igarashi ⁴⁾, 6 Shuichi Wada ⁶⁾, Hiromitsu Mori ⁶⁾, Soichiro Shibata ⁶⁾, Yoko Usami ⁵⁾, $\overline{7}$ Kaname Yoshizawa ⁷), Susumu Morita ⁷), Kiyoshi Furuta ⁸), Atsushi Kamijo ⁸), 8 9 Akihiro lijima ⁹⁾, Satoko Kako ⁹⁾, Atsushi Maruyama ¹⁰⁾, Masakazu Kobayashi ¹¹⁾, Michiharu Komatsu¹¹, Makiko Matsumura¹², Chiharu Miyabayashi¹³, Tetsuya 10 Ichijo ¹⁴⁾, Aki Takeuchi ¹⁵⁾, Yuriko Koike ¹⁶⁾, Yukio Gibo ¹⁷⁾, Toshihisa Tsukadaira 11 ¹⁸⁾, Hiroyuki Inada ¹⁹⁾, Kendo Kiyosawa ²⁰⁾, Eiji Tanaka ¹⁾ 1213141) Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu 15University School of Medicine, Matsumoto, Japan 162) Research Center for Next Generation Medicine, Shinshu University, Matsumoto, 17Japan 183) Consultation Centers for Hepatic Diseases, Shinshu University Hospital,

- 19 Matsumoto, Japan
- 204) Bioscience Division, TOSOH Corporation, Kanagawa, Japan
- 215) Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto,

22 Japan

236) Department of Gastroenterology, Japanese Red Cross Society Nagano Hospital,

Nagano, Japan

- 257) Department of Gastroenterology, National Hospital Organization, Shinshu Ueda
- 26 Medical Center, Ueda, Japan
- 278) Department of Gastroenterology, National Hospital Organization, Matsumoto

28 Medical Center, Matsumoto, Japan

299) Department of Internal Medicine, Nagano Prefectural Kiso Hospital, Kiso, Japan

3010) Department of Gastroenterology, Ina Central Hospital, Ina, Japan

3111)Department of Gastroenterology, Japanese Red Cross Society Suwa Hospital,

32 Suwa, Japan

3312)Department of Gastroenterology, Nagano Chuo Hospital, Nagano, Japan

3413)Department of Gastroenterology, Chikuma Central Hospital, Chikuma, Japan

3514)Department of Gastroenterology, Japanese Red Cross Society Azumino

36 Hospital, Azumino, Japan

3715)Aki Naika Clinic, Saku, Japan

3816)Kawanakajima Clinic, Nagano, Japan

3917)Gibo Hepatology Clinic, Matsumoto, Japan

4018)Department of Gastroenterology, Kenwakai Hospital, lida, Japan

4119)Kanebako Internal Medicine Clinic, Nagano, Japan

4220)Gastroenterology Center, Aizawa Hospital, Matsumoto, Japan

43

44 \$: These authors contributed equally to this work.

45

- 46 *Corresponding author:
- 47 Takeji Umemura, M.D., Ph.D., Department of Medicine, Division of
- 48 Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1
- 49 Asahi, Matsumoto 390-8621, Japan
- 50 Tel.: +81-263-37-2634
- 51 Fax: +81-263-32-9412
- 52 E-mail: tumemura@shinshu-u.ac.jp

53

54 Keywords: Direct-acting antivirals, hepatitis C virus, failure

55

- 56 Electronic word count: 2,533
- 57 Number of figures and tables: 1 figure and 5 tables

59 Abstract

60 Direct-acting antiviral (DAA) treatment can achieve a high sustained virological response (SVR) rate in patients with hepatitis C virus (HCV) infection regardless 61 of a history of hepatocellular carcinoma (HCC [+]). We examined 838 patients 62 (370 men, median age: 69 years) who were treated with DAAs for comparisons 63 64 of clinical findings between 79 HCC (+) (9.4%) and 759 HCC (-) (90.6%) patients and associations with treatment outcome. Male frequency was significantly 65higher in the HCC (+) group (60.8% vs. 42.4%, p = 0.006). There were 66 67 significant differences between the HCC (+) and HCC (-) groups for platelet count (115 vs. 152 x10⁹/L, p < 0.001), baseline AFP (9.9 vs. 4.5 ng/ml, p < 0.001), 68 and the established fibrosis markers of FIB-4 index (4.7 vs. 3.0, p < 0.001), APRI 69 (1.1 vs. 0.7, p = 0.009), M2BPGi (3.80 vs. 1.78 COI, p < 0.001), and autotaxin 70 71(1.91 vs. 1.50 mg/L, p < 0.001). The overall SVR rate was 94.7% and significantly lower in the HCC (+) group (87.3 vs. 95.5%, p = 0.001). Multivariate 72analysis revealed that a history of HCC was independently associated with DAA 73treatment failure (odds ratio: 3.56, 95% confidence interval: 1.32-9.57, p = 0.01). 7475In conclusion, patients with chronic HCV infection and prior HCC tended to exhibit more advanced disease progression at DAA commencement. HCC (+) 76

status at the initiation of DAAs was significantly associated with adverse
therapeutic outcomes. DAA treatment for HCV should therefore be started as
early as possible, especially before complicating HCC.

81 **1 Introduction**

With an estimated 130–170 million people chronically infected 82 worldwide including 1.5 million cases in Japan, hepatitis C virus (HCV) infection 83 has become a global health concern, Chronic long-term HCV infection 84 eventually results in severe liver disease manifesting as advanced fibrosis, 85cirrhosis, and hepatocellular carcinoma (HCC) ¹⁻⁴. HCV eradication is the most 86 effective treatment to halt disease progression. During the late 1990s and early 87 2000s, major advances in interferon (IFN) and combinations of IFN or pegylated 88 IFN and ribavirin (RBV) were approved for chronic HCV infection to increase 89 sustained virological response (SVR) rates from 5% to 40-80% ^{5,6}. Progress in 90 the understanding of viral kinetics has provided tools to identify patients most 91 likely to attain a SVR, and insights into the HCV genome and proteins has also 92improved the efficacy and tolerability of HCV treatment, culminating in the 93 development of multiple direct-acting antivirals (DAAs) that target specific steps 94 within the HCV life cycle ⁷. The approval of DAAs has revolutionized therapy 95against HCV infection, with current SVR rates of over 90% despite factors like 96 97advanced age or the presence of cirrhosis ⁸.

98

Liver cirrhosis caused by chronic HCV infection is a leading risk factor

99	for the development of HCC, with an annual incidence rate of 1–8% per year ⁹ .
100	Although IFN therapy has been contraindicated for patients with cirrhosis and/or
101	HCC due to several side effects, DAAs have shown high tolerability and SVR
102	rates for such patients. Advanced fibrosis is a known risk factor of DAA treatment
103	failure ^{8,10-12} , but there remains debate on the clinical impact of a history of HCC
104	on DAA outcome. This study aimed to uncover the clinical features of patients
105	with prior HCC and determine the influence of this status on the therapeutic
106	results of DAAs in patients with chronic HCV infection.

107

2 Patients and Methods

109 **2.1 Patients**

In this retrospective, multi-center, cohort analysis across Nagano prefecture, Japan, a total of 960 patients with chronic HCV infection underwent DAA therapy at Shinshu University Hospital (Matsumoto, Japan) or its affiliated institutions between April 2015 and October 2017. After excluding cases lacking sufficient clinical data for analysis, 838 patients chronic HCV infection were ultimately enrolled (supplementary figure 1). The racial background of all patients was Japanese. The diagnosis of chronic hepatitis C was based on

previously reported criteria as the presence of serum HCV antibodies and
detectable HCV RNA ¹³. The presence of chronic HCV infection was defined as
detectable HCV RNA by the real-time polymerase chain reaction at the initiation
of therapy.

121 This study was reviewed and approved by the Institutional Review 122 Board of Shinshu University School of Medicine (approval number: 3244) and its 123 affiliated hospitals. Written informed consent was obtained from all participating 124 subjects. The study was conducted according to the principals of the Declaration 125 of Helsinki.

126

127 **2.2 Study design**

All patients in this cohort were registered upon commencing DAAs for age, gender, history of IFN treatment, history of a HCC complication, and comorbidities such as hypertension, diabetes, and hyperlipidemia.

The patients were treated with DAA regimens that included daclatasvir + asunaprevir (DCV+ASV) for 24 weeks ¹⁴ or ledipasvir/sofosbuvir (LDV/SOF), ombitasvir/paritaprevir/ritonavir (OBV/PTV/r), or elbasvir + grazoprevir (EBR+GZR) for 12 weeks for patients infected with HCV genotype 1, or with

SOF+RBV for 12 weeks for those with genotype 2, based on guidelines from the 135Japan Society of Hepatology¹⁵. Since a resistance-associated substitution 136 (RAS) at position 93 of the HCV NS5A region (NS5A-Y93H) was reported to 137reduce the effectiveness of DCV+ASV ¹⁶, patients with this variant were advised 138to wait for next generation DAA therapies for as long as possible. Individuals 139140 who were unable to postpone treatment due to clinical reasons including progression to liver cirrhosis or advanced age were treated with DCV+ASV. A 141 SVR12 was defined as undetectable HCV RNA at 12 weeks after completion of 142143DAA therapy. Treatment failure was defined as detectable HCV RNA during treatment or within 12 weeks of completion or discontinuation of DAAs. 144

145

146 **2.3 Laboratory testing**

All laboratory data, such as hemoglobin, platelet count, albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alpha fetoprotein (AFP), were determined using standard methods at respective institutions.

151

152 **2.4 Fibrosis markers**

153	The fibrosis-4 (FIB-4) index and AST-to-platelet ratio index (APRI)
154	were respectively calculated as: age (years) × AST (IU/L) / (platelet count [$10^{9}/L$]
155	\times ALT [IU/L] $^{1/2})$ 17 and (AST / upper limit of normal; 40 IU/L) \times (100 / platelet
156	count [10 ⁹ /L]) 18,19 . Isolated blood samples were immediately stored at -20°C
157	until testing. Serum autotaxin (ATX) antigen concentration was simultaneously
158	measured using frozen serum samples by a specific two-site enzyme
159	immunoassay with an AIA-2000 system (Tosoh Co., Tokyo, Japan) as described
160	previously ²⁰⁻²² . The recently established macrophage galactose-specific lectin-2
161	binding protein glycosylation isomer (M2BPGi) fibrosis marker was quantified as
162	earlier described ²³ .
162 163	earlier described ²³ .
	earlier described ²³ . 2.5. Resistance testing of NS5A-Y93H for DCV+ASV therapy
163	
163 164	2.5. Resistance testing of NS5A-Y93H for DCV+ASV therapy
163 164 165	2.5. Resistance testing of NS5A-Y93H for DCV+ASV therapy The NS5A-Y93H RAS was detected by RT-PCR as described
163 164 165 166	2.5. Resistance testing of NS5A-Y93H for DCV+ASV therapy The NS5A-Y93H RAS was detected by RT-PCR as described
163 164 165 166 167	2.5. Resistance testing of NS5A-Y93H for DCV+ASV therapy <u>The NS5A-Y93H RAS was detected by RT-PCR as described</u> previously ²⁴ , with a value of 20% or more defined as NS5A-Y93H-positive.

171	expressed as the median \pm interquartile range and statistically evaluated by
172	means of the Mann-Whitney U test. Categorical variables are presented as the
173	frequency (percentage) and were analyzed using the chi-square test. Cutoff
174	values were identified by the Youden index, and the nearest clinically applicable
175	value to the cutoff was considered as the optimal threshold for clinical
176	convenience. Multivariate analysis was performed using regression analysis with
177	stepwise method after categorizing continuous variables to minimize
178	interference. All statistical tests were two-sided and evaluated at the 0.05 level of
179	significance.
180	
	3 Results
180 181 182	3 Results 3.1 Baseline clinical characteristics
181	
181 182	3.1 Baseline clinical characteristics
181 182 183	3.1 Baseline clinical characteristics The baseline clinical characteristics in this study are summarized in
181 182 183 184	3.1 Baseline clinical characteristics The baseline clinical characteristics in this study are summarized in Table 1. Of the 838 enrolled patients, 370 (44.2%) were male and 468 (55.8%)
181 182 183 184 185	 3.1 Baseline clinical characteristics The baseline clinical characteristics in this study are summarized in Table 1. Of the 838 enrolled patients, 370 (44.2%) were male and 468 (55.8%) were female and median age was 69 years. Roughly half of patients were

189	classified as HCC (-). The number of patients who were treated with DCV+ASV,
190	LDV/SOF, OBV/PTV/r, EBV+GRZ, and SOF+RBV was 288, 267, 22, 60, and
191	201, respectively. The overall SVR rate was 94.7% in our cohort.
192	
193	3.2 Comparisons between HCC (+) and HCC (-) groups
194	Comparisons of the clinical characteristics of the HCC (+) and HCC (-)
195	groups are presented in Table 1. The HCC (+) group was significantly older (p <
196	0.001), and the frequency of male HCC (+) patients was significantly higher
197	(60.8 vs. 42.4%, p = 0.002). Other significant differences for the HCC (+) group
198	included lower platelet count (115 vs. 152 $\times 10^9$ /L, p < 0.001), higher baseline
199	AFP (9.9 vs. 4.5 ng/ml, p < 0.001), and higher scores for FIB-4 index (4.7 vs. 3.0,
200	p < 0.001), APRI (1.1 vs. 0.7, p = 0.009), M2BPGi (3.80 vs. 1.78 COI, p < 0.001),
201	and ATX (1.91 vs. 1.50 mg/L, p < 0.001). Interestingly, the overall SVR rate was
202	significantly lower in the HCC (+) group than in the HCC (-) group (87.4 vs.
203	95.4%, p = 0.001).
204	
205	3.3 Comparisons of DAA treatment failure and SVR groups

206 Comparisons of clinical characteristics between DAA failure and SVR

207	groups are shown in Table 2. There were significant differences for platelet count
208	(138 vs. 151 x10 ⁹ /L, p = 0.012), albumin (3.9 vs. 4.1 g/dL, p = 0.002), AST (50 vs.
209	37 U/L, p = 0.002), FIB-4 index (3.9 vs. 3.0, p < 0.001), APRI (1.2 vs. 0.7, p <
210	0.001), M2BPGi (2.38 vs. 1.86 COI, p = 0.004), and ATX (1.80 vs. 1.51 mg/L, p =
211	0.001). The frequency of HCC (+) was significantly higher in the DAA failure
212	group than in the SVR group (22.7 vs. 8.7% , p = 0.001).

213

3.4 Predictive ability of clinical markers for DAA treatment failure

We assessed the ability of clinical markers to predict DAA treatment 215failure using receiver operating characteristic (ROC) analysis for continuous 216 variables. As shown in Figure 1, the area under the ROC curve (AUROC) for 217platelet count, albumin, AST, FIB-4 index, APRI, M2BPGi, and ATX was 0.680, 218219 0.630, 0.602, 0.684, 0.672, 0.564, and 0.635, respectively. Based on determined AUROC values, the optimal cutoff value, sensitivity, specificity, positive 220predictive value, negative predictive value, and accuracy in relation to DAA 221treatment failure were calculated and summarized in Table 3. HCC history 222223showed the highest accuracy in terms of DAA treatment failure prediction.

3.5 Predictors of DAA treatment failure in univariate and multivariate analysis

227	The univariate predictors of HCV treatment failure presented in Table 4
228	identified significant associations for platelet count < 152 x 10^9 /L (DAA failure vs.
229	SVR: 49.2 vs. 31.8%, p = 0.02), albumin < 4.0 g/dL (72.8 vs. 41.7%, p < 0.001),
230	FIB-4 index ≥ 3.25 ²⁵ (54.1 vs. 28.6%, p = 0.02), APRI ≥ 1.0 (68.1 vs. 42.9%, p =
231	0.02), M2BPGi ≥ 2.2 COI (56.2 vs. 45.0%, p = 0.16), ATX ≥ 2.2 mg/L 20 (80.3 vs.
232	64.9%, p = 0.02), and HCC (+) (22.7 vs. 8.7%, p = 0.001).
233	Multivariate analysis confirmed that HCC (+) status (odds ratio [OR]:
234	3.56, 95% confidence interval [CI] 1.32-9.57) was an independent risk factor
235	predicting DAA treatment failure (Table 4).
235 236	predicting DAA treatment failure (Table 4).
	predicting DAA treatment failure (Table 4). 3.6 Comparisons between DAA treatment failure and SVR patients without
236	
236 237	3.6 Comparisons between DAA treatment failure and SVR patients without
236 237 238	3.6 Comparisons between DAA treatment failure and SVR patients without HCC history
236 237 238 239	3.6 Comparisons between DAA treatment failure and SVR patients without HCC history Since a history of HCC was the highest independent DAA failure factor,

than did the SVR group, suggesting that clinically progressed disease could also
be associated with DAA outcome in the cohort.

245

```
246 4 Discussion
```

This study identified two important clinical features of a history of HCC in chronic HCV under DAA treatment: 1) patients with prior HCC receiving DAAs exhibited more advanced pre-treatment liver disease progression than those without, and 2) a history of HCC was an independent risk factor of treatment failure with oral DAAs. These findings have important clinical implications on the optimal timing of chronic HCV infection treatment.

The patients with a history of HCC in this cohort were significantly older 253than those without and were more frequently male. These results were 254consistent with a previous report that showed independent predictive factors of 255complicating HCC in HCV infection to be male and over 60 years of age ²⁶. The 256subjects with prior HCC also exhibited lower platelet count, lower albumin, 257higher AST, and higher fibrosis marker scores for FIB-4 index, APRI, M2BPGi, 258and ATX, indicating more progressed liver fibrosis. It is important to understand 259the natural history of HCV infection, whereby chronic HCV infection slowly but 260

significantly progresses to HCC over time ¹ in the absence of eradication therapy
²⁷. Moreover, a HCC history was more frequent in patients with genotype 1 HCV
than in those with genotype 2, suggesting that genotype 1 led to more advanced
disease progression in support of previous reports ^{26,28}. Thus, patients with prior
HCC may require more intensive care during DAA treatment considering their
disease status.

To date, it remains uncertain whether a history of HCC influences DAA 267outcome. Although active HCC at the initiation of HCV therapy has been 268significantly associated with DAA treatment failure ²⁹, such treatment is not 269 approved in Japan and so no patient had active HCC at the commencement of 270DAAs. Our results demonstrated that subjects with past HCC achieved a lower 271SVR rate than did those without, which was confirmed by multivariate analysis. 272273Several factors are reportedly associated with DAA treatment failure, including fibrosis, cirrhosis, and drug regimen and adherence ^{8,16,30-33}. The present 274findings indicate that a history of HCC should be included as a failure risk factor 275as well. 276

The molecular and biological mechanisms of DAA failure in relation to HCC history remain unresolved. There were significant differences in M2BPGi

279	and ATX between the study groups, suggesting the involvement of multiple
280	mechanisms since M2BPGi and ATX reflected both fibrosis and hepatitis activity
281	^{20,34} and have been considered to exhibit pleiotropic functions. Genetic
282	polymorphisms, such as interleukin 28B and HCV core-region substitutions,
283	have been linked to IFN treatment outcome and HCC complications ^{35,36} ; indeed,
284	the frequency of IFN treatment failure in our cohort was significantly higher in the
285	DAA failure group (53.7%) than in the SVR group (37.0%; p = 0.032). Moreover,
286	tumor-associated antigen (TAA)-specific CD8+ T-cell responses have been
287	correlated to impaired IFN-gamma production in patients with HCC, which
288	indicated exhaustion of TAA-specific CD8 ⁺ T cells ³⁷ . The exhaustion of
289	HCV-specific CD8 ⁺ T cells by mechanisms involving the expression of inhibitory
290	receptors has been associated with HCV eradication as well ³⁸ . Taken together,
291	there are likely other unknown molecular and biological mechanisms modulating
292	the influence of prior HCC on DAA failure that merit future study. Meanwhile,
293	HCC history represents an important indicator easily obtained in medical
294	interviews that may reliably predict DAA failure.
295	In certain populations, testing for pre-existing RASs is considered
296	beneficial prior to the use of certain regimens, such as DCV+ASV. Our strategy

was that if patients harboring the NS5A-Y93H RAS could no longer postpone 297298treatment due to age, disease progression, or other clinical reasons, they commenced DCV+ASV instead of waiting for next-generation DAAs. Accordingly, 299the DCV+ASV cohort showed lower platelet count and higher AFP that did the 300 other regimen groups (median platelet count: 132 vs. 158 $\times 10^{9}$ / L, p < 0.001, and 301 302median AFP: 6.2 vs. 4.5 ng/mL, p = 0.037), indicating more advanced disease progression. As reported previously ¹⁶, RAS was an independent and the 303 strongest failure risk factor in DCV+ASV therapy (OR: 2.15, 95% CI 1.37-3.37, p 304 < 0.001). Indeed, RASs should be considered in DAA treatment planning to 305306 maximize SVR rates.

Our study has several limitations apart from its retrospective design. 307 Since patients with Child–Pugh class B and C cirrhosis were not approved for 308DAA therapy in Japan were not included, the risk factors and optimal timing of 309 DAAs for such patients require further investigation. Second, the merits of 310 311treating patients before advanced progression of hepatic disease have been clearly shown, with several-fold decreases in the risk of death and development 312of HCC ³⁹. It was also reported that a past history of HCC was independently 313 associated with HCC recurrence after achieving a SVR ⁴⁰. Therefore, the 314

³¹⁵ long-term outcome of HCC history requires attention in the future.

316	In conclusion, chronically infected HCV patients with a history of HCC
317	showed more advanced disease progression at the onset of DAA therapy. As
318	prior HCC at the initiation of DAAs was significantly associated with treatment
319	failure, DAA treatment for HCV should be induced as early as possible,
320	especially before complicating HCC.
321	
322	Acknowledgments
323	The authors thank Trevor Ralph for his English editorial assistance. We
324	sincerely appreciate the research support provided in part by a Grant-in-Aid for
325	Scientific Research from the Ministry of Education, Science, Sports, and Culture
326	of Japan (18K07907) and the Promotion Project of Education, Research, and
327	Medical Care from Shinshu University Hospital.
328	
329	Additional information

330 Conflict of interest: Koji Igarashi is an employee of TOSOH Corporation. 331 The remaining authors declare that they have nothing to disclose regarding 332 funding from industries or other conflicts of interest with respect to this

manuscript.

334		References
335	1.	Kiyosawa K, Sodeyama T, Tanaka E, et al. Interrelationship of blood
336		transfusion, non-A, non-B hepatitis and hepatocellular carcinoma:
337		analysis by detection of antibody to hepatitis C virus. Hepatology.
338		1990;12:671-675.
339	2.	Scheel TK, Rice CM. Understanding the hepatitis C virus life cycle paves
340		the way for highly effective therapies. Nat Med. 2013;19:837-849.
341	3.	Thomas DL. Global control of hepatitis C: where challenge meets
342		opportunity. Nature medicine. 2013;19:850-858.
343	4.	Tanaka E, Kiyosawa K. Natural history of acute hepatitis C. J
344		Gastroenterol Hepatol. 2000;15 Suppl:E97-104.
345	5.	Fried MW, Shiffman ML, Reddy KR, et al. Peginterferon alfa-2a plus
346		ribavirin for chronic hepatitis C virus infection. New England Journal of
347		Medicine. 2002;347:975-982.
348	6.	Manns MP, McHutchison JG, Gordon SC, et al. Peginterferon alfa-2b plus
349		ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment
350		of chronic hepatitis C: a randomised trial. The Lancet. 2001;358:958-965.
351	7.	Poordad F, Dieterich D. Treating hepatitis C: current standard of care and
352		emerging direct-acting antiviral agents. J Viral Hepat. 2012;19:449-464.
353	8.	Majumdar A, Kitson MT, Roberts SK. Systematic review: current concepts
354		and challenges for the direct-acting antiviral era in hepatitis C cirrhosis.
355		Aliment Pharmacol Ther. 2016;43:1276-1292.
356	9.	El - Serag HB, Kanwal F. Epidemiology of hepatocellular carcinoma in the
357		United States: where are we? Where do we go? Hepatology.
358		2014;60:1767-1775.
359	10.	Boccaccio V, Bruno S. Management of HCV patients with cirrhosis with
360		direct acting antivirals. Liver International. 2014;34:38-45.
361	11.	Foster GR, Irving WL, Cheung MC, et al. Impact of direct acting antiviral
362		therapy in patients with chronic hepatitis C and decompensated cirrhosis.
363		Journal of hepatology. 2016;64:1224-1231.

- Foster GR, Irving WL, Cheung MC, et al. Impact of direct acting antiviral
 therapy in patients with chronic hepatitis C and decompensated cirrhosis.
 J Hepatol. 2016;64:1224-1231.
- McGovern BH, Birch CE, Bowen MJ, et al. Improving the diagnosis of
 acute hepatitis C virus infection with expanded viral load criteria. *Clin Infect Dis.* 2009;49:1051-1060.
- 14. Chayama K, Takahashi S, Toyota J, et al. Dual therapy with the
 nonstructural protein 5A inhibitor, daclatasvir, and the nonstructural
 protein 3 protease inhibitor, asunaprevir, in hepatitis C virus genotype
 1b-infected null responders. *Hepatology.* 2012;55:742-748.
- JSH Guidelines for the Management of Hepatitis C Virus Infection: A 2014
 Update for Genotype 1. *Hepatol Res.* 2014;44 Suppl S1:59-70.
- Karino Y, Toyota J, Ikeda K, et al. Characterization of virologic escape in
 hepatitis C virus genotype 1b patients treated with the direct-acting
 antivirals daclatasvir and asunaprevir. *J Hepatol.* 2013;58:646-654.
- 379 17. Vallet Pichard A, Mallet V, Nalpas B, et al. FIB 4: An inexpensive and
 380 accurate marker of fibrosis in HCV infection. comparison with liver biopsy
 381 and fibrotest. *Hepatology.* 2007;46:32-36.
- 18. Castéra L, Vergniol J, Foucher J, et al. Prospective comparison of
 transient elastography, Fibrotest, APRI, and liver biopsy for the
 assessment of fibrosis in chronic hepatitis C. *Gastroenterology*.
 2005;128:343-350.
- Joshita S, Umemura T, Ota M, Tanaka E. AST/platelet ratio index
 associates with progression to hepatic failure and correlates with
 histological fibrosis stage in Japanese patients with primary biliary
 cirrhosis. *J Hepatol.* 2014;61:1443-1445.
- Yamazaki T, Joshita S, Umemura T, et al. Association of Serum Autotaxin
 Levels with Liver Fibrosis in Patients with Chronic Hepatitis C. *Sci Rep.*2017;7:46705.
- 393 21. Joshita S, Ichikawa Y, Umemura T, et al. Serum autotaxin is a useful liver

fibrosis marker in patients with chronic hepatitis B virus infection. *Hepatol Res.* 2018;48:275-285.

Joshita S, Umemura T, Usami Y, et al. Serum Autotaxin Is a Useful
 Disease Progression Marker in Patients with Primary Biliary Cholangitis.
 Scientific Reports. 2018;8:8159.

- Umemura T, Joshita S, Sekiguchi T, et al. Serum Wisteria floribunda
 Agglutinin-Positive Mac-2-Binding Protein Level Predicts Liver Fibrosis
 and Prognosis in Primary Biliary Cirrhosis. *Am J Gastroenterol.*2015;110:857-864.
- Suzuki F, Sezaki H, Akuta N, et al. Prevalence of hepatitis C virus variants
 resistant to NS3 protease inhibitors or the NS5A inhibitor (BMS-790052)
 in hepatitis patients with genotype 1b. *J Clin Virol.* 2012;54:352-354.
- Yamasaki K, Tateyama M, Abiru S, et al. Elevated serum levels of
 Wisteria floribunda agglutinin-positive human Mac-2 binding protein
 predict the development of hepatocellular carcinoma in hepatitis C
 patients. *Hepatology*. 2014;60:1563-1570.
- Bruno S, Crosignani A, Maisonneuve P, Rossi S, Silini E, Mondelli MU.
 Hepatitis C virus genotype 1b as a major risk factor associated with
 hepatocellular carcinoma in patients with cirrhosis: a seventeen-year
 prospective cohort study. *Hepatology.* 2007;46:1350-1356.
- 414 27. Goossens N, Hoshida Y. Hepatitis C virus-induced hepatocellular 415 carcinoma. *Clinical and molecular hepatology.* 2015;21:105.

416 28. Kobayashi M, Tanaka E, Sodeyama T, Urushihara A, Matsumoto A,
417 Kiyosawa K. The natural course of chronic hepatitis C: a comparison
418 between patients with genotypes 1 and 2 hepatitis C viruses. *Hepatology.*419 1996;23:695-699.

Prenner SB, VanWagner LB, Flamm SL, Salem R, Lewandowski RJ, Kulik 42029. 421L. Hepatocellular carcinoma decreases the chance of successful hepatitis С 422virus therapy with direct-acting antivirals. J Hepatol. 2017;66:1173-1181. 423

- 30. Schneider MD, Sarrazin C. Antiviral therapy of hepatitis C in 2014: do we
 need resistance testing? *Antiviral Res.* 2014;105:64-71.
- 426 31. Pawlotsky JM. Treatment failure and resistance with direct-acting antiviral
 427 drugs against hepatitis C virus. *Hepatology.* 2011;53:1742-1751.
- 428 32. Perez AB, Chueca N, Garcia F. Resistance testing for the treatment of
 429 chronic hepatitis C with direct acting antivirals: when and for how long?
 430 *Germs.* 2017;7:40.
- 431 33. Pawlotsky J-M. Hepatitis C virus resistance to direct-acting antiviral drugs
 432 in interferon-free regimens. *Gastroenterology.* 2016;151:70-86.
- 433 34. Yamazaki T, Joshita S, Umemura T, et al. Changes in serum levels of
 434 autotaxin with direct-acting antiviral therapy in patients with chronic
 435 hepatitis C. *PLoS One.* 2018;13:e0195632.
- 436 35. Akuta N, Suzuki F, Hirakawa M, et al. Amino acid substitutions in hepatitis
 437 C virus core region predict hepatocarcinogenesis following eradication of
 438 HCV RNA by antiviral therapy. *J Med Virol.* 2011;83:1016-1022.
- 439 36. Tanaka Y, Nishida N, Sugiyama M, et al. Genome-wide association of
 440 IL28B with response to pegylated interferon-alpha and ribavirin therapy
 441 for chronic hepatitis C. *Nat Genet.* 2009;41:1105-1109.
- 442 37. Flecken T, Schmidt N, Hild S, et al. Immunodominance and functional
 443 alterations of tumor-associated antigen-specific CD8+ T-cell responses in
 444 hepatocellular carcinoma. *Hepatology.* 2014;59:1415-1426.
- 38. Bengsch B, Seigel B, Ruhl M, et al. Coexpression of PD-1, 2B4, CD160
 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen
 recognition and T cell differentiation. *PLoS Pathog.* 2010;6:e1000947.
- Veldt BJ, Heathcote EJ, Wedemeyer H, et al. Sustained virologic
 response and clinical outcomes in patients with chronic hepatitis C and
 advanced fibrosis. *Ann Intern Med.* 2007;147:677-684.
- 451 40. Conti F, Buonfiglioli F, Scuteri A, et al. Early occurrence and recurrence of
 452 hepatocellular carcinoma in HCV-related cirrhosis treated with
 453 direct-acting antivirals. *J Hepatol.* 2016;65:727-733.

Table 1. Baseline characteristics and comparisons of patients with or without HCC past history.

	All patients		HCC (+)		HCC (-)		HCC (+)
	(n=838)		(n=79)		(n=759)		vs. HCC (-)
	Median	IQR	Median	IQR	Median	IQR	p value
Age at enrollment (years)	69	(16-90)	72	(49-84)	69	(16-90)	<0.001
Gender (male / female)	370 / 468		48 (61%)		322 (42%)		0.002
Laboratory data							
WBC (h/L)	4510	(590-12,690)	4,100	(590-7,300)	4,600	(1,680-12,690)	<0.001
Hb (g/dL)	13.7	(5.6-18.8)	13.2	(9.2-16.9)	13.8	(5.6-18.8)	0.019
Platelet count (x10 ⁹ /L)	150	(10-410)	115	(34-277)	152	(27-410)	<0.001
Albumin (mg/dL)	4.1	(2.4-5.1)	3.9	(2.4-4.6)	4.2	(2.4-5.1)	<0.001
AST (U/L)	38	(10-370)	45	(21-174)	37	(10-370)	0.09
ALT (U/L)	38	(7-673)	48	(13-142)	37	(7-673)	0.526
AFP (ng/mL)	4.9	(0.9-381.0)	9.9	(1.7-381.0)	4.5	(0.9-162.9)	<0.001
eGFR (mL/min/1.73m ²)	70.1	(0.55-131.5)	69.9	(42.0-102.0)	71.0	(0.55-131.5)	0.794
Fibrosis markers							
FIB-4 index	3.0	(0.52 - 38.5)	4.7	(1.4-34.3)	3.0	(0.5 - 38.5)	<0.001
APRI	0.7	(0.13-21.5)	1.1	(0.2 - 8.3)	0.7	(0.1-21.5)	0.009
M2BPGi (COI)	1.85	(0.24-19.1)	3.80	(0.73-19.11)	1.78	(0.24-16.22)	<0.001
Autotaxin (mg/L)	1.51	(0.53-5.33)	1.91	(0.60-5.33)	1.50	(0.53-4.28)	<0.001
Cormorbidities							
Hypertension	40.3%		54.5%		38.6%		0.04
Diabetes	16.3%		11.4%		16.7%		0.35
Dyslipidemia	7.4%		5.4%		7.6%		0.48
Experienced							
Prior IFN	37.9%		54.1%		36.2%		0.002
Prior DAA	0.35%		0.00%		0.39%		0.44
RAS (Y93H)*	26.9%		3.6%		23.3%		0.72
•							

Regimens, number (%)				
Genotype 1				
DCV+ASV	288 (34.3)	35 (44.3)	253 (33.3)	0.772
LDV/SOF	267 (31.9)	27 (34.2)	240 (31.6)	
OBV/PTV/r	22 (2.6)	2 (2.5)	20 (2.7)	
EBV+GRZ	60 (7.2)	5 (6.3)	55 (7.2)	
Genotype 2				
SOF+RBV	201 (24.0)	10 (12.7)	191 (25.2)	
SVR (%)				
Overall	94.7	87.3	95.5	0.001
Genotype 1 (all)	94.5	87.0	95.4	0.003
First generation DAAs				
DCV+ASV	91.7	88.5	92.0	0.47
Second generation DAAs (all)	96.8	85.3	98.1	<0.001
LDV/SOF	97.0	85.1	98.3	<0.001
OBV/PTV/r	95.5	50.0	100	0.001
EBR+GZR	96.7	100	96.6	0.66
Genotype 2				
SOF+RBV	95.5	0.06	95.8	0.38
*: RAS was determined by PCR-Invader assavs in the DCV+ASV cohort.	ivader assavs in the DCV	/+ASV cohort.		

FIB-4, fibrosis-4 index; APRI, aspartate aminotransferase-to-platelet ratio index; M2BPGi, macrophage galactose-specific Abbreviations: HCC, hepatocellular carcinoma; IQR, interquartile range; WBC, white blood cells; Hb, hemoglobin; AST, aspartate aminotransferase; ALT, alanine aminotransferase; AFP, alpha fetoprotein; eGFR, estimate glomerular filtration rate; lectin-2 binding protein glycosylation isomer; IFN, interferon; DAA, direct-acting antiviral; RAS, resistance-associated substitution; DCV+ASV, daclatasvir+asunaprevir; LDV/SOF, ledipasvir/sofosbuvir; OBV/PTV/r, sustained SVR, sofosbuvir+ribavirin; EBR+GZR, elbasvir+grazoprevir; SOF+RBV, ombitasvir/paritaprevir/ritonavir; virological response

Sugiura A et al.

	DAA failu	DAA failure (n=44)	SVR (n=794	94)	
	Median	IQR	Median	IQR	p value
Age at enrollment (years)	69	(43-82)	69	(16-90)	0.255
Gender (male / female)	16 / 28	(36.4 / 63.6%)	354 / 440	(44.6 / 55.4%)	0.285
Laboratory data					
WBC (h/L)	4,185	(590-8,400)	4,530	(1,290-12,690)	0.070
Hb (g/dL)	13.4	(8.9-18.5)	13.8	(5.6-18.8)	0.179
Platelet count (x10 ⁹ /L)	138	(27-267)	151	(10-410)	0.012
Albumin (mg/dL)	3.9	(3.0-4.5)	4.1	(2.4 - 5.1)	0.002
AST (U/L)	50	(13-276)	37	(10-370)	0.002
ALT (U/L)	42	(11-199)	37	(7-673)	0.420
AFP (ng/mL)	7.0	(1.8-50.0)	4.8	(0.9-381.0)	0.970
eGFR (mL/min/1.73m ²)	64.9	(0.60-102.0)	70.5	(0.55-131.5)	0.467
Fibrosis markers					
FIB-4 index	3.9	(1.6-23.1)	3.0	(0.0-34.3)	<0.001
APRI	0.7	(0.3-5.2)	0.7	(0.0-8.5)	<0.001
M2BPGi (COI)	2.38	(0.41-18.52)	1.86	(0.24-19.11)	0.004
Autotaxin (mg/L)	1.80	(0.87-3.98)	1.51	(0.53-5.33)	0.001
Comorbidities					
Hypertension	20	20 (50.0%)	239	239 (39.6%)	0.198
Diabetes	2	5 (22.7%)	74	74 (15.9%)	0.399
Dyslipidemia	V	4 (9.3%)	51	51 (7.3%)	0.624
Past history of HCC	10	10 (22.7%)	69	69 (8.7%)	0.001
Experienced					
Prior IFN	22	22 (53.7%)	279	279 (37.0%)	0.032
Prior DAA	~	1 (2.3%)	2	(0.3%)	0.028
RAS (Y93H)*		4.7%	^I	22.2%	<0.001
Regimens, number (%)					

Table 2. Clinical comparisons of DAA treatment failure and SVR groups.

0.083**				
264 (33.2)	259 (32.6)	21 (2.7)	58 (7.3)	192 (24.2)
24 (54.5)	8 (18.2)	2 (2.3)	1 (4.5)	9 (20.5)
DCV+ASV	LDV/SOF	OBV/PTV/r	EBV+GRZ	SOF+RBV

*: RAS was determined by PCR-Invader assays in the DCV+ASV cohort.

**: The frequency of HCC (+) in the DCV+ASV group was significantly higher than that of the other combined regimens: 24 of 288 (8.3%) vs. 20 of 530 (3.8%), p = 0.004

cells; Hb, hemoglobin; AST, aspartate aminotransferase; ALT, alanine aminotransferase; AFP, alpha fetoprotein; eGFR, RAS, resistance-associated substitution; DCV+ASV, daclatasvir+asunaprevir; LDV/SOF, ledipasvir/sofosbuvir; OBV/PTV/r, Abbreviations: DAA, direct-acting antiviral; SVR, sustained virological response; IQR, interquartile range; WBC, white blood macrophage galactose-specific lectin-2 binding protein glycosylation isomer; HCC, hepatocellular carcinoma; IFN, interferon; estimate glomerular filtration rate; FIB-4, fibrosis-4 index; APRI, aspartate aminotransferase-to-platelet ratio index; M2BPGi ombitasvir/paritaprevir/ritonavir; EBV+GRZ, elbasvir+grazoprevir; SOF+RBV, sofosbuvir+ribavirin

•
a
et
∢
Ŋ
.⊇
ð
ົດ

	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	Accuracy (%)
Albumin < 4.0 g/dL	58	72	6	97	72.7
Platelet count < 152 x 10^9 /L	68	49	7	06	50.2
AST ≧ 40 U/L	28	47	7	67	53.8
FIB-4 index ≧ 3.25	71	54	7	97	54.9
APRI ≧ 1.0	57	68	8	97	67.7
M2BPGi ≧ 3.0 COI	43	73	8	96	71.2
Autotaxin ≧ 2.2 mg/L	35	80	0	96	77.9
Past history of HCC	23	91	13	96	87.7

Table 3. Diagnostic performance of clinical markers related to DAA failure.

Abbreviations: DAA, direct-acting antiviral; PPV, positive predictive value; NPV, negative predictive value; AST, aspartate aminotransferase FIB-4, fibrosis-4 index; APRI, aspartate aminotransferase-to-platelet ratio index; M2BPGi, macrophage galactose-specific lectin-2 binding protein glycosylation isomer; HCC, hepatocellular carcinoma

p value 0.06 0.06 0.01 Odds ratio (95% CI) 3.56 (1.32-9.57) 2.35 (0.95-5.77) 2.50 (0.93-6.70) Multivariate p value <0.001 0.001 0.02 0.02 0.02 0.05 0.02 0.01 Odds ratio (95% CI) 3.75 (1.71-8.21) 2.82 (1.11-7.14) 2.20 (1.11-4.38) 3.09 (1.51-6.30) 2.07 (1.09-3.93) 2.95 (1.17-7.44) 2.84 (1.20-6.67) 1.84 (0.98-3.48) Univariate Platelet count < 152×10^9 /L Autotaxin ≧ 2.2 mg/L FIB-4 index ≧ 3.25 M2BPGi ≧ 3.0 COI Past history of HCC Albumin < 4.0 g/dL AST ≧ 40 U/L APRI ≧ 1.0

Table 4. Multivariate predictors of DAA treatment failure in the study population.

APRI, aspartate aminotransferase-to-platelet ratio index; M2BPGi, macrophage galactose-specific lectin-2 binding protein Abbreviations: DAA, direct-acting antiviral; CI, confidence interval; AST, aspartate aminotransferase; FIB-4, fibrosis-4 index; glycosylation isomer; HCC, hepatocellular carcinoma

Table 5. Comparisons of clinical characteristics between DAA failure and SVR patients in subjects without HCC history

	DAA failure (n=34)		SVR (n=725)		
	Median	IQR	Median	IQR	p value
Age at enrollment (years)	72	(43-81)	68	(16-90)	0.231
Gender (male / female)	10 / 24	(29.4 / 70.6%)	312/413	(43.0 / 57.0%)	0.116
Laboratory data					
WBC (µ/L)	4,285	(1,960-8,400)	4,600	(1,680-12,690)	0.277
Hb (g/dL)	14.4	(8.9-18.5)	15.3	(5.6-18.8)	0.258
Platelet count (x10 ⁹ /L)	107	(27-267)	117	(10-410)	0.075
Albumin (mg/dL)	3.8	(3.0-4.5)	4.2	(2.4-5.1)	0.001
AST (U/L)	54	(26-124)	36	(21-370)	0.001
ALT (U/L)	39	(11-199)	37	(7-673)	0.488
AFP (ng/mL)	6.5	(1.8-39.3)	4.5	(0.9-162.9)	0.559
eGFR (mL/min/1.73m ²)	64.4	(0.6-97.0)	71.0	(0.5-131.5)	0.106
Fibrosis markers					
FIB-4 index	4.0	(1.06-38.5)	3.0	(0.52-19.4)	<0.001
APRI	1.6	(0.1-21.5)	0.6	(0.1-7.8)	<0.001
M2BPGi (COI)	1.55	(0.41-16.22)	1.77	(0.24 - 15.53)	0.011
Autotaxin (mg/L)	1.90	(0.87-3.98)	1.48	(0.53-4.28)	0.002
Cormorbidities, number (%)					
Hypertension	16 (51.6)		207 (38.0)		0.129
Diabetes	5 (31.3)		69 (16.2)		0.113
Dyslipidemia	4 (11.8)		47 (7.4)		0.350
Experienced					
Prior IFN Prior DAA	18 (56.3) 1 (20.0)		243 (35.3) 2 (4.5)		0.016 0.172
Regimens, number (%)					

0.052			
233 (32.1) 236 (32.6)	20 (2.8)	53 (7.3)	183 (25.2)
20 (58.8) 4 (11.8)	0 (0.0)	2 (5.9)	8 (23.5)
DCV+ASV LDV/SOF	OBV/PTV/r	EBV+GRZ	SOF+RBV

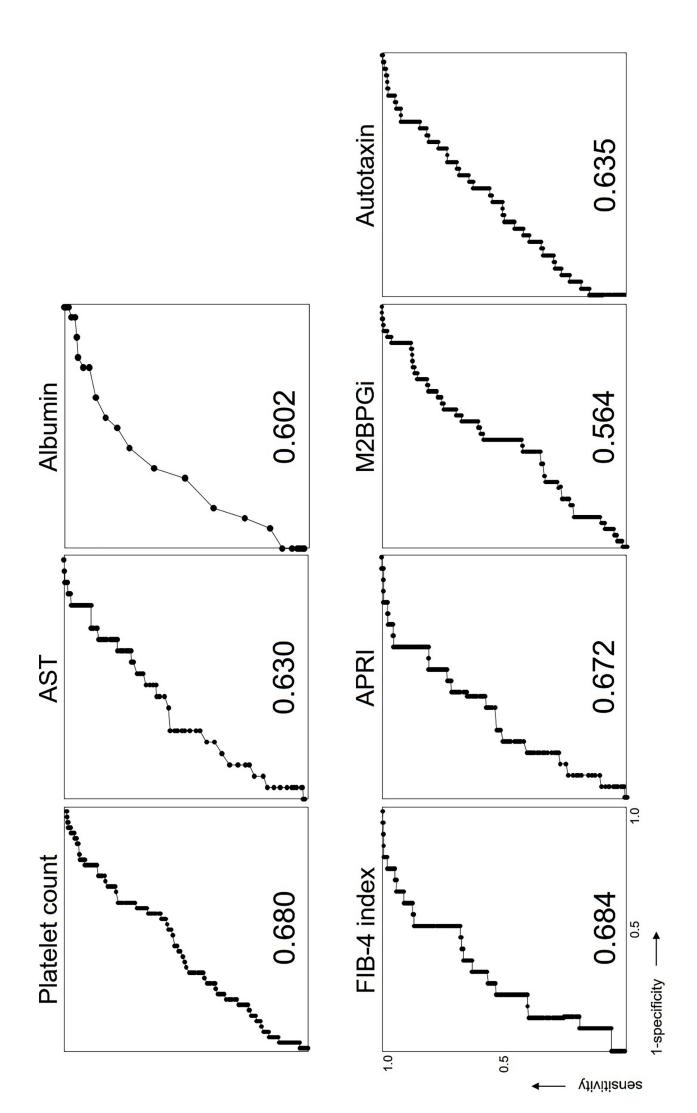

interquartile range; WBC, white blood cells; Hb, hemoglobin; AST, aspartate aminotransferase; ALT, alanine aminotransferase; AFP, alpha fetoprotein; eGFR, estimate glomerular filtration rate; FIB-4, fibrosis-4 index; APRI, aspartate aminotransferase-to-platelet ratio index; M2BPGi, macrophage galactose-specific lectin-2 binding protein glycosylation isomer; IFN, interferon; DCV+ASV, daclatasvir+asunaprevir; LDV/SOF, ledipasvir/sofosbuvir; OBV/PTV/r, ombitasvir/paritaprevir/ritonavir; EBR+GZR, elbasvir+grazoprevir; SOF+RBV, sofosbuvir+ribavirin Abbreviations: DAA, direct-acting antiviral; SVR, sustained virological response; HCC, hepatocellular carcinoma; IQR,

Figure Legends

Figure 1.

Diagnostic ability of platelet count, AST, albumin, FIB-4, APRI, M2BPGi, and autotaxin to predict DAA treatment failure in HCV patients. The area under the receiver operating characteristic curve for each marker is shown.

Abbreviations: AST, aspartate aminotransferase; FIB-4, fibrosis-4 index; APRI, aspartate aminotransferase-to-platelet ratio index; M2BPGi, macrophage galactose-specific lectin-2 binding protein glycosylation isomer; DAA, direct-acting antiviral; HCV, hepatitis C virus

