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1.1. Research background 

In 2016, the average life expectancy at birth of Japanese men and women 

was 81.0 and 87.1 respectively. On the other hand, the health life expectancy at 

birth of Japanese men and women was 72.1 and 74.8 years respectively. The 

health life expectancy at birth means the life period without health problems [1-

1]. There is approximately 10 years gap between the life expectancy and the 

health life expectancy. Both the life expectancy and the health life expectancy 

have become long, but the gap has not changed much since 2001 [1-1]. Living in 

unhealthy state ruins not only happiness of life but also quality of life. 

Considering that population aging is expected to accelerate even further in Japan, 

the medical expenses and grant of nursing care payment are estimated to further 

increase in the future [1-2], [1-3]. The problem of the gap between the life 

expectancy and the health life expectancy is not merely the Japanese problem but 

also the global problem. In 2016, the global average life expectancy at birth was 

69.8 years for males and 74.2 years for females. However, the global health life 

expectancy at birth was 62.0 years for males and 64.8 years for females [1-4]. 

There is also approximately 10 years gap between two expectancies. The global 

aging is well-known problem, the population rate over 65 years old is estimated 

to reach 17.8 % in 2060 [1-5]. Therefore, closing the gap between the average life 

expectancy and the health life expectancy is a global task to be solved. 
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Figure 1-1.  Gap between life expectancy and health life expectancy in 2016 

 

The advancement of age and the shortage of doctor have result in increased 

demand for home healthcare which adapt to lifestyle and preventive medical care 

for preventing disease through self-care and health maintenance [1-6]–[1-8]. 

Moreover, the single-person households are globally on the rise. The amount of 

single-person households is estimated to increase. Especially, the percentage of 

elderly people living alone is predicted to increase with the aging of society [1-5], 

[1-9]–[1-11]. Aging certainly leads to lower physical function. Therefore, the 

elderly person needs more careful healthcare than the young. Especially, in case 

of single-person householders, it is difficult to deal with emergencies such as 

sudden illness. To prevent the sudden illness, the daily health check is effective 

because the daily health check can find small changes in physiology. Thinking 

that the number of patient with hypertension increases with aging, it is important 

to grasp the standard of own blood pressure. 
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According to the survey by Ministry of Health, Labour and Welfare in Japan, 

the number of the patients suffering from hypertensive diseases is approximately 

10 million, and the medical expenses for these patients are above 1.7 trillion yen 

in 2017 [1-2], [1-12]. The Japanese Society of Hypertension estimated that the 

number of person with hypertension was approximately 43 million. Therefore, if 

persons have hypertension, most of them do not visit a medical institution. Same 

as in Japan, there are many people who have hypertension in the world. 

According to the survey by World Health Organization, over 1 billion people 

worldwide are estimated to have hypertension, and 1 in 4 men and 1 in 5 women 

had hypertension in 2015 [1-13]. Hypertension is called a “silent killer.” As its 

name suggests, hypertension may have no warning signs or symptoms and most 

people with hypertension could not be aware of the problem. If hypertension 

state continues, various symptoms such as early morning headaches, nosebleeds, 

irregular heart rhythms, vision changes, and buzzing in the ears occur. When 

hypertension advances in severity, it can run fatigue, nausea, vomiting, 

confusion, anxiety, chest pain, and muscle tremors. Moreover, it increases risk of 

various complications and leads to deadly diseases. Continuation of 

hypertension burdens blood vessel. Then, it loses the elasticity and flexibility of 

blood vessel, increases thickness of blood vessel wall. This is the arteriosclerosis 

by hypertension. This arteriosclerosis occurs not only at large blood vessel but 

also at small blood vessel. Moreover, the heart is forced to stand high blood 

pressure and cardiac hypertrophy occurs [1-14]. Consequently, hypertension 

causes heart disease and cerebrovascular disease. The top 2 global cause of death 

was ischemic heart disease and stroke [1-15]. As mentioned above, hypertension 



6 

 

is major risk of these diseases. For these reasons, regular blood pressure 

measurement is essential to prevent such dreadful diseases. The blood pressure 

strongly depends on the physical and mental health conditions. Additionally, 

some hypertension is difficult to find by the blood pressure measurement at the 

medical checkup or the medical institution. For example, “nocturnal 

hypertension,” blood pressure does not drop at night and “early-morning 

hypertension,” blood pressure does not drop even in the early morning. 

Therefore, continuous monitoring is desirable to notice the early signs of diseases. 

Furthermore, it is recommended to measure blood pressure at home because 

blood pressure measured at home has higher ability to predict stroke risk than 

that measured in the health examination [1-16].  
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1.2. Demand for development of health monitoring device and current 

situation 

To solve problems written above, the quick development of home 

healthcare support system is task in medical treatment and welfare field. 

Therefore, the simple vital sign measurement system for home healthcare has 

been highly demanded [1-7], [1-8], [1-17]. Additionally, the demand of the own 

healthcare for healthy person has also increased in recent years [1-18]. To fulfill 

these demands, it is effective to monitor the vital signs. Here, vital sign means 

the physiological information which plainly indicates health condition. Blood 

pressure, pulse rate, respiration rate and body temperature are mainly called 

vital signs. Glucose level, urinary output and consciousness level are also 

categorized as vital sign since they are necessary for life support [1-19], [1-20]. 

Vital sign continues to change by physical condition, changes in the autonomic 

nervous system or change in mental condition such as stress and strain. Therefore, 

continuous vital sign monitoring is important for health maintenance and for 

early detection of disease. 

Conventional vital sign measurement system has various problems. A big 

problem of conventional vital sign measurement device is its size or type. Main 

type of conventional vital sign measurement systems are too big to carry and is a 

stationary type; hence, they give the user a sense of restraint and continuous 

measurement is quite difficult [1-7]. Focusing on the conventional blood pressure 

measurement device, oscillometric method and korotcoff method are commonly 

used. These methods give pressure on the wrist or upper-arm by cuff for 

measuring blood pressure. Omron Corporation solved the device size problem 
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and released a smart watch which can measure blood pressure using ocillometric 

method [1-21]. However, it is reported that the correct blood pressure value 

cannot be measured caused by the pressure given by cuff [1-22], [1-23]. Therefore, 

the cuff-less measurement is preferable for the blood pressure measurement. For 

the cuff-less blood pressure measurement, the development of the blood pressure 

measurement device using optical sensor system has been advanced. Emitting 

the light from light emitting diode (LED) to the skin surface and detecting the 

reflected or transmitted light by photo diode (PD), the blood volume change in 

arteries is measured. Suzuki and Oguri adapted a multiple regression analysis to 

calculate estimation equation of blood pressure from individual information and 

features of photoplethysmograph signal in each class [1-24]. Atomi et al. reported 

the experiments that blood pressure value was estimated from the feature 

amount of pulse wave measured by plethysmogram and individual information 

such as age, height, and weight [1-25]. The blood pressure estimation methods 

by analyzing the feature amount of photoplethysmograph by machine learning 

were also presented [1-26], [1-27]. However, optical measurement system also has 

various problems. The system has serious disadvantage that the absolute value 

of blood volume change cannot be measured [1-28]. It is greatly affected by skin 

color and moisture such as perspiration, and low-temperature burn caused by 

the light source energy and the pressure when fixing prove has also been 

confirmed [1-29]. The cuff-less blood pressure measurement methods using pulse 

transit time (PTT), pulse wave velocity (PWV) or pulse arrival time (PAT) were 

also reported [1-30]–[1-32]. These methods are not suitable for the wearable 

measurement because of two reasons. They need to use optical sensor which may 
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hurt skin and to fix two or more sensors such as electrocardiogram.  
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1.3. Advantages of vital sign measurement using FBG sensor 

As written above, the vital sign measurement system has various problem 

to be solved and the many researchers have tackled them. However, each vital 

sign measurement system are studied separately and the study for multi vital 

sign measurement system using only one sensor is hardly exist. Increasing the 

demand and importance for vital sign measurement, the development of 

measurement system which can monitor as many vital signs as possible at once 

is desirable. My research group has used fiber Bragg grating (FBG) sensor aiming 

development of wearable, non-invasive and continuous multi vital sign 

measurement system. FBG sensor is generally used for strain detection of 

architecture. I employed it as a vital sign sensor. Just by attaching it on the surface 

of skin, small change of pulse pressure can be detected. FBG sensor is an optical-

fiber-type strain sensor, and small, low-cost, have excellent corrosion resistance 

and have no risk of low temperature burns. Moreover, it is not affected by water, 

can detect strain with high sensitivity and high accuracy. These features are 

suitable for the developing wearable vital sign sensor. Taking advantage of the 

sensor shape, it can be incorporated into the woven fabric [1-33], [1-34]. Therefore, 

if the smart cloth which is inserted the FBG sensor is realized, the unconscious 

and continuous measurement will be possible in daily life. Furthermore, FBG 

sensor is not affected by electromagnetic noise. Therefore, using optical fiber, 

increasing the length of the interval between detection part and sensor part, FBG 

sensor system can used with magnetic resonance imaging (MRI) which gives an 

electromagnetic effect and in special environments such as high concentration 

oxygen room where electronic device cannot be used. It means that continuous 
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vital sign measurement while using various medical inspection devices can be 

realized by using the FBG sensor. For these reasons, FGB sensor system is 

applicable for both of general home and medial institution. 
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1.4. Outline of this study 

The goal of this study is a development wearable multi vital sign 

measurement device and its prevalence. The purpose of this dissertation was to 

improve the blood pressure measurement function using FBG sensor system and 

to widen the applicability of FBG sensor system as a multi vital sign 

measurement device. 

 Chapter 2, I investigated the relationships between the pulse wave signal 

obtained by the FBG sensor and the second derivative of the plethysmogram 

(SDPTG) signal. Comparing the pulse wave signal obtained by the FBG sensor 

with the SDPTG signal, I confirmed whether the signal measured by the FBG 

sensor can be used for the vascular age and arteriosclerosis estimation as well as 

the SDPTG signal. 

 The verification whether FBG sensor system can trace sudden blood 

pressure change was performed in Chapter 3. The abrupt blood pressure change 

was simulated by the cold pressor test. The verification was essential as a 

wearable and continuous blood pressure monitoring device because the abrupt 

change in blood pressure burdens the blood vessel and causes of onset of 

hypertension and dreadful disease such as stroke and heart attack. 

 Two experiments aiming to improve the accuracy of blood pressure value 

estimation and to make the FBG sensor system versatile were performed in 

Chapter 4 and 5. To make our system generally applicable, it is necessary to 

establish blood pressure estimation method adapted not for individual but for 

people in general. Therefore, in Chapter 4, estimation result with Partial Least 

Square Regression (PLSR) and with Artificial Neural Network (ANN) were 
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compared. Furthermore, I constructed the calibration curve by Partial Least 

Square Regression (PLSR) with classified pulse wave signal and non-classified 

pulse wave signal to know whether the classification of pulse wave signal pattern 

is effective for improving the blood pressure value estimation. I calculated the 

blood pressure value using the two calibration curves and compared the results 

in Chapter 5.  

 In Chapter 6, a summary of this dissertation is presented. 
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2.1. Introduction 

In recent years, the increase in medical expenses has become a social 

problem owing to the increase in the aging population [2-1]. The medical 

expenses of patients with circulatory system diseases is over 5.9 trillion yen, and 

the estimated number of patients per day in medical care institutions is over 1 

million in Japan [2-2], [2-3]. 

In particular, arteriosclerosis causes circulatory system diseases—namely, 

heart diseases such as cardiac infarction and cerebrovascular diseases such as 

cerebral apoplexy. Blood vessels typically have sufficient elasticity and flexibility 

to carry oxygen and nutrition. However, due to aging and lifestyle diseases, the 

elasticity and flexibility is lost and it is the main cause of arteriosclerosis. 

Moreover, a daily check is essential because arteriosclerosis often has no 

symptoms. Therefore, a continuous measurement device is desired. Additionally, 

the measurement device needs to be transportable, noninvasive, and physically 

unconstraining. Conventional measuring devices have limitations such as 

stationarity and the physical stress generated by the cuff. 

One simple method for estimating the degree of arteriosclerosis exists, 

which uses the second derivative of the plethysmogram (SDPTG) signal. The 

plethysmogram expresses a change in the volume of blood. However, the 

plethysmogram has the problem that its reading is difficult because the base line 

sway is large, and the inflection point of the waveform has little undulation. In 

contrast, the base line oscillation of SDPTG is small and the inflection point of the 

waveform is emphasized [2-4], [2-5]. The shape of the SDPTG signal is known to 

change according to the blood circulation state, age, or past medical history. 
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Using the relative value of the inflection point of the SDPTG signal, the vascular 

age is estimated. This method can be applied with a conventional acceleration 

pulse wave meter. However, the photoelectric plethysmogram wave meter is 

affected by the skin color and sweat. Furthermore, it only measures the amount 

of oxyhemoglobin and does not record any other vital sign information. 

To overcome these limitations of conventional devices, I proposed a 

wearable device that can measure multiple vital signs using a fiber Bragg grating 

(FBG) sensor. The FBG sensor is an optical-fiber-type strain sensor, which has a 

high sensitivity and precision. Noninvasive and physically unconstrained 

measurement is possible because the FBG sensor is extremely thin and light. 

Moreover, the sensor is not affected by electromagnetic noise. Therefore, it can 

be used in special environments such as magnetic resonance imaging (MRI) 

rooms, making it is suitable for continuous vital sign measurement. 

Various medical applications that involve the use of the FBG sensor have 

been extensively developed. Witt et al. reported a medical textile with an FBG 

sensor for monitoring the respiratory movement [2-6]; Ho et al. presented an 

FBG-based vascular access device that specializes in arterial localization [2-7]. 

Presti et al. proposed an FBG-based wearable system for both respiratory and 

cardiac monitoring [2-8]. Lukasz et al. monitored the vital signs of patients 

during an MRI survey by using an FBG sensor [2-9]. Elsarnagwy et al. presented 

embedded FBG sensors that are used to simultaneously measure vital signals 

such as respiration, heartbeat, and body motion signals in the form of a smart 

costume [2-10]. 

In previous studies, the usefulness of FBG sensors for various vital sign 
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measurements was demonstrated [2-11]–[2-18]. It was found that an FBG sensor 

could measure the signal corresponding to the expansion and contraction of an 

artery—namely, the pulse wave—just by attaching it to the surface of the skin. 

By performing a multivariate analysis to the pulse wave signals, the blood 

pressure and blood glucose level can be calculated. The shape of the pulse wave 

signal obtained by the FBG sensor resembles that of the SDPTG signal [2-11]. The 

purpose of study in this chapter is to confirm whether the signal measured by 

the FBG sensor can be used to estimate the vascular age and arteriosclerosis, 

similar to the signal measured by the SDPTG signal, by comparing the tendency 

of the pulse wave signal with that measured by the SDPTG signal. I focused on 

the shapes of the pulse wave signals measured by the FBG sensor and then 

classified them into seven patterns according to the classification of Sano et al. [2-

4]. In this chapter, I present the results of the influences of age progression and 

the blood pressure in the shape of the signal. Further, I compare the tendency of 

the shape change with that of the SDPTG signal. The addition of the system for 

estimating the vascular age and arteriosclerosis to my multiple-vital-sign 

measurement system using the FBG sensor aids in the realization of improved 

health monitoring. 
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2.2. Principles of the FBG Sensor System 

In this experiment, I used FBG sensor systems (PF25-S01, PF20: Nagano 

Keiki, Inc., Tokyo, Japan) and an amplified spontaneous emission (ASE) light 

source. Figure 2-1 shows a schematic of the sensor part. The FBG is the periodic 

change in the refractive index constructed in the core of the optical fiber and 

works as a wavelength-selective mirror. Broadband near-infrared light is emitted 

from the ASE light source and propagates through the optical fiber. The only 

wavelength that is reflected in the FBG is called the Bragg wavelength , which 

is expressed as 

 (1) 

where  is the effective refractive index of the grating in the fiber core and  

is the grating interval. When pressure is applied to the sensor, the grating interval 

changes. Therefore, the Bragg wavelength also changes according to (1). The 

effective refractive index is 1.5, the measurement range is 1550 ± 0.5 nm, and the 

length of the sensor part is 10 mm. 

Figure 2-2 shows the optical system of the PF25-S01 FBG sensor system. 

A shift in the Bragg wavelength is detected as an interference phase shift by the 

Mach–Zehnder interferometer. Then, the change in the strain of the sensor part 

is calculated using the wavelength shift [2-19], [2-20]. The resolutions of the 

wavelength shift and distortion are 0.1 pm and 0.08 μstrain, respectively [2-21]. 

Figure 2-3 shows a schematic of the PF-20 FBG sensor system. The Bragg 

wavelength is measured by comparing the light reflected from the FBG sensor 

with the light output from the wavelength reference unit. Then, the change in the 

strain of the sensor part is calculated using the wavelength shift. The resolutions 
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of the wavelength shift and distortion are 0.1 pm and 0.08 μstrain, respectively 

[2-21]. These high strain measurement systems enable the measurement of pulse 

waves. In this experiment, the amplitude of the FBG signal related to the strain 

induced by a pulse is more than 2 pm. Therefore, considering that the resolution 

of the wavelength shift is 0.1 pm, the signal-to-noise ratio is 26 dB [2-11]. 

 

 

Figure 2-1.  Schematic of the sensor part 

 

 

Figure 2-2.  Optical system of the PF25-S01 FBG sensor system 
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Figure 2-3.  Schematic of the PF20 FBG sensor system 
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2.3. Experimental Methods 

The FBG sensor needs to be fixed at a pulsation point to measure a pulse 

wave signal. The surface of the human body has several pulsation points such as 

those at the wrist and neck [2-22]. The pressure in the blood vessels due to the 

blood flow propagates at these pulsation points well. In previous studies, we 

confirmed that pulse waves could be measured at these points using the FBG 

sensor [2-11]–[2-18]. In this chapter, I fixed the FBG sensor on the surface of the 

wrist using medical adhesive tape, as depicted in Figure 2-4, and measured the 

pulse wave signals. The pulsation points near the heart were not chosen in this 

chapter because the movement of the lungs due to respiration is detected as noise 

by the FBG sensor. 

A total of 195 persons (113 males and 82 females) aged 21–89 years were 

recruited in this chapter, and they were chosen at random for the experiment. 

The measurement position was the sitting or supine position according to the 

subject’s condition. The subjects stayed completely still and barely made any 

body movement during the measurements. The reference blood pressure was 

measured at the upper arm using a blood pressure pulse wave inspection 

apparatus (VS-1500N: FUKUDA DENSHI, Tokyo, Japan) or bedside monitor 

(PVM-2701: NIHON KOHDEN CORPORATION, Tokyo, Japan) at the same time 

as the FBG sensor measurements. The relative error in the blood pressure for this 

reference method was 3%. The measurement time using the FBG sensor was 

approximately 30 s, which is in accordance with the measurement time of the 

apparatus used to measure the reference value. The sampling frequencies of the 

PF25-S01 and PF20 FBG sensor systems were 10 and 1 kHz, respectively. 
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The pulse wave signal contained background noise such as the noise of the 

power supply of the interrogator circuit system and small oscillations. To reduce 

the effect of this noise, a bandpass filter with a frequency of 0.5–5.0 Hz was 

applied to the pulse wave signal [2-11]–[2-18]. Next, the first derivative of the 

filtered signal was acquired, which was then divided into one cycle from one 

peak to the next peak. A divided signal corresponds to a single heartbeat. The 

divided signals were averaged and normalized over the measurement time. In 

the normalization, the minimum and maximum points were set to 0 and 1, 

respectively. In addition, the number of sampling points was adjusted to the 

fewest number of samples. These signal processes were necessary to remove 

fluctuations in the pulse wave interval due to the pulse rate and breathing activity 

and the fluctuations due to the pressure exerted by the FBG sensor on the human 

body when it is attached. Then, the normalized signals were classified into seven 

patterns through visual observation according to the classification by Sano et al. 

[2-4]. 

The protocol of this study was approved by the Shinshu University Ethics 

Committee (Project identification code: No. 3202, Verification clinical trial with 

wearable vital sign measurement system). 
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Figure 2-4.  Image of measurement using the FBG sensor during the 

experiment 

 

Table 2-1.  The age composition of the subject 
  Sex  

  Male Female Total 

Age 

20–29 11 3 14 
30–39 5 7 12 
40–49 3 13 16 
50–59 18 11 29 
60–69 19 15 34 
70–79 31 16 47 
80–89 26 17 43 

 Total 113 82 195 
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Figure 2-5.  Signal processing flow 
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2.4. Experimental Results and Discussion 

2.4.1. Pulse Wave Signal Classification 

Figure 2-6 depicts the peaks (indicated as a toe) of the SDPTG signal. 

Peaks a and b are the systolic anterior components, which correspond to the drive 

pressure wave due to heart contraction. Peaks c and d are the systolic posterior 

components, which correspond to the drive pressure wave reflected from the 

peripheral vessel. Peak e is a diastolic anterior component [2-23]. Sano et al. 

reported that the acceleration pulse wave can be classified into seven patterns: 

A–G, as depicted in Figure 2-7. They reported that as circulation becomes worse 

or as aging progresses, the shape of the acceleration pulse wave changes from 

pattern A to pattern G [2-4]. A patient with high blood pressure tends to exhibit 

patterns C–G, which implies that the patient has poor blood circulation. Further, 

a patient with a vascular disease such as cerebrovascular disease and ischemic 

heart disease tends to exhibit patterns E–F. The conventional photoelectric 

plethysmogram wave meter uses the relative values of the peaks to estimate the 

vascular age and the degree of arteriosclerosis. Because the wave shape changes 

owing to factors such as exercise and medicine dosing, it can be used to evaluate 

the effects of exercise and medicine dosing. 

 



32 

 

 

Figure 2-6.  Peaks a–e of the SDPTG signal 

 

 

Figure 2-7.  Patterns of the SDPTG signal. 

 

Several pulse wave signals obtained by the FBG sensor in this experiment 

are shown in Figure 2-8. The pulse wave signals have five peaks and are similar 

to the SDPTG signal. By comparing the signals obtained by the FBG sensor with 

the classification scheme (Figure 2-7) and following the classification criteria 

described below, the obtained signals were classified as the most similar pattern.   

The classification criteria were set as below. First, if the peak b is clearly bigger 

than peak d, the signal can be classified as pattern A or B. Then, if peak c  0.5, 

the signal is classified as pattern A, otherwise as pattern B. Next, if the peak b  

peak d, the signal is classified as pattern C or D and if the peak c  0, the signal 

is classified as pattern C. Finally, if peak b > peak d, the signal can be classified 
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into pattern E, F or G. Then, if peak b < peak c, the pattern is E; if peak b  peak 

c, the pattern is F and if peak b > peak c, the pattern is G. This classification is 

performed by three person and the pattern was determined by majority vote. For 

instance, the pulse wave signal of Subject 26 was classified as pattern A. Likewise, 

the pulse wave signals of Subjects 66 and 89 were classified as patterns D and F, 

respectively. Eventually, the pulse wave signals of all 195 subjects were classified, 

as presented in Table 2-2. 

 

Table 2-2.  Classification Results of Pulse Wave Signals Obtained by the FBG 

Sensor Pattern 

  Pattern  

  A B C D E F G Total 

Age 

20–29 10 4 0 0 0 0 0 14 

30–39 2 8 0 1 0 1 0 12 

40–49 3 8 0 2 0 3 0 16 

50–59 7 9 2 10 0 1 0 29 

60–69 4 6 2 6 2 8 6 34 

70–79 4 13 3 19 2 4 2 47 

80–89 9 7 2 12 2 7 4 43 

 Total 39 55 9 50 6 24 12 195 
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(a) 

 

(b) 

 

(c) 

Figure 2-8.  Normalized pulse wave signals for Subjects (a) 26, (b) 66, and (c) 89 
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2.4.2. Change in the Shape of the Pulse Wave Signal Measured by 

the FBG Sensor According to Age 

The pulse wave signal measured by the FBG sensor was classified into 

seven patterns, A–G, as presented in Table 2-2. Figure 2-9 shows the percentages 

of wave shape patterns for various age groups. Subjects in their 20s and 30s 

tended to exhibit patterns A or B, and the percentages for the other patterns were 

low. However, as age increased, the percentages for patterns A and B decreased, 

and those for patterns C–G increased. This tendency corresponds to that of the 

SDPTG signal [2-4]. Therefore, the change in blood circulation with the increase 

in age can be reflected in the change in the shape of the pulse wave signal 

measured by the FBG sensor and enable the blood circulatory dynamics to be 

evaluated from changes in the waveform. 

 

 
Figure 2-9.  Percentages of the wave shape patterns according to age group for 

the signals measured by the FBG sensor 
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2.4.3. Change in the Shape of the Pulse Wave Signal Measured by 

the FBG Sensor According to the Blood Pressure Level 

According to the blood pressure levels set forth by the World Health 

Organization, I classified the pulse wave signals measured by the FBG sensor as 

normal, high-normal, and hypertensive blood pressure (Table 2-3). The 

classification results are shown in Figure 2-10. 

All patterns were observed at all blood pressure levels. However, as the 

blood pressure level worsened, the percentages of patterns E–G increased. This 

result was also similar to that for the SDPTG signal [2-4]. This implies that while 

the pattern of the pulse wave signal measured by the FBG sensor does not change 

with only the change in the blood pressure, subjects with a high blood pressure 

tend to exhibit a pattern that suggests poor blood circulation. 

Although the plethysmogram detects the amount of change in 

oxyhemoglobin, the FBG sensor measures the strain on the surface of the skin 

due to the change in the volume of an artery. Moreover, the strain is induced on 

the surface of the skin by the pressure exerted by the blood flow in the blood 

vessel. In other words, the pulse wave signal measured by the FBG sensor has 

information related to the blood flow and the flexibility of the blood vessel, which 

is why the blood pressure and blood glucose level can be predicted by the FBG 

sensor. Therefore, the pulse wave signal measured by the FBG sensor has more 

information than the plethysmogram. 
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Table 2-3.  Classification of blood pressure level by WHO 
 SBP DBP Condition 

Normal ~ 129 ~ 84 Satisfy both condition 
High-Normal 130 ~ 139 85 ~ 89 Satisfy at least one of condition 
Hypertensive 140 ~ 90 ~ Satisfy at least one of condition 

* SBP: Systolic blood pressure, DBP: Diastolic blood pressure 

 

 

Figure 2-10.  Percentages of the wave shape patterns according to blood 

pressure level for signals measured by the FBG sensor 
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2.5. Conclusion 

In this chapter, I focused on the shape of the pulse wave signal measured 

by an FBG sensor to confirm whether it can be used to estimate the vascular age 

and arteriosclerosis. The pulse wave signals measured by the FBG sensor were 

classified into seven patterns according to the classification of Sano et al. [2-4]. 

Then, I confirmed the effects of age and blood pressure on the change in the shape 

of the signal. As age increases and the blood pressure level becomes high, the 

shape of the pulse wave signal measured by the FBG sensor tends to exhibit a 

pattern indicating poor blood circulation. This tendency is the same as that of the 

SDPTG signal. Considering that the SDPTG signal is used to estimate the vascular 

age and arteriosclerosis, the pulse wave signal measured by the FBG sensor can 

also be used to estimate these quantities. To verify this, I need to practically 

compare the vascular age and the degree of arteriosclerosis predicted using the 

pulse wave signal measured by an FBG sensor with the reference data measured 

by a conventional device. Moreover, it is necessary to obtain data over wide 

ranges of vascular ages and degrees of arteriosclerosis to test our system 

thoroughly. Therefore, experiments need to be performed with healthy subjects 

and subjects with circulatory system diseases. Furthermore, I need to clarify how 

the shape of the pulse wave changes with the blood pressure. However, it is 

difficult to measure subjects with optional blood pressures. Therefore, it is 

necessary to examine measurements with an artificial blood vessel for which the 

optional blood pressure can be modified. Additionally, by measuring an artificial 

blood vessel, which simulates arteriosclerosis, I can clarify the mechanism of the 

change in the shape of the pulse wave due to arteriosclerosis. 
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The conventional photoelectric pulse wave sensor is capable of continuous 

measurement; however, it is affected by skin color and sweat. As mentioned 

above, this sensor only measures the amount of oxyhemoglobin and does not 

record any other vital sign information. In contrast, as the FBG sensor measures 

strain information influenced by the blood flow and the flexibility of blood 

vessels, it can predict other vital signs such as the blood pressure and blood 

glucose levels [2-11]–[2-18]. In this chapter, it is found that the FBG multiple-

vital-sign measurement system can also evaluate the condition of the blood vessel. 

Furthermore, the shape of the sensor is suitable for use as a wearable device. I 

have already developed a method for incorporating this sensor into clothes such 

as a wristband. Nevertheless, the FBG-based system still has drawbacks related 

to the interrogation unit, which is bulky and limits the portability and 

transportability of the system. To overcome this drawback, it was suggested a 

wireless portable FBG interrogation system employing an optical edge filter [2-

24]. Therefore, this sensor system can simultaneously monitor multiple vital 

signs, implying that the FBG sensor can monitor health more comprehensively. 

It has to be mentioned that the signal measured by the FBG sensor also has the 

information related to the fixing pressure by medical adhesive tape. However, 

the optimal fixing pressure of the FBG sensor and how much the pressure effect 

on the pulse wave signal are not clear yet. Therefore, the experiment which 

changes the fixing pressure gradually has to be carried out to find the optimal 

fixing pressure for the continuous measurement. When the optimal fixing 

pressure is found, the stable acquisition of the pulse wave signal becomes easy 

and the accuracy of vital sign estimation can improve. 
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3.1. Introduction 

In Japan, the estimated population of the people who were 65 years old and 

above was 35,378 thousand by October 1, 2018, and it made up 28.1 % of the total 

population. This ratio is anticipated to rise to 40 % in 2040 [3-1], [3-2]. This 

increase in the elderly population will result in higher medical expenses [3-3] and 

increased demand for the home and preventive medical care. Therefore, it is 

essential to build a home-care support system that is equipped with vital medical 

devices for home health monitoring systems. 

According to the recent estimates, in Japan, the number of the patients 

suffering from high blood pressure alone is over 10 million, and the medical 

expenses for these patients are above 1.8 trillion yen [3-4], [3-5]. The high blood 

pressure increases the risk for cardiovascular disease and heart diseases caused 

by arteriosclerosis; hence, it is crucial to monitor the blood pressure to prevent 

such diseases. The human blood pressure strongly depends on the physical and 

mental health conditions. Therefore, continuous monitoring is desirable to notice 

the early signs of diseases. The conventional blood pressure measurement 

devices have limited mobility, and an application of physical pressure through 

cuffs is required for their operation. Hence, a portable, non-invasive, and 

accessible equipment is highly desired for the continuous measurement of blood 

pressure. 

To this end, the development of smart textiles which has a body signal 

detection function has been widely investigated [3-6]–[3-8]. Markus et al. 

presented a textile-based pulse oximeter which is consisted of plastic optical 

fibers into standard fabrics. Witt et al. reported the medical textile into which a 
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fiber Bragg grating (FBG) sensor for monitoring respiratory movement. We have 

designed a measurement device using a fiber Bragg grating (FBG) sensor that can 

measure multiple vital signs [3-9]–[3-14]. We have also suggested the FBG sensor 

embedded into the knitted fabric and found the potential to use the sensor in 

smart textile for monitoring vital signs [3-15], [3-16]. The FBG sensor is an optical-

fiber-type strain sensor which has high sensitivity and precision. We found that 

the expansion and contraction of an artery, namely the pulse wave, could be 

measured by just placing the FBG sensor on the surface of the skin. Noninvasive 

and straightforward measurement is possible with this device as the FBG sensor 

is very thin and lightweight. Moreover, the sensor is not affected by the 

electromagnetic noise; therefore, the sensor can be used in particular 

environments such as a magnetic resonance imaging room. Hence, the FBG 

sensor is suitable for continuous blood pressure measurement. 

In the previous studies, we have demonstrated the usefulness of the FBG 

sensor for various vital sign measurements such as heart rates and respiration 

rates [3-9]–[3-11]. Here, we report the FBG-sensor based blood pressure value 

prediction method that utilizes the calibration curve obtained by the partial least 

squares regression (PLSR) of the pulse wave signals measured using the FBG 

sensor. Then, the blood pressure value can be calculated by substituting the pulse 

wave signals measured by the FBG sensor into the calibration curve [3-12]–[3-14]. 

Previously, we have estimated the blood pressure values for the gradual intra-

day fluctuations; however, the blood pressure can change suddenly due to illness, 

exercise, and environmental changes such as a change in temperature. The 

abrupt change in blood pressure burdens the blood vessel and causes the onset 
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of hypertension. Therefore, it is essential to validate that our system can trace 

sudden blood pressure change as a wearable and continuous blood pressure 

monitoring device. 

In this chapter, I demonstrate the detection of a sudden change in blood 

pressure by the FBG sensor system. I simulated the abrupt change in the blood 

pressure using the cold pressor test to mimic the actual effects of environmental 

and physical changes on human blood pressure, and these changes were detected 

by the shape of the pulse wave signal measured by the FBG sensor to obtain the 

blood pressure readings. The results indicate that the FBG sensor system was able 

to detect variations in the blood pressure values through the changes in the shape 

of the pulse wave signals and, thus, the blood pressure can be predicted with 

sufficient prediction accuracy. 
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3.2. Measurement Principle 

3.2.1. Principle of the FBG Sensor System 

In this chapter, I used an FBG sensor system (PF25-S01: Nagano Keiki, Inc., 

Tokyo, Japan) and an amplified spontaneous emission (ASE) light source with 

the wavelength range of 1528–1570 nm. The optical arrangement of the FBG 

sensor system is shown in Figure 3-1, and the schematic view of the sensor is 

shown in Figure 3-2. A diffraction grating with alternating high- and low-

refractive-index parts at a constant period is created in a section of the optical 

fiber core as shown in Figure 3-2. The ASE light source emits broadband near-

infrared light, which propagate through the optical fiber. The light reaches the 

FBG sensor through the optical circulator. In the sensor, only a specific 

wavelength—the Bragg wavelength that satisfies the condition in Eq. (1)—is 

reflected. 

 (1) 

where   is the Bragg wavelength;   is the refractive index of the gating 

part; and   is the spacing of the diffraction grating. The spacing of the 

diffraction grating spacing changes, when the pressure is applied to the sensor. 

Therefore, the Bragg wavelength ( ) also changes according to Equation (1). The 

shift in the Bragg wavelength is detected as an interference phase shift by the 

Mach–Zehnder interferometer. The optical path difference is approximately 5 

mm. Then, the light is split by a beam-splitter into three components, whose 

phases differ from each other by (2/3) π. These split light beams are detected via 

wavelength division multiplexing (WDM). Then, the detected lights are 

converted into an electric signal using a photodiode (PD), which is subsequently 
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converted into a digital signal using an A/D converter. The phase angles are 

demodulated at Ch. 0 and Ch. 1, and the wavelength shift is calculated [3-17], [3-

18]. Since, the FBG sensor 0 is inside the detector body, and it is not affected from 

the external light, the change in the light intensity added to the FBG sensor 1 can 

be effectively detected by subtracting the intensity obtained by the FBG sensor 0 

from that of the FBG sensor 1. The signal from the FBG sensor 0 is used for the 

temperature correction of the measurement environment. In this system, the 

resolution of the wavelength shift is 0.1 pm, and the resolution of the distortion 

is 0.08-μ strain [3-19]. This high strain measurement system enables the 

measurement of the pulse wave. The system used in this chapter is the same 

system as it was used in chapter 2. 

 

 
Figure 3-1.  Optical arrangement of the FBG sensor system 
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Figure 3-2.  Schematic view of the Fiber Bragg Grating (FBG) sensor 

 

3.2.2. Partial Least Squares Regression (PLSR) Method 

In this chapter, for the estimation of blood pressure values using the pulse 

wave data obtained in the previous section, a calibration curve is constructed by 

the PLSR method from a multivariable analysis software, Pirouette Version 2.0 

(InfoMerix, Inc., Woodinville, WA, USA). PLSR is an analytical method which 

predicts the objective variables from the relation between the objective variables 

and the explanatory variables [3-20]. The principal component factor is calculated 

using the explanatory variable and the objective variable, which are assumed to 

have an error. In this chapter, the pulse wave signals measured by the FBG 

sensors are used as the explanatory variables, and the reference blood pressure 

values measured by the bedside monitor is used as the objective variables. The 

reference blood pressure values have measurement errors; therefore, the PLSR 

method was used to construct a calibration curve. Firstly, the principal 

component factor called PLS factor was calculated with the explanatory variables 
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and the objective variable, and the regression equation was found. Then, the new 

objective variables were calculated with this regression equation. A new PLS 

factor was calculated with these new objective variables and explanatory 

variables. Adding this new PLS factor, the regression equation and objective 

variables were recalculated. Repeating this calculation, which the number of PLS 

factor increases, a regression equation whose error is smaller was obtained. The 

optimal number of PLS factor was determined by the prediction residual sum of 

squares (PRESS). The cross validation is performed using leave-one-out method. 

PRESS of the PLS model before and after adding PLS factor was calculated and 

then verified by the F-test. If there is a significant difference, PLS factor is added, 

otherwise, the regression equation of the model with a smaller number of factors 

was selected as the optimal model. 
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3.3. Experimental Methods 

The experimental demonstration of the blood pressure measurement 

system equipped with the FBG sensors is shown in Figure 3-3. The FBG sensor is 

a strain sensor. If the sensor is installed at no-distortion point, no signal is 

measured. Therefore, the sensor must be fixed at the pulsation point to obtain the 

pulse wave signal. On the surface of a human body, there are several pulsation 

points such as wrist and neck [3-21]. The pressure in the blood vessels due to 

blood flow propagates well to these pulsation points. In the previous studies, we 

have confirmed that the pulse wave could be measured at these points using an 

FBG sensor [3-9]–[3-11]. I fixed the FBG sensor on the surface of the left wrist over 

the radial artery using a medical adhesive tape (Figure 3-3) as discussed in our 

previous studies [3-10]–[3-12], [3-22], and the pulse wave signals were measured. 

The FBG sensor was installed perpendicular to the flow direction of the radial 

artery. 

The subjects were three healthy men in their twenties (labeled as subjects A, 

B, C). The measurement position was the sitting position as illustrated in Figure 

3-3. The subjects stayed completely still and barely made any body movement 

during the measurements. At the right upper arm, the reference blood pressure 

value was measured using the bedside monitor (PVM-2701: NIHON KOHDEN 

CORPORATION, Tokyo, Japan) simultaneously, while measurements were 

taken using the FBG sensor. The relative error of the blood pressure value with 

respect to the reference method is 3%. I performed ten measurements per person. 

Each measurement with the FBG sensor took approximately 30 s, in accordance 

with the measurement time of the bedside monitor. The sampling frequency was 
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10 kHz. 

To cause a sudden change in the blood pressure, I used the cold pressor test. 

The cold pressor test is the method proposed by Hines, E.A. Jr. and Brown, G.E. 

that tests the functioning of the autonomic nervous system [3-23]. In this 

experiment, the subjects bathed their feet in cold water from the second to fifth 

measurement, and they pulled their feet out during the remaining five 

measurements to allow a sudden change in the blood pressure. 

The pulse wave signal obtained using the system had a background noise 

such as the power supply noise of the interrogator circuit system and other small 

oscillations. To improve the signal-to-noise ratio, a bandpass filter applied to the 

pulse wave signal that allowed the band frequencies of 0.5–5.0 Hz to pass through 

[3-10]–[3-14]. Next, the primary differential calculus was applied to the filtered 

signal, and the resulting derivative signal was divided into a single cycle from 

one peak to the next. A divided signal (a single cycle) corresponds to a single 

heartbeat. The divided signals were averaged and normalized. In the 

normalization process, the maximum point was set to 1 and the minimum point 

was set to 0. Additionally, in the horizontal axis, the number of sampling points 

is unified in the fewest number of samples. To cancel the fluctuations in the time 

measurements of the single pulse wave signals caused by the pulse rate, 

respiration, and the attachment pressure of the FBG sensor on the human body, 

it is important to process these signals as discussed above. Finally, using the 

processed signal as the explanatory variables and the reference blood pressure 

values as the objective variables, the calibration curve was constructed with the 

PLSR method. 
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The protocol of this study was approved by the Shinshu University Ethics 

Committee (Project identification code: No. 3202, Verification clinical trial with 

wearable vital sign measurement system). 

 

 

Figure 3-3.  Experimental demonstration of blood pressure measurement using 

the FBG sensor 

 

Table 3-1.  Subject’s status for each measurement 

Measurement Subject’s status 

1 Before bathing feet in cold water 

2~5 Bathing feet in cold water 

6~10 After pulling out feet from out water 
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Figure 3-4.  Signal processing flow 
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3.4. Experimental Results and Discussion 

3.4.1. Change of Reference Blood Pressure Value by Cold Pressor 

Test 

In Figure 3-4, the change in the reference blood pressure values by the cold 

pressor test are displayed for all the subjects, namely A, B, and C. The range in 

gray color is the time when they bathed their feet in cold water. 

The systolic blood pressure (SBP) values obtained for all the subjects using 

the bedside monitor are shown in Figure 3-5 (a). The measurements show that 

the SBP values increased at first when the subjects bathed their feet in cold water 

for the second measurement relative to the first measurement taken at rest. 

During second to fifth measurement, the values were relatively higher (compared 

with the first measurement at rest), when the subjects kept their feet in the cold 

water. A gradual decrease in the blood pressure was observed for subjects A and 

B, when they pulled their feet out of the cold water in subsequent measurements 

(fifth to sixth measurement), whereas the decrease was rapid for the subject C 

during this measurement. 

The results for the diastolic blood pressure (DBP) values obtained using 

the bedside monitor are shown in Figure 3-5 (b). The DBP values increased while 

subjects had their feet in cold water; however the increase was not as large as 

observed with the SBP values. Additionally, I observed a larger change in the 

DBP value per measurement from the second measurement to the fifth one (with 

cold water) compared with the change per measurement from the sixth 

measurement to the tenth one as evidenced in Figure 3-5 (b). 

From there results, I conclude that the individual differences (subject-
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dependent) observed in the tendency of the blood pressure change, while 

subjecting them to the same thermal stimulation, may be associated with the 

sympathetic nerve activity of each individual. 

 

 

(a) 

 

(b) 

Figure 3-5.  Change in the reference blood pressures: (a) systolic blood 

pressure (SBP) values; (b) diastolic blood pressure (DBP) values, obtained by 

the cold pressor test for each subject (A, B, and C) 
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3.4.2. Shape Change of Pulse Wave Signal Measured by FBG Sensor 

during a Sudden Blood Pressure Change 

Figure 3-6 depicts the pulse wave signals without differential processing 

(left panels; Figures 3-6 (a), (c), and (e)) and with differential processing (right 

panels; Figures 3-6 (b), (d), and (f)) for each subject. The differential processing 

was performed aiming to emphasize the change of waveform. The blue lines 

indicate the pulse wave signals when the reference blood pressure was low and 

the red lines indicate the pulse wave signals when the reference blood pressure 

was high. As evidenced from Figure 3-6, the shape change of the pulse waves are 

significantly clearer after the differential processing compared with the 

unprocessed signals. In particular, the change in the pulse wave shape from 0.1 s 

to 0.3 s can be associated with the change in the blood pressure values. The pulse 

wave shape during this time range represents the reflected wave from the 

peripheral blood vessel. When the blood pressure value becomes higher due to 

the constricted blood vessel, the reflected wave measured by our system becomes 

larger. Therefore, the reflected wave amplitude represents the influence of blood 

pressure on the pulse wave. Compared with the pulse wave signals measured by 

the FBG sensor, the amplitude of the reflected wave (0.1–0.3 s) appeared to be 

larger, when the reference blood pressure value was higher. Hence, the 

amplitude of the reflected wave accompanies the increase and decrease in the 

reference blood pressure values. Therefore, the prediction of the blood pressure 

values after processing the pulse wave signals measured by the FBG sensor 

system is a valid approach. 
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(a) (b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3-6.  Left panels: Pulse waves without the differential processing for: (a) 

Subject A; (c) Subject B; (e) Subject C; Right panels: Pulse waves after the 

differential processing for: (b) Subject A; (d) Subject B; (f) Subject C 
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3.5. Blood Pressure Value Prediction Using Pulse Wave Signals 

Measured by FBG Sensor 

The results of the blood pressure values (SBP and DBP) predicted using the 

pulse wave signals described in the previous section for each subject are shown 

in Figure 3-7. 

In the prediction of SBP values, the standard errors (SE) for subjects A, B, 

and C were 3.2, 3.5, and 2.5 mmHg, respectively. The measurement error of the 

proposed measurement system is enough small because the measurement 

accuracy of conventional blood pressure measurement device is approximately 5 

mmHg. Additionally, the correlation coefficients (R) were 0.93, 0.70 and 0.98 

respectively, and they are significantly large for all the subjects. The results 

obtained for subject B were relatively less correlated with the reference values 

compared with that of the other subjects. As shown in Figure 3-5, the range of 

reference SBP values for subject B were narrower than those for the other subjects. 

Additionally, the shape change of the pulse wave signal measured by the FBG 

sensor for subject B was smaller than the changes observed for other subjects 

(Figure 3-6). Therefore, the calibration model constructed by the PLSR method 

for subject B does not represent the pulse wave shape change measured by the 

FBG sensor associated with the blood pressure change. 

The SE in prediction of the DBP values for subjects A, B, and C were 3.4, 3.0, 

and 1.6 mmHg, respectively. These error values were also small as the SBP error 

values. The correlation coefficients for the DBP values were 0.95, 0.91 and 0.98 

respectively and they are larger and better than those of the SBP values. As 

evidenced from the reference and the predicted DBP values in the second to 
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fourth measurement for the subjects A and B shown in Figure 3-7, the change in 

the reference DBP value was greater than 10 mmHg, whereas the predicted DBP 

values hardly changed in these measurements. The consistency in the predicted 

DBP values was observed due to the averaging of the pulse wave signal measured 

by the FBG sensor. The pulse wave signal used for blood pressure value 

prediction was averaged over approximately 30 pulse signals measured by the 

FBG sensor. Even though the shape of each pulse wave signal is different, each 

reference blood pressure value was measured in approximately 30 seconds. 

Therefore, the pulse wave signal used for calculating the predicted blood 

pressure value was averaged with respect to the measurement time of 

approximately 30 seconds. By averaging the pulse wave signals, the change in 

the shape of the pulse wave signal became gradual, although the reference blood 

pressure values changed suddenly. As a result, the difference between the shape 

of the pulse waves before and after the sudden change in the blood pressure is 

insignificant, and the predicted blood pressure values did not change 

significantly. 

The FBG sensor measures the strain on the skin surface due to the volume 

change of the artery. Moreover, the strain in the skin surface changes with the 

pressure exerted by the blood flowing in the blood vessel. In other words, the 

pulse wave signal measured by the FBG sensor carries the information of the 

blood flow and flexibility of the blood vessel, and these parameters are affected 

by a change in the blood pressure values. Therefore, I infer that the pulse wave 

signal measured by the FBG sensor system has enough information to accurately 

predict the blood pressure values. Furthermore, the differences in the body 
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structure of individuals such as the thickness of the blood vessels, skin, and 

tissues can also affect the strain measured at the skin surface, which may affect 

the accuracy of the blood pressure measurements with this system. Considering 

the impact of the subject-based differences, it is important to reconsider the signal 

process to emphasize the shape change by blood pressure change for accurate 

prediction. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 3-7.  Left panels: Results of SBP predictions for: (a) Subject A, (b) Subject 

B, (c) Subject C; Right panels: Results of DBP predictions for: (a) Subject A, (b) 

Subject B, and (c) Subject C 
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3.6. Conclusion 

An FBG sensor-based blood pressure prediction system for smart textile is 

proposed. In this work, I have demonstrated the use of the proposed system for 

predicting the sudden changes in the blood pressure values as observed in real-

life situations. The validation that our system can trace sudden blood pressure 

change is essential to realize the wearable and continuous blood pressure 

monitoring system. Our previous studies showed that this system can efficiently 

measure the gradually changing blood pressures values. The proposed 

measurement system utilizes the changes measured in the pulse wave signals by 

the FBG sensor to predict the changes in the blood pressure values. The sudden 

change in the blood pressure was simulated by the cold pressor test. I observed 

a variation in the blood pressure values for different subjects owing to the 

difference in the rise of sympathetic nerve activity. The signal processing 

performed in this chapter can efficiently emphasize the shape change of the pulse 

wave signals. The shape of the pulse waves reflected from the peripheral blood 

vessels were remarkably different, when the reference blood pressure value was 

high compared with the low blood pressure. The results indicate that the 

proposed FBG sensor-based system was able to trace accurately the sudden 

changes in the blood pressure without delay; hence, it can be used as a blood 

pressure measuring device. However, I need to note that the shape change of 

pulse wave signal with blood pressure value change has individual difference. 

That means some subject’s pulse wave shape changes greatly with the blood 

pressure value change, other subject’s hardly changes. Therefore, it is necessary 

to reconsider the signal process to emphasize the shape change by blood pressure 
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change. Moreover, the placement of the FBG on the skin surface may affect the 

signal; therefore, it is necessary to establish a method to resolve such issues. 

Furthermore, for realizing a continuous measurement and for solving the 

problem that the change in the shape of the pulse wave signal became gradual by 

averaging, the measurement of reference values continuously using a blood 

pressure measurement device which takes shorter than 30 s for each 

measurement is a requisite. 

Owing to the fibrous shape of FBG sensor, it can be inserted into the 

wearable textile materials for blood pressure measurements. The continuous 

monitoring of blood pressure may help in early detection and prevention of 

diseases. Moreover, we have already reported that other vital signs such as heart 

rate, respiration rate, and blood glucose can be measured by the FBG sensor. 

Hence, combining these vital sign measurement systems with the proposed 

blood pressure measurement system into a single FBG sensor-based system may 

be useful as a reliable method for an extensive and continuous monitoring of 

health. 
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4.1. Introduction 

With the rapid progression of the aging population, high medical expenses 

become a problem. Especially, the medical expense for patients with high blood 

pressure is over 1.8 trillion yen and the number of the patients is over 10 million 

[4-1], [4-2]. The high blood pressure is one of the risk factors for cardiac diseases 

such as heart attack and cerebral infarction. Moreover, the blood pressure 

changes easily according to both physical and mental states all day. Therefore, 

the daily base health monitoring is important and the home monitoring device 

which can measure continuously has been demanded. However, the continuous 

measurement is difficult with conventional measuring devices. Furthermore, the 

devices not only give physical stress caused by a cuff, but also they are 

inconvenient for carrying [4-3]. 

I have attempted to develop a wearable blood pressure measurement device 

using a Fiber Bragg Grating (FBG) sensor replacing conventional devices that 

could measure continuously, non-invasive and unconstrained. The FBG sensor is 

a thin optical fiber type strain sensor which has high sensitivity and high 

precision. Thanks to the sensor shape, the sensor can be inserted into the fabric 

easily and doesn’t give physical stress to the user. Moreover, the sensor can be 

used in a special environment such as magnetic resonance imaging room since it 

is not affected by electromagnetic noise. Accordingly, the FBG sensor is suitable 

to develop the continuous, non-invasive and unconstrained blood pressure 

measurement device. 

In the previous studies, the usefulness of the FBG sensor to various vital 

sign measurements such as respiration rate and stress was shown [4-4]–[4-8]. By 
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attaching an FBG sensor on the pulsation point, it can detect a slight change of 

expansion and contraction of the artery, namely the pulse wave. For the blood 

pressure prediction, the blood pressure was calculated by calibration curve 

constructed with Partial Least Squares Regression (PLSR) using the pulse waves 

obtained by the FBG sensor. The prediction accuracy is high enough when using 

the calibration curve constructed by the pulse waves of an individual or several 

people in their 20s [4-9]. However, it is not clear that the calibration curve 

constructed by the pulse waves obtained by a wide age group can predict the 

blood pressure correctly. 

In this chapter, the number of subjects was increased and expand the age 

group of subjects. Then, the blood pressure was calculated both with PLSR and 

Artificial Neural Network (ANN). Finally, I compared the prediction accuracy of 

two prediction methods. Consequently, I found ANN was better prediction 

method since the effect of individual difference was lower. 
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4.2. Measurement Principle 

4.2.1. Principle of the FBG sensor system 

In this experiment, I used an FBG sensor system (PF25-S01: Nagano Keiki, 

Inc., Tokyo, Japan), same as in chapter 2 and 3. Figure 4-1 shows the optical 

system of an FBG sensor system and Figure 4-2 shows the schematic view of the 

sensor part. This system consists of an interrogator and an optical fiber. The 

wavelength range of Amplified Spontaneous Emission (ASE) light source is 1528-

1570 nm and the output power is 20 mW. The diffraction grating in which the 

high and low refractive index part are arranged alternately at a constant period 

is formed in a part of the optical fiber core. A broadband infrared light is emitted 

from the ASE light source and only a specific wavelength which satisfies a 

formula (1) is reflected in the diffraction grating part: 

 (1) 

where  is the Bragg wavelength,  is the refractive index of the gating part, 

and  is the diffraction grating spacing. When the diffraction grating interval is 

changed by pressure, the Bragg wavelength also changes according to the 

formula (1). The Bragg wavelength shift is detected by the Mach-Zehender 

interferometer. Finally, the strain change of the sensor part is calculated with this 

wavelength shift [4-10], [4-11]. The resolution of the wavelength shift is 0.1 pm, 

the resolution of the distortion is 0.08 μ strain in this system [4-12]. This high 

strain measuring system enables us to detect the slight change of expansion and 

contraction propagated from the blood vessel. 
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Figure 4-1.  The optical system of an FBG sensor system 

 

 

Figure 4-2.  The schematic view of the sensor part 

 

4.2.2. Partial Least Squares Regression (PLSR) 

PLSR is an analytical method which predicts the objective variables from 

the relation between the objective variables and the explanatory variables. In 

PLSR, the principal component factor called PLS factor is calculated using an 

explanatory variable and an objective variable which are assumed to include an 

error and the regression equation is built. Then, a new objective variables are 
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calculated with the regression equation. With this new objective variables and the 

explanatory variables, a new PLS factor is calculated. A new regression equation 

and new objective variables are recalculated by adding the new PLS factor. 

Repeating this progress, and increasing the number of PLS factor, a regression 

equation which makes small error is calculated. The optimum number of PLS 

factor is verified by leave-one-out method when the new PLS factor is calculated. 

By the F-test, the prediction residual error sum of squares (PRESS) of PLS model 

before and after adding PLS factor are compared. PLS factor is added if the 

difference between the PRESS of both PLS model is significant. On the other hand, 

if the difference is not significant, the regression equation of the model with a 

smaller number of PLS factor is selected as the calibration curve. 

In this chapter, the PLSR was used for the calibration curve construction 

since the referenced blood pressure values measured by the blood pressure pulse 

wave inspection apparatus include an error. In this chapter, the pulse waves 

measured by the FBG sensor are used as the explanatory variables and reference 

blood pressure values are used as the objective variables for the calibration curve 

construction. Then, in order to calculate the blood pressure, the pulse waves of 

the subjects measured by the FBG sensor are substituted into the calibration 

curve. 

 

4.2.3. Artificial Neural Network (ANN) 

ANN is a computing analyzing method inspired by the biological neural 

networks that constitute animal brains. In ANN, data processing performed by 

nerve cells is replaced by processing elements called units and information 
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processing is performed by combining each unit. In this chapter, to calculate 

blood pressure, using the nonlinear unit, I constructed a feedforward neural 

network in which data processing proceeds in one direction. The network 

learning is supervised and the layer structure is three layers of the input layer, 

the hidden layer, and the output layer. In this chapter, the number of sampling 

point was adjusted in 6011. Therefore, the number of the input layer is 6011 which 

corresponds to the number of sampling point. The one of the hidden units is 500 

to avoid over-learning and the one of the output layer is 1, or the prediction blood 

pressure. The feedforward neural network having one output unit performs 

nonlinear modeling on the relationship between multivariate explanatory 

variables and objective variables. Using the backpropagation, the combined load 

and the bias of the network are adjusted in order to reduce the output error. The 

sigmoid function is used to calculate the output value of each unit [4-13]. The 

learning rate is 0.1, the decrease coefficient is 0.9, the increase coefficient is 1.03, 

and Momentum coefficient is 0.85. 
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4.3. Experimental Methods 

Pulse waves can be measured at several points on the surface of human 

body such as the wrist and neck [4-14]. We found that the pulse wave was able to 

be measured at these points using FBG sensor in previous studies [4-4]–[4-8]. In 

this chapter, FBG sensor was fixed on the surface of the left wrist using medical 

tape as shown in Figure 4-3 and the pulse waves were measured. 

The subjects were 77 persons whose age ranged from 21 to 87. 44 of them were 

male and the other 33 were female. The measurement position was the supine 

position. The reference blood pressure was measured simultaneously at the right 

upper arm with the blood pressure pulse wave inspection apparatus (VS-1500N: 

FUKUDA DENSHI). The measurement error is less than 3 mmHg. The 

measurement time with FBG sensor was about 30 seconds in accordance with the 

measurement time of the apparatus. The sampling frequency was 10 kHz. The 

number of the measurement for each subject was once or twice due to the 

subject’s condition, time limitation or fails of data acquisition. The data obtained 

in this chapter were 132 in total. 

The measurement signal has background noise such as electromagnetic 

noise and thermal noise. Therefore, a band-pass filter was applied to the 

measured pulse waves to reduce the effects of noise. The passband was 0.5 to 5 

Hz [4-4]–[4-8], [4-15]. Then, the filter-processed signal is divided at the peak. The 

divided signal corresponds to a single heartbeat. Then, the divided signals were 

averaged and normalized in measurement time. The height of the first point and 

the minimum point were normalized into 1 and 0. In addition, the number of 

sampling points was unified in the fewest number of samples. Finally, the blood 
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pressure was calculated with PLSR and ANN using the signal processed pulse 

waves and the reference blood pressure. 

100 data were chosen randomly from the overall 132 data to construct the 

calibration curve or the network learning and the remaining 32 data were used 

for the validation. The data set used for PLSR and ANN was the same. In this 

chapter, I compared the results of PLSR with the ones of ANN in order to know 

which a better method for the blood pressure prediction was. 

The protocol for this study was approved by the Ethics Committee of Shinshu 

University (Project identification code: No. 3202, Verification clinical trial with 

wearable vital sign measurement system). 

 

 

Figure 4-3.  Measurement using the FBG sensor 
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4.4. Experimental results and discussion 

The calibration/ network learning and validation data set used in this 

chapter are shown in Table 4-1. The calibration/ network learning data set was 

used to construct the calibration curve using PLSR or was used for the learning 

of ANN. The results of the calibration curve using PLSR are shown in Figure 4-4 

and Table 4-2. From Table 4-2, the standard error of calibration (SEC) is 15 mmHg, 

and the standard error of prediction (SEP) is 18 mmHg when using the 

calibration curve constructed by PLSR. Considering the measurement accuracy 

of the conventional blood pressure meter is about 5 mmHg, the blood pressure 

prediction with PLSR does not have sufficient accuracy. Moreover, many data 

have a large error and the correlation coefficient does not have high significance. 

Therefore, the reliability of the calibration curve is low. 

Figure 4-5 shows the loading vectors of each factor which are used for 

calibration curve construction and one of the pulse waves which is measured in 

this chapter. The loading vector indicates the dependence of each factor on the 

calibration curve. The loading vector of Factor 1 is similar to the pulse wave signal. 

In the loading vector of Factor 2, 3, and 4, the biggest absolute values take at 0.28, 

0.08, and 0.20 s respectively. These points correspond to the local maximum value 

point and local minimum value point of the pulse wave. Therefore, each factor 

affects the changing points of the pulse waveform. However, some data had a 

large error. Figure 4-6 shows the normalized pulse waves which were used for 

validation and had the same reference blood pressure. One of them had a small 

error (surrounded by the circle in Figure 4-4) and the other one had a large error 

(surrounded by the dashed circle in Figure 4-4). The shape of these pulse waves 
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is different, especially around 0.30 s. Therefore, the calibration curve constructed 

by PLSR was not possible to adapt enough to the change in the pulse wave shape 

well. In this chapter, the calibration curve was constructed with the data of 

multiple subjects. It means the pulse waves which should be classified into 

different pattern were used for the calibration curve construction. If the 

calibration curve is constructed for each subject described in chapter 3, the 

change in pulse wave shape with the change in blood pressure is detectable and 

the calibration curve constructed by PLSR is possible to adapt enough for the 

blood pressure estimation. However, if the calibration curve is constructed with 

the pulse wave signals which have a different pattern, the effect of the difference 

between patterns are big and it becomes difficult for the calibration curve 

constructed by PLSR to detect the change in pulse wave shape with the blood 

pressure change. That’s why I used ANN for blood pressure prediction to adapt 

the shape change by fixing the number of the input unit to the number of data 

points. 

 

Table 4-1.  Calibration/ network learning and validation data set 

 Samples 
Min 

(mmHg) 
Max 

(mmHg) 
Avg. 

(mmHg) 

Calibration 100 95 180 129 

Validation 32 111 183 133 
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Table 4-2.  Result of calibration curve using PLSR 

Calibration 

Factor 4 

Correlation coefficient 0.34 

Mean Error (mmHg) 0 

SEC(mmHg) 15 

Mean Absolute Error (mmHg) 12 

Validation 

Mean Error (mmHg) -4 

SEP (mmHg) 18 

Mean Absolute Error (mmHg) 15 

 

 

Figure 4-4.  Result of calibration curve using PLSR 
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Figure 4-5.  Loading vectors of the calibration curve and the pulse wave 

 

 

Figure 4-6.  Normalized pulse waves which have a large error and a small 

error 
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becomes higher when using ANN. Furthermore, while the correlation efficient of 

the calibration curve using PLSR was 0.34, the one using ANN was 0.83 so that 

there was a significant correlation between the reference blood pressure and the 

calculated blood pressure. However, many data are not predicted well. 

Comparing with the measurement accuracy of the conventional blood pressure 

measuring device, the blood prediction accuracy of ANN is lower. The data 

surrounded by the circle and the dashed circle in Figure 4-7 are the same data 

surrounded by the circle and the dashed circle in Figure 4-5. The data which have 

low prediction accuracy with PLSR also tend to have a low prediction accuracy 

with ANN. The comparison of the normalized pulse waves for validation which 

have a large error and a small error with the one for the network learning is 

shown in Figure 4-8. These pulse waves have almost the same reference blood 

pressure. Between 0.1 to 0.4 s, the shape of the pulse wave for validation whose 

error is large differs greatly from the one for the network learning while the shape 

of the pulse wave for validation whose error is small is similar to the one for the 

network learning. Therefore, ANN used in this chapter calculated the blood 

pressure from the difference in the shape between 0.1 to 0.4 s. Thus, the 

individual difference of the pulse wave shape affected the prediction accuracy of 

ANN as well as the prediction with PLSR. According to Sano, et al, the human 

pulse wave can be classified into seven patterns A-G depending on age and 

whether the subject has the vascular disease [4-16]. Classifying the pulse waves 

into the patterns, the effect of individual difference may be eliminated. It is also 

necessary to reconsider the number of hidden layer unit and the learning 

parameters to get higher prediction accuracy. Consequently, the effect of 
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individual difference could be reduced by using ANN and it is suitable to use 

ANN for the blood pressure prediction. In the next chapter, focusing on the 

individual difference, the verification whether the classification of pulse wave 

signal pattern is effective for improving the blood pressure value estimation. 

 

Table 3. Result of ANN 

Calibration 

Correlation coefficient 0.83 

Mean Error (mmHg) 0 

SEP (mmHg) 9 

Mean Absolute Error (mmHg) 6 

Validation 

Mean Error (mmHg) 0 

SEC (mmHg) 17 

Mean Absolute Error (mmHg) 12 

 

 

Figure 4-7.  Result of ANN 
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Figure 4-8.  Comparison of the normalized pulse waves for validation which 

have a large error and a small error with the one for the network learning 
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4.5. Conclusion 

In this chapter, I increased the number of the subjects, expand the age range 

of subjects to know whether the calibration curve constructed with the pulse 

waves of the wide age group can predict the blood pressure correctly. The pulse 

wave was measured by the FBG sensor and the blood pressure was predicted by 

two methods, PLSR and ANN. Then, comparing both results, I found which 

method was suitable for blood pressure prediction toward to the high versatility. 

The prediction accuracy of PLSR was low. Those are because the influence of the 

individual difference of the pulse wave shape was too big although each factor 

affects the pulse waveform changing points. Moreover, the correlation coefficient 

was so small. Therefore, the reliability of the calibration curve constructed by 

PLSR was not high enough. On the other hand, using ANN for the blood pressure 

prediction, it was possible to get higher prediction accuracy and bigger 

correlation coefficient than using PLSR. Although the blood pressure prediction 

with ANN is affected by the individual difference of the pulse waveform as well 

as PLSR, the optimization of the combined load and the bias of the network by 

the repetitive learning could reduce the effect of the individual difference. 

Consequently, the blood pressure prediction method for the versatile use, it is 

suitable to use ANN for the blood pressure prediction. However, it is not possible 

to eliminate the effect completely in this chapter. In the next chapter, I classify 

the pulse wave into seven patterns to eliminate the effect. It is also necessary to 

reconsider the number of hidden layer unit and the learning parameters to get 

higher prediction accuracy. 
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Chapter 5 
Validity of the Classification of Pulse 
Wave for the Blood Pressure 
Estimation 
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5.1. Introduction 

The rate of ageing has been increasing globally in recent years and it is 

estimated to continue rising [5-1]. Under this circumstance, the development of 

a vital sign measuring device not only for elderly people but also for healthy 

people has been demanded [5-2], [5-3]. The vital signs are the heart rate, blood 

pressure (BP), body temperature, respiratory status, and the level of 

consciousness. These signs represent concisely the state of human health [5-4]. 

That means they change easily according to both physical and mental states. 

Therefore, it is desirable that the vital signs are measured continuously and the 

measuring device needs to be non-invasive and under physical unconstrained. 

However, conventional blood pressure measuring device has the physical 

constraint caused by the cuff and is not suitable for continuous measurement. 

The aim of the research is to develop a wearable vital sign measurement 

sensor using a Fiber Bragg Grating (FBG) sensor that could measure them 

continuously in non-invasive and unconstrained, instead of conventional 

measuring devices. The FBG sensor is a small optical fiber type strain sensor and 

has high sensitivity and high precision. It is also inexpensive, has corrosion 

resistance and is not affected by electromagnetic noise. Therefore, this sensor can 

be used in a special environment such as magnetic resonance imaging (MRI) 

room. From the above reasons, this sensor is suitable for the continuous vital 

signs measurement. 

In the previous studies, various vital signs measurement system using the 

FBG sensor has shown [5-5]–[5-9]. The FBG sensor can measure the distortion of 

the body surface. Thus, by detecting the expansion and contraction of the artery 
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it is possible to measure human pulse waves. With Partial Least Squares 

Regression (PLSR), a calibration curve was constructed and the blood pressure 

value was calculated. However, the optimal data set for constructing a calibration 

curve which is used to estimate blood pressure value has not been clarified yet. 

To realize the better blood pressure estimation method, it is necessary to find the 

optimal data set for constructing a calibration curve. 

Sano et al reported that the human pulse wave can be classified into seven 

patterns A-G depending on age and whether the subject has vascular disease. 

Young, healthy people tend to have the pattern A or B, persons with high blood 

pressure tend to have the pattern C-G, and patients with a vascular disease such 

as cerebrovascular disease and ischemic heart disease tend to have the pattern E 

or F [5-10]. 

As mentioned in the previous chapter, the individual difference of pulse 

wave signals affect negatively on the estimation accuracy of blood pressure value. 

Therefore, in this chapter, I classified the pulse waves measured by the FBG 

sensor according to Sano’s classification to construct calibration curves and 

calculated the blood pressure value. Comparing the calibration curve constructed 

with classified data and the one constructed with non-classified data, the 

effectiveness of the classification of pulse wave signal for the blood pressure 

value estimation was verified. 
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5.2. Measurement Principle 

5.2.1. Principle of the FBG sensor system 

I used an FBG sensor system in this experiment same as the chapters above. 

Figure 5-1 shows the optical system of an FBG sensor system and Figure 5-2 

shows the schematic view of the sensor part. The diffraction grating is formed in 

a part of the optical fiber core. A broadband light is emitted from the light source, 

and the light reflected by the FBG sensor. The wavelength of the reflected light is 

called Bragg wavelength. When the diffraction grating interval is changed by 

pressure, the Bragg wavelength shifts. The Bragg wavelength is detected by the 

Mach-Zehender interferometer. Therefore, the wavelength shift corresponding to 

the strain change of the sensor part can be obtained [5-11], [5-12]. The resolution 

of the wavelength shift is 0.1 pm, the resolution of the distortion is 0.08 μ strain 

in this system [5-13]. This high strain measuring system enables to measure the 

pulse wave.  

 

 
Figure 5-1.  The optical system of an FBG sensor system 
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Figure 5-2.  The schematic view of the sensor part 

 

5.2.2. Partial Least Squares Regression (PLSR) 

I calculated the blood pressure value using PLSR which is an analytical 

method of performing a regression analysis on principal component. This 

method assumes that both of an explanatory variable and an objective variable 

include an error. In this chapter, the pulse waves measured by the FBG sensor 

are used as the explanatory variables and reference blood pressure values are 

used as the objective variables. PLSR is used to construct the calibration curve 

since the referenced blood pressure values include an error. Then, measured 

pulse wave from subjects is substituted into the calibration curve to get predictive 

blood pressure.  
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5.3. Experimental Methods 

Pulse waves can be measured at several points on the surface of the human 

body such as the wrist and temple [5-14]. The pulse wave is assumed to include 

information to calculate the blood pressure value since the pressure of the blood 

vessel due to the blood flow propagates to the surface of the body as a pulse wave. 

In this chapter, I fixed the FBG sensor on the surface of the left wrist using 

medical tape as shown in Figure 5-3 and measured the pulse waves. In the 

previous studies, we confirmed that the pulse wave was able to be measured at 

the wrist using FBG sensor [5-5]–[5-9]. 

The subjects were 77 persons. 44 of them were male and the other 33 were 

female. The age ranged from 21 to 87. The subjects were lying face-up during the 

measurement. The referenced blood pressure value was simultaneously 

measured at the right upper arm with the blood pressure pulse wave inspection 

apparatus (VS-1500N: FUKUDA DENSHI). The measurement time was about 30 

seconds and the sampling frequency is 10 kHz. Each subject was measured once 

or twice due to the subject’s condition, time limitation or fail of data acquisition, 

and 132 data were obtained in total. The data obtained in this chapter were 

classified by the same way as in chapter 4. The data were classified into 7 patterns 

(pattern A to G) as mentioned in chapter 2. The numbers of each pattern were 

shown in Table 5-1. 

The measurement signal has background noise such as electromagnetic 

noise and thermal noise. I applied a band-pass filter to the measured pulse waves 

to reduce the effects of noise. The pass frequency is 0.5 to 5.0 Hz [5-5]–[5-9], [5-

15]. This pass frequency band was chosen since the average pulse rate of the 
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general adult is 60 beats per minute (bpm). In order to obtain pulse waves 

corresponding to a single heartbeat, I spattered the filter processed signal into 

one cycle from one peak to the next peak. Then, the separated signals were 

averaged and normalized in measurement time. The height of the first point was 

1, and the minimum point was 0 in the normalized signal. In addition, the 

number of sampling points was adjusted with the fewest number of samples. 

Then, I calculated blood pressure value. The calibration curve was constructed 

using PLSR. The explanatory and objective variables were the normalized signal 

and the referenced blood pressure value respectively. 

To confirm how much the accuracy of blood pressure estimation changes 

by the classification of pulse wave signal measured by FBG sensor, the two data 

set were determined. The one data set was the classified data set. 40 data from 51 

data of pattern A were used to construct the calibration curve and the remaining 

11 data were used for validation. The other data set was the non-classified data 

set. The same 11 data as the classified data set were chosen as the validation data 

set, and the calibration curve was constructed with 40 data chosen from the 

remaining 121 data. Then, I compared the estimation results using the classified 

data with the ones using the non-classified data. 
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Figure 5-3.  Experimental image of measurement using the FBG sensor 

 

Table 5-1.  Pattern classification results of pulse wave signal measured by the 

FBG sensor 

 Pattern  

 A B C D E F G Total 

Number 51 19 13 15 4 12 18 132 
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5.4. Experimental Results and Discussion 

5.4.1. Blood pressure value estimation results using non-classified 

data set 

The calibration and validation results by PLSR with non-classified data set 

are shown in Figure 5-4 and Table 5-2. From Figure 5-4 (a) and Table 5-2 (a), the 

correlation coefficient of the SBP was 0.35, the standard error of calibration (SEC) 

was 18 mmHg and the standard error of prediction (SEP) was 22 mm Hg. From 

Figure 5-4 (b) and Table 5-2 (b), the correlation coefficient of the diastolic blood 

pressure (DBP) was 0.35, the SEC and SEP were 9 and 12 mmHg respectively. The 

correlation coefficient did not have high significance and the accuracy of blood 

pressure value estimation was low for both the SBP and DBP. As mentioned in 

the introduction, each subject has a different pattern of the pulse wave (Figure 5-

5). In other words, the pulse wave shapes are quite different despite the 

referenced blood pressure value is the same. Furthermore, as Figure 5-6 shows, 

some pulse waves have two downward peaks. Therefore, the minimum point of 

the normalization shifted every pulse wave signal. Consequently, the coefficient 

correlation was small and the accuracy of blood pressure estimation was low. 
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(a) SBP 

 

   

(b) DBP 

Figure 5-4.  Calibration curve and validation results using non-classified data 

set 
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Table 5-2. Calibration and validation results using non-classified data set 

(a) SBP 

Calibration 
Sample Avg. [mmHg] Min [mmHg] Max [mmHg] 

40 136 95 183 

Result 
Factor  4 
Correlation coefficient 0.35 
SEC [mmHg]  18 

    
Validation 

Sample Avg. [mmHg] Min [mmHg] Max [mmHg] 
11 129 111 163 

Result SEC [mmHg]  22 

 

(b) DBP 

Calibration 
Sample Avg. [mmHg] Min [mmHg] Max [mmHg] 

40 83 67 100 

Result 
Factor  4 
Correlation coefficient 0.35 
SEC [mmHg]  9 

    
Validation 

Sample Avg. [mmHg] Min [mmHg] Max [mmHg] 
11 84 66 95 

Result SEC [mmHg]  12 
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Figure 5-5.  Normalized pulse waves which have the same referenced BP in 

SBP 

 

Figure 5-6.  Normalized pulse waves which have two downward peaks 

 

5.4.2. Blood pressure estimation results using the data classified into 

pattern A 

In section 5.4.1, the accuracy of the blood pressure estimation using non-

classified data set was low due to the individual difference of pulse wave shapes. 

Therefore, I calculated the blood pressure value with calibration curve 

constructed with the data classified pattern A. The pulse wave of subject 36 is 
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pattern A as Figure 5-5 shows. Pattern A has only one downward peak, thus, the 

minimum point was unified in the normalization. Figure 5-7 and Table 5-2 show 

the calibration and validation results using classified data set. The correlation 

coefficient of the SBP was 0.43, SEC and SEP were respectively 14 and 21 mmHg. 

The correlation coefficient of DBP was 0.60. SEC and SEP were 8 and 13 mmHg 

respectively. Comparing the results using non-classified data, the correlation 

coefficient tended to become big and SEC and SEP tended to be small by the pulse 

wave classification. Therefore, the possibility that the pulse wave classification 

improves the accuracy of blood pressure estimation was shown. 
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(a) SBP 

 

   

(b) DBP 

Figure 5-7.  Calibration curve and validation results using classified data set 
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Table 5-3.  Calibration and validation results using classified data set 

(a) SBP 

Calibration 
Sample Avg. [mmHg] Min [mmHg] Max [mmHg] 

40 125 108 165 

Result 
Factor  4 
Correlation coefficient 0.43 
SEC [mmHg]  14 

    
Validation 

Sample Avg. [mmHg] Min [mmHg] Max [mmHg] 
11 129 111 163 

Result SEC [mmHg]  21 

 

(b) DBP 

Calibration 
Sample Avg. [mmHg] Min [mmHg] Max [mmHg] 

40 80 64 102 

Result 
Factor  4 
Correlation coefficient 0.60 
SEC [mmHg]  8 

    
Validation 

Sample Avg. [mmHg] Min [mmHg] Max [mmHg] 
11 84 66 95 

Result SEC [mmHg]  13 
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5.5. Conclusion 

In this chapter, I classified the pulse wave signal measured by the FBG 

sensor into 7 patterns aiming to eliminate the shape difference of pulse wave 

signal and improve the estimation accuracy of blood pressure. I measured the 

pulse waves of multiple subjects using FBG sensor. The measured pulse waves 

were classified according to Sano, et al classification. Then, the calibration curves 

were constructed using the non-classified data and the classified data and 

calculated the blood pressure value. Comparing both calibration and validation 

results, it was shown that the pulse wave classification tended to make the 

correlation coefficient bigger and make SEC and SEP smaller. Which reveals that 

the shape difference of pulse waves and the standardization method may cause 

the low prediction accuracy. Therefore, it is appropriate to estimate the blood 

pressure value using classified pulse waves. 

In this chapter, it was found that the shift of the point to be standardized to 

0 is one of the factors which makes the estimation accuracy lower. Therefore, to 

aim more improvement of the accuracy of blood pressure value estimation, it is 

needed to fix the point to be standardized to 0. It is also important to confirm 

whether the same tendency can be observed for the estimation using pulse wave 

of the different pattern like as the estimation using the pulse waves classified as 

pattern A. In this chapter, the estimation improvement by classifying the pulse 

wave according to Sano et al. classification was confirmed. There are other 

classification methods for pulse wave. Therefore, the validations how accuracy 

change by other classification methods are also needed. Not only following the 

exist classification method, the other pulse wave classification such as 



110 

 

classification according to age or classification according to both age and pulse 

wave pattern also should be tested. As described in the previous chapter, the 

estimation by ANN is better than PLSR. Therefore, the estimation by ANN with 

the classified pulse waves is also necessary to confirm the combination of the 

estimation method and the data set makes the estimation accuracy better. Finding 

the best estimation method through these examinations, the blood pressure 

measurement device using FBG sensor can be realized. 
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6.1. Conclusions 

A daily health care or monitoring is very important both for healthy person 

and sick person because it shows an effect on prevention and prediction of 

diseases and is useful for follow-up examination. In this dissertation, the validity 

of the pulse wave signal measured by the FBG sensor system for the vascular age 

and arteriosclerosis prediction was discussed. The blood pressure value 

estimation which assumed the daily life was also examined. Estimation methods 

for blood pressure value were also investigated to attain improvement in 

estimation accuracy. 

In Chapter 2, I focused on the shape similarity between the shape of the 

pulse wave signal measured by the FBG sensor and the SDPTG signal. According 

to the classification of Sano et al., the pulse wave signals measured by the FBG 

sensor were classified into seven patterns and then, it was checked how the signal 

shape changes according to age and the blood pressure level. The shape pattern 

of the pulse wave signal measured by the FBG sensor tended to indicate poor 

blood circulation when age increases and the blood pressure level becomes high. 

This tendency is the same as SDPTG signal, therefore, the verification of FBG 

sensor system for the vascular age and arteriosclerosis estimation was shown. 

In Chapter 3, the verification whether the FBG sensor system can predict 

the sudden changes in blood pressure was preformed supposing the real-life 

situations. The pulse wave signal was measured by the FBG sensor on the wrist 

while simulating abrupt blood pressure change by the cold pressor test. A 

variation in the blood pressure values for different subjects owing to difference 

in rise of sympathetic nerve activity was observed. The signal processing 
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effectively emphasized the shape change of pulse wave signals. It was found that 

the shape of the pulse waves reflected from the peripheral blood vessels was 

notable with the blood pressure change. The sudden changes in the blood 

pressure were able to be traced as accurately as the gradual intra-day blood 

pressure fluctuations by the proposed method. 

In Chapter 4 and Chapter 5, the accuracy of the blood pressure estimation 

was improved toward to the high versatility of FBG sensor system. In Chapter 4, 

two estimation methods, PLSR and ANN were compared. The individual 

difference of the pulse wave shape influenced the accuracy of both methods, but 

ANN was able to reduce the effect of the individual difference by the 

optimization of the combined load and the bias of the network by the repetitive 

leaning. ANN was more suitable for the blood pressure value estimation. In 

Chapter 5, the validity of the pulse wave signal classification for the blood 

pressure value estimation was verified. The pulse wave signals were classified 

into the seven patterns and the data set for the calibration curve construction was 

determined. The classification of the pulse wave signal was effective for the blood 

pressure value estimation because it reduced the effect of shape difference of the 

pulse wave. 
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6.2. Future task and prospect 

The goal of this study is to contribute the improvement of quality of life 

and to reduce the workload of medical professionals through the development 

wearable multi vital sign measurement device and its diffusion. In this 

dissertation, the likelihood of new applications using FBG as the vascular age and 

arteriosclerosis estimation was validated. Moreover, for the blood pressure value 

estimation, it is found that our system can be used for both for gradual intra-day 

blood pressure fluctuations and abrupt change in blood pressure. It is also found 

that the ANN and the pulse wave classification were valid method tor the 

improvement of estimation accuracy. 

 However, there are various tasks to be solved. In this dissertation, I only 

just showed the likelihood of realization of vascular age and arteriosclerosis 

estimation using FBG sensor. Therefore, the comparison of the vascular age and 

the degree of arteriosclerosis estimated by the system and the reference value 

obtained by a conventional device is necessary. Moreover, the experiment with 

healthy subjects and subjects with circulatory system disease is also needed to 

acquire the data over wide ranges of vascular ages and degree of arteriosclerosis. 

On the other hand, for more improvement of the accuracy of blood pressure value 

estimation and its usability, it is needed to change the signal process and the 

classification method. Finding the best estimation method through these 

examinations, the blood pressure measurement device using FBG sensor can be 

realized. Furthermore, in order to solve the problem that the change in the shape 

of the pulse wave signal became gradual by averaging, which causes of the low 

accuracy, I have to use the device which takes shorter time to measure the 
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reference values. 

 To realize the proposed system as a medical instrument, it must be 

proved that the relationship between pulse wave signal obtained by FBG sensor 

and blood pressure or arteriosclerosis since the method have not been proved 

theoretically. Therefore, the measurement examination with an artificial blood 

vessel was performed and now analysing. Moreover, the placement of the FBG 

on the skin surface may affect the signal; hence, the placement method is also 

been investigating. Furthermore, the sensor install method which suitable as the 

wearable device also must be discussed. For this problem, the install method into 

the wearable textile materials that takes advantage of the sensor shape has 

already reported. To overcome the problem related to the interrogation unit, 

which limits portability and transportability, a wireless portable interrogation 

system employing an optical edge filter has been proposed. 

 As mentioned, we have already reported that the FBG sensor system can 

measure other vital signs such as heart rate, respiration rate, and blood glucose. 

Hence, combining these vital sign measurement systems with the blood pressure 

measurement system and the estimation method of blood vessel condition, the 

various vital signs can be measured by a single FBG sensor system at once. 

Eventually, when settle the problems above, the proposed system becomes a 

reliable and wearable method for an extensive and continuous monitoring of 

health. Moreover, installing remote communication system, a medical 

examination by the doctor without visiting medical establishment become 

possible and more robust health monitoring system is realized. 

 The application FBG sensor system is not limited to measure the vital 
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signs mentioned above. I have already performed the experiments for developing 

the fetal monitoring device using FBG sensor. It was confirmed that just attaching 

the attaching the FBG sensor on the maternal abdomen, not only the fetal heart 

rate but also maternal respiration rate and heart rate were can be measured at 

once. Moreover, applying the adaptive filter, the possibility of the extraction of 

fetal heart rate signal was also found. Therefore, when realize the fetal and 

maternal monitoring system using FBG sensor, it becomes possible to soften 

anxiety of the mother and in case the condition both of mother and fetus has 

changed suddenly, the prompt medical care can be given. 

 From the usefulness of the FBG sensor system described above, the 

proposed FBG sensor system can be used for the health monitoring from before 

birth to end of life; hence, our system can greatly contribute to the society, 

especially the medical industry. 
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