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General introduction 
 

 

 Background 

According to the Ministry of Health, Labor and Welfare's statistics, 

“National Medical Expenditure,” medical expenses is increasing. In FY2017, 

medical expenses will fall to about 8% of GDP, and the national profit ratio 

will exceed 10% [1]. One cause is an aging society. It is now a global issue 

as well as Japan, and there are concerns about the end of the sustainable 

development of social systems. In the future, aging may progress further [2], 

it is not avoid to the increase of medical expenditure invoke more bigger 

problems. In such circumstance, people's health awareness is increasing, as 

well. 

According to the statistics of 2014, three groups of 20-39 years old, 

40-64 years old, 65 years old and over, all groups think that they need 

“information about the body" and "information about medical / medical 

facilities." Those opinion of the groups dominate over half of them [2]. It is 

also a problem such as the separation of life span and healthy life span, the 
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demand for being healthy is getting to increase. 

I would also like to pay attention to the current state of diabetes. 

Diabetes is one of the heavy special illness, diabetes is a major cause of 

blindness, kidney failure, heart attacks, stroke and lower limb amputation. 

Referring the statements of WHO declared, the person with diabetes has been 

spreading from 108 million in 1980 to 422 million in 2014 [3]. There is also 

estimation which says the number increase to 500 million in 2030. And, the 

global prevalence of diabetes among adults over 18 years of age has risen 

from 4.7% in 1980 to 8.5% in 2014 [4]. Almost half of all deaths attributable 

to high blood glucose occur before the age of 70 years. WHO estimates that 

diabetes was the seventh leading cause of death in 2016. This serious illness, 

diabetes is treated specially even in Japan, medical institution can demand 

special fee for facing diabetes as "Special illness managing fee." This means 

that the Minister of Health, Labor and Welfare admitted that "carefully 

scheduled treating is needed for diabetes", in other words, he is insisting that 

the diabetes need daily blood glucose level managing. Because blood 

glucose level is easily fluctuating by normal meal, activity, and condition of 

mental, blood glucose should be measured several times per day, not only 

hospital, but also house. However, the instruments for measurement blood 

glucose level in house; Self-monitoring blood glucose level (SMBG) has a 
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lot of problems. Firstly, those are an invasive type instruments which need 

blood for sampling. In the case of the person with diabetes in the hospital, 

they need pricking needle in the morning, after breakfast, after lunch, after 

dinner, before sleeping, for example. There will be a stress, pain, and risk of 

blood infection, every single time. Secondly, those instruments require a lot 

of disposable parts, running cost must be increasing. Sometimes the cost 

reaches hundreds of thousand yen per year. Thirdly, current food 

circumstance is one of reason which has tendency to increase blood glucose 

level. Now days, various foods are added purified sugar or artificial sugar. In 

the case of high fructose corn syrup, it can be started to absorb into body 

with a few minutes, in contrast to 50 minutes, in the case of rice. Then, the 

blood glucose level is increased drastically by directly entering glucose into 

the body. The rapid increase in blood glucose level caused by this method 

shows a value that greatly exceeds the reference value in a short time that is 

not captured by the conventional measurement frequency. We are in the 

environment which need more high frequency of blood glucose level 

measurement. Finally, diabetes has a congenital type. It is quite big problem, 

in such situation, protectors have to prick needle to their own child and bleed, 

several times, every day. Nobody can guess that their thought and feelings in 

this case. It is obvious that we should not overlook this situation. As here 
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stated before, current instruments include a lot of problems, genuine non-

invasive type blood glucose measurement devices have been strongly 

demanded for long time. This increase has led to strong needs for a rapid, 

painless, risk-free self-blood-glucose measurement method [5]–[7]. 

 

 

 Current circumstance and demand of vital 

sign monitor 

Aging society is now problem of world. That is quite big problem for 

all developed countries, like it in Japan, leads various serious problems, 

increasing of patients, increase in a burden of treatment cost to a patient and 

governments, lack of insurance budget. Even in nursing facility, they insist 

the lack of worker and human resources, they are in serious condition that 

they have to invite worker from the over sea. We are in such social condition 

and state, our health consciousness is quite high level that appeared never. 

Healthcare orientated vital sign monitoring can be one of powerful 

solution. By monitoring various vital signs, it can give the notification in 

early stage of illness, and help to treat in advance. That leads to the providing 

the prevention disease. The idea of vital sign monitoring is getting a lot of 
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attention from the companies to improve the productivity with aspect of 

health management or health investment [8]. The concept of brand "health 

management brand" is imported, the tendency of health management is 

getting to appear among the companies. As well as the individual stages, 

developing the electric devices help among the popularization of health 

monitoring for the people, now most of the smartphone are installed health 

managing applications. Some statistic says that the rate of utilization grow 

to double with latest 2 years, 54 percent of those user answer that they use 

application beyond 5 days in one week [9]. As well, the wearable devices 

which was used for limited few user or industries, now change into 

healthcare purpose for individual person. Addition, main manufacturer is 

also gradually changing, from IT company to fashion luxury brand, it is clear 

that the health care wellness is spreading into various industry field. 

Moreover, because healthcare monitoring desire to be all-time working 

system, there has been big development of wearable devices. Taking these 

tendencies, the product which target vital sign measurement is appearing in 

smart textile field. Like in Hitoe [10], there already some product are 

available on market. 

As stated before, various product has been developing with various 

field, however, the devices which measure vital sign is mainly big and 
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specialized to one function. Furthermore, most of this device are only able 

to detect the pulse rate, breathing rate. It is because those devices depend on 

the "conductive fiber" or "Photo electric plethysmogram wave meter” as a 

core technique for measurement. The devices which use Photo electric 

plethysmogram wave meter are not possible to detect blood pressure nor 

blood glucose levels, and weak against the water. Addition, kind of those 

products, part of activity tracker has been suspected with its reliability. 

On the other hands, our research group has been proposing the vital 

sign monitoring using optical fiber sensor. This is the measurement based on 

the fiber-shaped strain sensor; Fiber Bragg Grating (FBG) sensor, different 

with former sensors, it is possible to detect the various vital sign using just 

single FBG sensor. It is proud of quite high sensitivity and non-invasively, 

taking advantage of fiber-shape, it is possible to be loaded into various 

products. Excellent compatibility with knitting, making it a promising 

candidate for the creation of smart textiles with multi-vital sign measurement 

function [11]. 

  



 

 

15 

 Present situation of Self-Monitoring Blood 

Glucose 

As stated before, there has been a lot of studies and strong need for 

non-invasive blood glucose measurement. Research and development for 

measurement methods based on spectroscopy began in the 1970s. It is well 

known that attenuated total reflectance [12] or near-infrared diffuse 

reflectance spectroscopy [13] had been applied to realize non-invasive blood 

glucose monitoring, mainly for diabetic patients. Since then, various 

developments have been made. A microwave measurement system has been 

proposed to monitor blood glucose non-invasively. Microwave sensor 

technologies were studied based on the frequency dependence of amplitude 

with the subject’s thumb being placed at a fixed point on an open-terminated 

spiral-shaped micro strip line [14], [15]. In the analysis method of calculating 

the blood glucose level, a method of calculating blood glucose level with 

high accuracy by applying artificial neural network (ANN) [16], partial least 

squares regression (PLSR) [17], and the like has been studied. In the 

measurement method using light, a method of calculating blood glucose 

level by Raman spectroscopy has been reported [18], [19]. In report of 

Spegazzini, Raman spectra were recorded at regular 5 min intervals from the 
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forearms of these volunteers, blood glucose concentrations were calculated 

by using the improved concentration independent calibration (iCONIC) 

approach with Raman spectra [19]. However, since these are methods of 

irradiating light on the body, there is a danger that the measurement accuracy 

of the blood glucose level will be influenced by the surface condition and 

body temperature of the skin of the subject. Currently, half-invasive type 

measurement devices or “Continuous Glucose Monitoring (CGM)” solutions, 

such as the Freestyle Libre (Abbott co. ltd) and iPro2 (Medtronic co. ltd), 

have been released to market. However, these devices are limited to measure 

glucose in intervals of 6–15 minutes, only. Those devices can not follow the 

drastic changes in blood glucose level, such as glucose spikes after meals in 

daily life, at this measurement frequency. Ultimately, these devices are not 

truly non-invasive, as they cannot measure blood glucose accurately without 

pricking sensors to the skin. Genuine non-invasive and rapid measuring 

method which don't need bleeding has been strongly needed. 
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 The purpose of research 

In order to produce multiple vital sign monitoring device, this 

research set the ultimate goal that creating the wearable, multiple vital sign 

monitoring device. Along this thought, this dissertation has 2 aspects. The 

former part of dissertation, chapter 2 and 3 state the considering about adding 

the blood glucose measurement function to the FBG sensor system. This 

function works by the method to pick up the information of blood glucose 

level from pulse wave signal got from optical fiber-type strain sensor system 

which is FBG sensor system. Chapter 2 and 3 adopt each different method 

to analyze. Adding the blood glucose measurement function lead to making 

possibility that helping potential 500 million diabetic persons. We can say 

that there are large scale of merit and advantages and this theme is worth to 

struggle.  

On the other hands, latter part of dissertation describes the way to 

practical use of the FBG sensor system. Chapter 4 explain about trial of 

introducing an FBG sensor system in a sleeping environment. Facing at the 

sleeping condition measurement, method is required to being non-intrusive 

and non-binding one for comfortable sleep. Therefore, this chapter report the 

how to measure vital sign from attaching FBG sensor system on the bedding, 
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not on the human body. Next, chapter 5 describes a research on mounting 

FBG sensors on human-shape robots to construct a system that actively 

performs vital sign measurements. As a development result, this human-

shaped robot was able to measure the pulse rate, breathing rate, and blood 

pressure. 
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Extraction of blood glucose 
information contained in 
pulse wave signal 
 

 Introduction 

The technique by analyzing pulse wave has been presented since a 

long time ago. Especially, the "acceleration of pulse waveform" which is 

secondly differential of the signal from Photo electric plethysmogram wave 

meter has been studied relationship between age, blood vessel, and various 

diseases [20]. The information from there are not little, movements of heart, 

breathing rate estimation, indicator for heart disease or arteriosclerosis was 

target. 

In recent years, photoelectric plethysmographs have become 

widespread and it has become familiar to obtain information from pulse 

wave shapes. It is used in various ways such as blood vessel age 

measurement devices (Figure 2-1) and wrist-watch type heart rate 

monitoring. In many cases, the degree of blood flow is estimated from the 
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amount of light absorbed by hemoglobin flowing into blood using green 

visible light or infrared light. Although taking advantage of the non-invasive 

nature of optical measurement, various problems remain, such as skin color, 

water effects, and measurement reliability. Above all, measurable items are 

limited to pulse, respiration, and momentum. That's why we have been 

focused on the FBG sensor system. FBG sensor is a highly sensitive strain 

sensor, by attaching the FBG sensor on the human body, it can measure the 

human pulse wave with high-resolution. A pulse wave is a measurement of 

a pressure change or a volume change of a peripheral blood vessel 

propagated by a heartbeat. When the heart contracts and blood is ejected 

from the left ventricle into the aorta, there is a change in the aortic pressure. 

Furthermore, this pressure fluctuation is propagated to the peripheral artery, 

and it propagates as strain to the body surface on the radial artery. The FBG 

sensor measures strain change due to pressure fluctuation. The signal of pulse 

wave measured by the FBG sensor is defined as a “pulse wave signal.” This 

recorded pulse wave signal has time in horizontal axis and amount of change 

of Bragg wavelength in vertical axis, which can be observed visually only 

the number of pulse waves. owing to the FBG sensor's high sensitivity, it has 

been gradually founded the signal include the information of various vital 

signs. By analyze and setting the pulse wave signal as an explanatory 
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variables and setting the breathing rate, stress loading level or blood pressure 

as reference variable, it is possible to calculate those vital signs from 

measured pulse wave . The interval between one period of each 

pulse peak to the next peak has slightly different with next interval, focusing 

on this, breathing rate and stress loading can be calculated. On the other 

hands, in case of blood pressure, the shape of each pulse wave is changed 

depend on the blood pressure values. This acceleration plethysmogram is 

said that it is an indicator for arteriosclerosis and condition of dosing, and be 

suggested that contains a lot of vital information. Focusing on the details of 

signal and analyzing the corresponding between blood pressure values and 

pulse by multivariate analysis, blood pressure can be calculated. Like written 

in before, acceleration plethysmogram is affected by the condition of 

arteriosclerosis, dosing, aging and so on, in other words, acceleration 

plethysmogram may include the information of blood ingredients and tissue 

around blood vessel. Thereupon, extracting the information of blood 

ingredients is considered, blood glucose level attracted attention. Recent 

years, the demands for monitoring blood glucose level is increasing along 

the increasing of diabetes. Addition, the blood glucose level is the level of 

the glucose in blood. It is can be thought that change of blood glucose level 
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might bring the change of viscosity, and affect the shape of pulse wave form. 

Therefore, this chapter states whether the pulse wave signal measured 

by FBG sensor system include the information of blood glucose level or not. 

If it is possible to take up the blood glucose information from the signal, FBG 

sensor's high non-invasiveness and convenience will be great advantage of 

the blood glucose measurement instrument. In this measurement trial, the 

FBG sensor is installed at the radial artery of the wrist, and a pulse wave 

signal is measured. The method is safe for the human body and does not 

involve the collection of blood. Since the blood glucose level is the glucose 

concentration in the blood, the blood flow will change owing to blood 

glucose level fluctuation and affect the pulse wave signal. If the FBG sensor 

can measure the pulse wave signal fluctuation, then the blood glucose level 

can be measured. Herein, the result of calculating the blood glucose level 

from the pulse wave signal measured using the FBG sensor and the prospect 

of non-invasive blood glucose level measurement by this method are 

described. 
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Figure 2-1 blood vessel age measurement device 

 

 

 Measurement principle and method 

 FBG Sensor System 

In this experiment, an FBG sensor system (PF25-S01: Nagano 

Keiki, Inc., Tokyo, Japan) was used [23]. This sensor system consists 

of an interrogator and an optical fiber. Figure 2-2 shows the photo and 

schematic diagram of the FBG sensor system. Broadband near-infrared 

(NIR) light with a wavelength range of 1525–1575 nm propagates 

through the optical fiber. Light reaches FBG sensor 1 through the 

optical circulator. The FBG sensor is a diffraction grating, in which the 
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refractive index of the core of the optical fiber varies at equal intervals 

and has an optical filter function. In this diffraction grating, only a 

specific wavelength (Bragg wavelength) of NIR light from the light 

source is reflected, according to Equation (1), depending on the 

diffraction-grating spacing: 

λBragg = 2neffΛ (1) 

where λBragg is the Bragg wavelength, Λ is the diffraction-grating 

spacing, and neff is the refractive index inside the core. When strain is 

applied to the sensor section, the diffraction-grating interval changes, 

because of which the Bragg wavelength also changes. This Bragg 

wavelength shift is measured by a Mach-Zehnder interferometer-type 

detection mechanism. The reflection light interferes in an interferometer, 

in which the optical path difference is set to 3.3 mm. A beam splitter 

splits the light into three components having phases that differ from 

each other by 2π/3 radians. The three phases are detected by wavelength 

division multiplexing. Three pairs of detectors detect the phase shifts of 

sensors 0 and 1, as shown in Figure 2-2. The signal for temperature 

correction of the measurement environment is measured by the FBG 

sensor 0 which showed in Figure 2-2. The phase resolution depends on 

the sampling frequency, which is 10 kHz. The FBG sensor measuring 
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the pulse wave signal is shifted by 1.2 pm, with a strain of 1 με, and the 

measurement sensitivity is ±0.1 pm [24]. Using this system, the pulse 

wave signal was measured as a continuous signal showing a wavelength 

shift with respect to the time axis. The specification summarized in  

 

 

Table 2-1 Specification of FBG sensor system 

Light Source 

Type 

Amplified Spontaneous 

Emission 

Power 30 mW 

Wavelength range 1525–1575 nm 

FBG Sensor 

Length 10 mm 

Bragg wavelength 1550 ± 0.5 nm 

Wavelength resolution 0.1 pm 

Strain resolution 0.08 μm 

Detector 

Type InGaAs PIN PD 

Wavelength range 900–1650 nm 
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Figure 2-2 Photo and schematic diagram  

of the fiber Bragg grating (FBG) sensor system 
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Figure 2-3 Representative photograph of a subject during pulse wave 

measurement. 

 

 

 Pulse Wave Signal and Blood Glucose 

Level Measurement 

Four subjects, who are all healthy males in their 20s, 

participated in the study. To measure the pulse wave signals, the FBG 

sensor was attached to the subject’s skin at the radial artery with a 

medical adhesive tape. In this measurement method, the strain of the 

artery that has propagated to the body surface is measured, so the 

calculated accuracy of the vital sign measurement is not affected by the 
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color of the skin of the subject. Figure 2-3 shows the appearance of a 

typical pulse wave measurement in this study. The subject was in the 

supine position, and the wrist was kept as high as the heart. The 

measurement was performed for 20 s. For avoid the effect of body 

movements, blood glucose level is measured first, immediately after, 

pulse wave is measured. 

Blood glucose was measured using an invasive blood glucose 

sensor, AntsenseIII (HORIBA Co., Ltd., Kyoto, Japan) or FreeStyle 

Precision Exceed H (Abbott Japan Co., Ltd., Osaka, Japan). This blood 

glucose level is used as the reference blood glucose when the pulse 

wave signal is measured. Immediately after measure blood glucose 

level, FBG sensor system measure pulse wave. While FBG sensor 

system running, blood glucose level is showed. The relative uncertainty 

of the invasive blood glucose values in this reference method is 3.3–

6.5%, when the glucose concentration is in the range of 90–220 mg/dL. 

In this experiment, the measurements were performed 20 times when 

the subject was in the fasting state, and they were performed another 40 

times several hours after the subject had a meal. In the blood glucose 

level measurement experiments, blood glucose levels usually change 

with the oral glucose tolerance test (OGTT). In order to measure the 
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blood glucose level, which is close to the usual life, we chose a method 

to change the blood glucose level by meal. Figure 2-4 shows the time-

series change in the blood glucose level of subject D. All of the subjects 

gave informed consent before they participated in the study. The study 

was conducted in accordance with the Declaration of Helsinki, and the 

protocol was approved by the Ethics Committee of Shinshu University 

(No.3202, Verification clinical trial with wearable vital sign 

measurement system.). 

 

 

 

Figure 2-4 The time-series change in the blood glucose level 

(subject D). 

 

 Blood Glucose Level Calculation Method 

The pulse wave signal was filtered by a bandpass filter having a 

pass band of 0.5–5 Hz, and the signal was processed in the first 

differential. To calculate the blood glucose level from the pulse wave 
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signal, the following four signal processing steps are necessary. 

1. Division of the measured pulse wave signal at each peak by a 1-

pulse pulse wave. 

2. Averaging of a plurality of divided 1-pulse pulse wave signals. 

3. Normalization of the vertical axis (wavelength shift) of the 1-

pulse pulse wave. 

4. Normalization of the horizontal axis (measurement time) of the 

1-pulse pulse wave. 

“1-pulse pulse wave” is a signal that is divided at the peak of a pulse 

wave and indicates a pulse wave signal in single beat of the heart. These 

processes are important for canceling fluctuations in the 1-pulse pulse 

wave signal measurement caused by pulse rate and respiration, as well 

as fluctuations due to the pressure of attachment the FBG sensor to the 

human body. For the pulse wave division, the peak due to the beat of 

the heart was selected. That is usually biggest peak in one period. 

In the normalization of the wavelength shift in one pulse wave 

signal, the first peak value is set to “1”, and the first valley value is 

set to “0”. The measurement time of the 1-pulse pulse wave was 

normalized using two methods. The first is normalization with the 

shortest measurement time (shortest-time-cut process). In this 
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method, the measurement time is normalized by the shortest 

measurement time (approximately 0.7 s in this experiment) among 

the divided 1-pulse pulse wave signals. The signal at the back of the 

1-pulse pulse wave is discarded, resulting in a reduction of the 

information in the pulse wave signal. For example, when the 

measurement time of the 1-pulse pulse wave signal is 0.8 s and the 

normalized time is 0.7 s, then the signal at 0.7–0.8 s is discarded. This 

procedure described in Figure 2-5. 
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Figure 2-5  Schematic flow of the pulse wave processing 

(shortest-time-cut process) 
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The second normalization method for the measurement time is 

to normalize all 1-pulse pulse wave signals to 1 s (1-s-normalization 

process). First, the measurement time is multiplied by an arbitrary 

constant, so that it is 1 s for the measured 1-pulse pulse wave. Next, a 

new point is created (linear interpolation) on a straight line connecting 

the nearest two points from 0.1 ms, and a similar calculation procedure 

is followed at the points of 0.2 ms, 0.3 ms, and so on to construct the 1-

pulse pulse wave signal at 10,000 points within 1 s. By applying this 

normalization method for all 1-pulse pulse wave signals, all of the pulse 

wave signals are normalized to 1 s. This procedure described in Figure 

2-8. 

Using these signal-processed pulse wave signals and the 

reference blood glucose level, a calibration curve for calculating the 

blood glucose level is constructed by Partial Least Square Regression 

(PLSR), which is a multi-variate analysis method. Since the reference 

blood glucose level (measured by the invasive blood glucose meter) has 

a measurement error, PLSR is suitable. Pulse wave signals were used 

as the explanatory variables, and the blood glucose levels, as measured 

by the invasive method, were used as the objective variables. Principle 

component analysis was performed for the pulse waves, and a feature 
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vector called the PLS factor was extracted. In PLSR analysis, the 

objective variables (blood glucose levels) are expressed by a linear 

combination of the latent PLS factor of the explanatory variables (pulse 

waves). The residuals were used as the variables of the new model set 

for the next extraction step until the predicted residues of the objective 

values reach their minima [25]. The optimal numbers of PLS factors 

were tested statistically at a 5% significance level. The model set with 

the calculated optimum number of factors is used as the calibration 

curve for calculating the blood glucose level. In the validation of the 

calibration curve, pulse waves that were not used in the calibration were 

substituted to calculate the predicted blood glucose levels. The standard 

deviation of the error between this predicted blood glucose level and 

reference blood glucose level is the standard error of prediction (SEP). 

 

 Standard Error 

For additional evaluation of our technique, we calculated the 

standard errors for both the calibration model, and the validation results. 

The standard error of calibration (SEC) characterizes the error between 

the reference glucose level and the estimated glucose level used in 
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constructing the calibration curve. Similarly, the standard error of 

prediction (SEP) characterizes the error between the reference value 

and the estimate used to validate the calibration curve. These 

parameters are calculated as below: 

 

SEC
n-k

 
(1) 

SEP  
(2) 

where di is the predicted value, d is the average of reference values, n is the 

number of reference materials, and k is the number of unknown factors. 

 

 Error Grid Analysis (EGA) 

In addition, error grid analysis (EGA) [26] was used for 

validating the calculation of blood glucose using this measurement 

method. EGA was originally used by Clark [27] to verify the clinical 

efficacy of blood glucose sensors. A scatter diagram with the reference 

blood glucose level on the horizontal axis and the blood glucose level 

calculated with the developed measurement method on the vertical axis 

is divided into five zones, labeled A–E. EGA can verify the clinical 

efficacy in zones A and B, but not in zones D and E. We examine the 
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proposed measurement method from the results of SEP and EGA. 

 

 
Figure 2-6  Schematic flow of the pulse wave processing 

(1-s-normalization process) 

 



 

 

39 

 Experimental Results and Discussion 

 Reference Blood Glucose Levels and Pulse 

Wave Signal of Each Subject 

The pulse wave signal and reference blood glucose level were 

measured 60 times for each subject. The calibration curve for 

calculating the blood glucose level was constructed with 50 

measurements (calibration data set), and the blood glucose level 

calculation was verified using the remaining 10 measurements 

(validation data set). This combination had been used in non-invasive 

blood glucose level measurement with near infrared spectroscopy [28]. 

Table 2-2 presents the calibration and validation data sets of the 

reference blood glucose level of each subject. When each subject had 

meals while being measured, blood glucose levels fluctuated from over 

87 (subject C) to 139 (subject B) mg/dL. 

Figure 2-7 shows a pulse wave signal subjected to a first-

derivative process in addition to a 0.5–5Hz band pass filter, as well as a 

general acceleration plethysmogram. The acceleration plethysmogram 

has five peaks labeled A-E corresponding to the beating of the heart [29], 

[30]. The measured pulse wave signal is very similar to the acceleration 
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plethysmogram. Therefore, the signal measured by the FBG sensor 

system is a pulse wave signal including the information of blood flow 

from the heart. 

 

Table 2-2 Reference blood glucose data set. 

 

 

 

Figure 2-7  Measured pulse wave signal and basic acceleration plethysmogram.  

(a) Pulse wave signal measured with the FBG sensor;  

(b) Acceleration plethysmogram. 
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Figure 2-8 shows the processing of the pulse wave signals for 

subject D with the two signal processing methods. The pulse wave 

signals are measured when the subject’s blood glucose concentration 

was maximum, minimum, and around the average value. In Figure 2-8a, 

the shortest time was 0.76 s; therefore, the pulse wave signal was cut at 

that time. Depending on the blood glucose level, the shape of the pulse 

wave signal is different at 0.2–0.6 s for each subject. In shortest-time-

cut processing (Figure 2-8a), the measurement time points selected to 

be “0” for normalization are almost the same (around 0.12 s), but this 

measurement time point is different in the 1-s-normalization process. 

Therefore, in the 1-s-normalization process, a large difference appears 

in the slope of the peak at 0–0.1, 0.1–0.2, and 0.9–1 s. The shape of the 

acceleration plethysmogram depends on the blood flow and the 

hardness of the blood vessel. Therefore, since the glucose concentration 

in the blood flow varies depending on the blood glucose level, it is 

conceivable that the pulse wave shape is affected by the glucose 

concentration. The blood glucose level will be calculated by measuring 

the shape change of this pulse wave signal. 
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Figure 2-8 Pulse wave signal in each signal processing method. (a) Pulse wave 

signals in the shortest-time-cut process. (Blood glucose level, Min: 83 mg/dL, 

Max: 207 mg/dL, Ave.: 136 mg/dL). (b) Pulse wave signals in the 1-s-

normalization process. (Blood glucose level, Min: 83 mg/dL, Max: 207 mg/dL. 
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 Blood Glucose Level Calculated by 

Calibration Curve 

Since the blood flow changes with the glucose concentration, 

the blood glucose level is calculated from the calibration curve. The 

calibration curve is constructed from pulse wave signals that are 

subjected to the two signal processing methods, as described in 

section 2.2.3 

Figure 2-9 show the calibration curves, blood glucose level 

calculation, and EGA results for each subject in shortest-time-cut 

process. show the calibration curves, blood glucose level calculation, 

and EGA results for each subject in shortest-time-cut process. Figure 

2-11 and show the calibration curves, blood glucose level calculation, 

and EGA results for each subject in 1-s-normalization process. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  

(f) 

 
(g) 

 
(h) 

Figure 2-9  Left: Calibration curves for (a) Subject A, (c) Subject B, (e) Subject C, 

and (g) Subject D. Blood glucose concentrations in these plots were estimated 

PLSR with shortest-time-cut process. Right: Validation results for (b) Subject A, 

(d) Subject B, (f) Subject C, and (h) Subject D. Blood glucose concentrations in 

these plots were estimated using the corresponding calibration curves. 

( )

( )
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 2-10  Left: Calibration curves for (a) Subject A, (c) Subject B, (e) Subject 

C, and (g) Subject D. Blood glucose concentrations in these plots were estimated 

using PLSR with 1-s-normalization process. Right: Validation results for (b) 

Subject A, (d) Subject B, (f) Subject C, and (h) Subject D. Blood glucose 

concentrations in these plots were estimated using the corresponding calibration 

curves.  
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Table 2-3  Calibration curve and validation results for each subject. 

 

 

 

Referring the Figure 2-9 and Figure 2-10, the EGA results of 

all the subjects are plotted in the clinically effective zones A and B. 

However, SEP in the shortest-time-cut process was 26 mg/dL in 

subject D like showed in Table 2-3. Since the average blood glucose 

level in the validation data set of subject D is 129 mg/dL, SEP is 

approximately 20%. This result is remarkably poor. On the other 

hand, in result of the 1-s-normalization process, the correlation 

coefficient of the calibration curve of three subjects exceeded 0.8, 

and in the EGA result, 80% of the data or more were plotted in zone 

A. Furthermore, SEP is 10–16 mg/dL, which is of the same level as 

the measurement error of commercially available invasive blood 

glucose measurement systems. The SEP of the 1-s normalization 

process method was better than that of the shortest-time-cut 
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processing, as indicated in Table 2-3. This SEP result is 9–12% of the 

average blood glucose value in the validation data set. These results 

are very good for calculating blood glucose level.  

The reason why the precision of blood glucose level 

calculation greatly differs by two signal processes is verified. In 

Figure 2-11b, the blood glucose levels calculated from the reference 

blood glucose levels 85, 121 mg/dL (“low” in the Figure 2-11b) and 

187, 202 mg/dL (“high” in the Figure 2-11b) pulse wave signals were 

127, 165 and 145, 143 mg/dL, respectively. These calculated blood 

glucose levels vary differ from the reference blood glucose level. In 

order to verify this cause, the calculated calibration curve is 

confirmed. In Figure 2-11a, the data on the reference blood glucose 

level of approximately 85 and 125 mg/dL are overestimated, and the 

data in approximately 180 and 200 mg/dL are underestimated. 

Therefore, the calibration curve that is constructed by this signal 

processing adversely affects the calculation of the blood glucose 

level. This phenomenon also appeared for subject B. On the other 

hand, in Figure 2-11d of the validation result in the 1-s-normalization 

process, the same four reference blood glucose values are plotted 

around Y = X, and the blood glucose level is calculated with high 
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accuracy. Accordingly, SEP values were also better with the 1-s-

normalization process. The SEC value of the 1-s-normalization 

process for subject D is much better than those of the shortest-time-

cut process. The calibration curve shown in Figure 2-11c is also 

plotted around the axis of Y = X. Therefore, in the 1-s-normalization 

process, reference blood glucose levels were correctly calculated. 

The data constituting these calibration curves are the same, and only 

the processing method of normalization of the horizontal axis 

(measurement time) of the 1-pulse pulse wave is different. 
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Figure 2-11  Calibration curve and validation results for calculated blood glucose level 

(Subject: D, shortest-time-cut and 1-s-normalization processing). 

 (a) Sub.D-calibration curve in Shortest;  

(b) Sub.D-validation result in Shortest;  

(c) Sub.D-calibration curve in 1-s;  

(d) Sub.D-validation result in 1-s. 
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 Adequacy of Non-Invasive Blood Glucose 

Measurement 

In former Section, it was shown that the calculation of blood 

glucose level is better with the 1-s-normalization process than with the 

shortest-time-cut process. The influence on curve was verified. A 

normalized pulse wave signal for a blood glucose level close to the 

highest, lowest, and average values for subject D processed by each 

normalization method was shown in Figure 2-8. The normalized 

wavelength shift of the pulse wave signal in the shortest-time-cut 

process is 0 at approximately 0.12 s for all of the blood glucose levels, 

and the pulse wave signal after approximately 0.75 s has been deleted. 

On the other hand, in the 1-s-normalization process, the measurement 

time of the pulse wave signal at which the wavelength shift is 0 varies 

among different blood glucose levels. 
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Figure 2-12 Loading vector of calibration curve in subject D. (a) Loading vector 

of calibration curve in shortest-time-cut process; (b) Loading vector of 

calibration curve in the 1-s-normalization process 
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Figure 2-12 shows the loading vector of each factor that is used 

for constructing the calibration curve in each processing method for 

subject D. The loading vector indicates the dependence of each factor 

on the calibration curve. The greater the absolute value on the vertical 

axis is, the more significantly the wavelength shift at that time depends 

on the blood glucose level calculation. In Figure 2-12, the loading 

vector at Factor 1 in each processing method is similar to the pulse wave 

signal. In the loading vector of factor 2 (Figure 2-12b red line) of the 

calibration curve in “1-s-normalization process” with high calculation 

accuracy, the absolute values are 0.07 s and 0.16 s on the positive and 

negative side, respectively. The numerical value on the vertical axis at 

Factor 1 is 0 at 0.12 s. Therefore, the loading vector of factor 2 affects 

the change in inclination around peak B in Figure 2-8b. These 

inclinations are affected by the time-axis direction (horizontal-axis 

direction), since peak A in Figure 2-7b is normalized to “1” and peak B 

is normalized to “0.” Furthermore, in the loading of the 1s-

normalization process in Figure 2-12b, Factor 1 has a large peak after 

0.92 s, and Factor 2 has a large peak at 0.95 s. These are the rising parts 

of peak A in Figure 2-7b. Therefore, normalized calibration curves that 

capture the features of inclinations around peaks A and B is calculated 
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the calculation of blood glucose level in high accuracy. 

On the other hand, in the loading vector of factor 2 (Figure 2-12a 

red line) of the calibration curve in “shortest-time-cut process” with low 

calculation accuracy, the absolute value is 0.3 s on the positive side and 

0.4 s on the negative side. It shows almost 0 at 0.07 and 0.16 s. At these 

measurement times, the absolute value of loading of factor 3 (Figure 

2-12a green line) is large, however this value is smaller than the 

absolute value of factor 2 in “1-s-normalization process”. Therefore, the 

change in inclination around the peak B in Figure 2-7b is not shown in 

each factor of the calibration curve in “shortest-time-cut process”. In 

addition, the absolute values of factors 2, 3, and 4 after 0.7 s are large, 

and this information has a big influence. However, in Figure 2-8a, since 

there are no characteristic peaks after 0.7 s, information unrelated to the 

pulse wave signal is indicated in the factor. Since the rising part of peak 

A in Figure 2-7b after 0.92 s has been deleted by “shortest-time-cut 

process”, the influence of the pulse wave signal in this part is not 

included in each factor. 

From the above, the calculation of the blood glucose level from 

the pulse wave signal is greatly affected by signal processing on the 

“Measurement time” axis, which is a feature of the “1-s-normalization 
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process”. In the 1-s-normalization process, this influence of the time-

axis direction is well captured. The calculation of the blood glucose 

level is significantly influenced by the inclination of the pulse wave 

signal around the peak A and B in Figure 2-7 b. In other words, the 

blood glucose level is not exactly the magnitude of the pulse; rather, it 

is significantly dependent on the blood flow in the time-axis direction. 

The causes of changes in the blood flow due to the blood glucose 

level may be as follows. 

� More glucose was contained in blood after a change in the blood 

glucose level; consequently, the blood flow changed because of a 

change in blood viscosity. 

� Since glucose is sent into the body, the blood vessels expanded at 

the time of hyperglycemia, and the blood flow changed. 

Medical verification to confirm these causes is a future task. 

 

 

 Conclusions 

This Chapter 2 reported a revolutionary method of non-invasive 

blood glucose measurement using an FBG sensor system. Pulse wave signals 
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were measured for four subjects, and blood glucose levels were calculated 

using two signal processing methods. Consequently, we found that the blood 

glucose level that was calculated with the shortest-time-cut process had poor 

measurement accuracy above 200 mg/dL. The blood glucose level calculated 

with the 1-s-normalization process had good measurement accuracy overall. 

Moreover, the acquisition of the slopes of peaks A and B of the pulse wave 

signal from the loading vector of the calibration curve in each signal 

processing method improved the accuracy of calculation of the blood glucose 

level. Lastly, we found that calculating the blood glucose level from the pulse 

wave signal with high accuracy, the blood flow should be considered.  

Our results indicate that the blood glucose level can be reliably 

calculated from the pulse wave signal measured by the FBG sensor. However, 

it is necessary to medically verify the relationship between the blood glucose 

level and blood flow. When this relationship becomes clear, the calculation 

of blood glucose level from the pulse wave signal would be theoretically 

validated.  

To perform this verification, it is necessary to investigate the blood 

flow while the blood glucose level is changing. However, it is not possible 

to measure the blood flow by performing incisions on the subject. Therefore, 

we plan to use ultrasonic tomographic imaging equipment [31], which can 
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image the inside of the body from the outside, to measure the blood flow. In 

this experiment, this device will be placed at the same location as the FBG 

sensor: the radial artery of the subject. The subject ' s blood glucose level 

will be intentionally changed, and simultaneous measurements will be 

performed using the FBG sensor and the ultrasonic tomographic imaging 

device. Then, the blood flow and the diameter of the blood vessel will be 

measured using the ultrasonic tomographic imaging device. The relationship 

between the measurements of the ultrasonic tomographic imaging device and 

the shape of the pulse wave signal detected by the FBG sensor will be 

investigated for each blood glucose level. 

We have already reported that the pulse rate, respiration rate, and 

blood pressure can be calculated simultaneously and continuously from the 

pulse wave signal that is measured using an FBG sensor system [21], [32]. 

If non-invasive blood glucose measurement is also included the 

abovementioned list, an FBG sensor system can be used as a convenient 

multi-vital-sign sensor. For diabetic patients, we aim for real-world 

implementation as soon as possible. 
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Feature extraction of blood 
glucose using neural 
network 

 

 Introduction 

We figured out the correspondence between the pulse wave which 

got from FBG sensor system and reference blood glucose level using basic 

analysis method Partial Least Squares Regression (PLSR), from previous 

chapter [33]. Previous chapter reported that the correspondence is 

significantly effective as a measurement method, however, there are some 

unclear points. Later, the relation between the pulse wave form and 

arteriosclerosis have been reported [34], subsequent, the relation between the 

pulse wave form and diabetes was also reported [35]. Those reports aim for 

the diagnose the arteriosclerosis or diabetes, not for measuring the concrete 

values. Taking in the current tendency for elucidation of mechanism, this 

report states that the effectiveness of the measuring method using machine 

learning for getting more robustness as a measurement method, reinforcing 
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the correspondence which we reported in previous chapter between the pulse 

wave form and blood glucose level. In recent years, machine learning has 

been used in various applications. It is also applied for medical purposes, 

such as diagnosis of retinopathy from retinal images [36] and diagnosis 

assistance for Alzheimer's disease [37]. For other instance, Artificial Neural 

Network was applied for construct calibration curve in blood glucose 

measurement [16]. 

Moreover, this fiber shape promotes the revolutionary way to utilize, 

like weaving into textile, taking advantage of the robustness against water 

and wash and un-necessity of disposable items.  Adapting FBG sensor as a 

vital sign monitoring device is not only for creating one of glucose sensor, 

but also establishing smart textile or various products [11]. 

This Chapter 3 describes that the new non-invasive blood glucose 

measurement method which makes use of machine learning techniques and 

an FBG sensor. Our technique employs the FBG sensor to obtain pulse wave 

pattern data characterizing arterial blood flow, which can be affected by 

glucose concentration. Subsequently, we employ machine learning to relate 

complex pulse wave pattern data to blood glucose levels. 
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 Material and methods 

This chapter states about the trial that applying new analysis method 

to the same data sets with Chapter 2. Figure 3-1 Schematic flow of the 

calibration and validation process. show the schematic flow of the entire 

experiment. 

 

Figure 3-1 Schematic flow of the calibration and validation process. 

 

 

 Measuring instruments 

The non-invasive measurement system developed in this study 

requires the construction of a calibration curve. For this, in addition to 

signals from the FBG sensor, reference values need to be obtained from 

current blood glucose measurement instruments. Those are AntsenseIII 
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(HORIBA Co., Ltd., Kyoto, Japan) or FreeStyle Precision Exceed H 

(Abbott Japan Co., Ltd., Osaka, Japan). This blood glucose level is used 

as the reference blood glucose when the pulse wave signal is measured. 

Pulse waves were measured using the PF25-S01 FBG sensor 

system (Nagano Keiki Inc., Japan), [38] configured according to the 

specification summarized in Table 2-1. 

 

 Pulse Wave Measurement 

In this experiment, 60 measurements were obtained for each 

subject. Four healthy males in their twenties were selected for 

participation. While measurement for each subject was completed at an 

arbitrary time of day over several hours, we began each measurement 

from a subject’s hungry state, prior to them having a meal. To measure 

a subject’s pulse wave, the FBG sensor was attached to their skin, at a 

point corresponding to the radial artery, using adhesive medical tape. 

The subjects lay in a supine position, and their wrists were kept level 

with their heart. Figure 2-3 depicts a pulse wave measurement, 

illustrating the typical posture of a subject during this process. 

Measurement was completed in ~20 seconds, which is the cycle time 
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required for an automatic sphygmomanometer to obtain a stable 

measurement. Smoothing was then applied to each signal, at a 1 kHz 

sampling frequency. Then, each pulse wave was filtered using a 

bandpass filter with a pass band of 0.5–5 Hz. Next, the amplitudes of 

the signals were normalized, with the maximum set at 1 and the 

minimum at 0. Each peak in the signal was selected before it was 

subsequently normalized signal with respect to time, such that there 

were 1000 data points on the horizontal axis of each plot. Finally, each 

signal was averaged to yield a pulse wave. This procedure is described 

in Figure 2-6. 

 

 Blood Glucose Measurement 

Blood glucose measurements were performed at the same time 

as pulse wave measurements using invasive-type instruments, to obtain 

reference blood glucose values. We chose invasive-type instruments 

which be available in market for person has diabetes. Therefore, 

pricking needle and blood sampling were required for experiment 

protocol. The protocol for this study was approved by the Ethics 

Committee of Shinshu University (Project identification code: No. 3202, 
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Verification clinical trial with wearable vital sign measurement system). 

 

 Machine Learning: Hierarchical type 

NNW 

For our machine learning model, the 60 pairs of pulse wave and 

blood glucose level data were first arranged, with pulse wave data 

defined as the explanatory variable, and blood glucose levels defined as 

the reference. Subsequently, 50 pairs of data were randomly selected, 

for constructing the calibration curve. The remaining 10 pairs of data 

were used to validate the calibration curve. 

We created our machine learning model using a hierarchical 

NNW from the MATLAB toolbox, adopting an error propagation 

method as the learning technique. In addition to the steepest descent 

method, which is a basic weight update method, we included a weight 

update method with a moment term, and one that adaptively modifies 

the learning rate, as fast convergence algorithms. The model featured a 

three-layer structure consisting of an input layer, an intermediate layer, 

and an output layer. Learning parameters for the model, adopted from 

previous chapter, are summarized as follows. The learning rate was set 
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to 0.1, the learning rate reduction coefficient was set to 0.9, the learning 

rate increase coefficient was 1.03, and the momentum coefficient was 

0.85. The number of middle layer units was 1000 and the number of 

output layer units was 1. The learning termination condition occurred 

either when the learning limit was reached, or a mean squared error of 

10-4 was achieved. 

 

 Error Grid Analysis (EGA) 

Same with former chapter, Error grid analysis (EGA) was used 

for validating the blood glucose levels estimated using our 

measurement method. EGA determines that a method is clinically 

acceptable if all results are in zones A and B like written in Figure 2-11. 

In this study, the goal is that the all validation results are in the A or B 

zone. 

 

 Results 

 Blood glucose levels 

As blood glucose levels for each subject change in response to 

their activity, such as having a meal or resting, to be suitable for blood 
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glucose calibration, reference values should also vary in a wide range 

as subject possible. We obtained reference blood glucose levels using 

currently available measurement instruments, for each subject as 

follows. Subject A: 178–81 mg/dl, Subject B: 232–93 mg/dl, Subject C: 

168–88 mg/dl, Subject D: 207–83 mg/dl. 

 

 Pulse waves 

Figure 3-2 (a) shows the raw signal from FBG sensor system, 

blood glucose level is 135 mg/dl. Next, Figure 3-2 (b) shows typical 

pulse waves obtained from Subject B, corresponding to the maximum, 

minimum, and average blood glucose levels recorded. These signals 

represent the filtered and average over a single time period. Filter is 

band pass type, frequency 0.5 ~ 5.0 Hz were only passed. Due to the 

differing lengths of the time-axis, noise is encountered at the end of 

each signal. This difference in length is caused by a physiological 

phenomenon called respiratory sinus arrhythmia, which cannot be 

removed. These three graphs show that each pulse wave looks similar, 

regardless of the blood glucose level. As it is difficult to distinguish 

them just by sight, mathematical analysis methods are required. In order 
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to be applied for those analysis methods, noisy part was cut, signals 

were applied normalization with horizontal axis and vertical axis like 

showed in Figure 3-2 (c).  
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(a) Raw signal with 135 mg/dl 

 

 
(b) Averaged pulse in one measurement 

 

 

 

 

 
(c) Normalized pulse wave 

 

Figure 3-2 Pulse waves recorded from Subject B with their blood glucose levels at 

their minimum, mean, and maximum values.  
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 Calibration and validation 

Calibration curves were constructed for the four different 

subjects using the pulse waves described in the preceding section. 

Figure 3-3 shows calibration and validation results for blood glucose 

measurement. Plots on the left are calibration models for each subject, 

based on NNW analysis, while plots on the right are EGA of 10 datasets 

obtained from these subjects, for validation of the calibration curves. 

Table 3-1 lists results of calibration and validation. The correlation 

coefficients for all the subjects were over 0.9. Similarly, the SEC values 

were small, indicating that calibration was completed to a high degree 

of accuracy. While some deviation could be observed between each 

subject’s SEP, EGA demonstrated that results occupied only the A and 

B zones of these plots, indicating that the error in the system is small 

enough to be ignored in practical medical situations. These validation 

results are clinically acceptable [26], suggesting that the proposed 

method is able to measure blood glucose levels adequately. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 3-3  Left: Calibration curves for (a) Subject A, (c) Subject B, (e) Subject C, 

and (g) Subject D. Blood glucose concentrations in these plots were estimated using 

a neural network. Right: Validation results for (b) Subject A, (d) Subject B, (f) 

Subject C, and (h) Subject D. Blood glucose concentrations in these plots were 

estimated using the corresponding calibration curves.  
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Table 3-1 Results of the calibration and validation 

PLS calibration 

Subject A B C D 

r 0.98 0.97 0.98 0.99 

SEC 

[mg/dl] 

5 10 5 5 

Validation 

SEP 

[mg/dl] 

14 18 38 22 

A-zone 

[%] 

90 90 60 90 

B-zone 

[%] 

10 10 40 10 

SEC: standard error of calibration, SEP: standard error of prediction, 

r: correlation coefficient 
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 Discussion 

 NNW Calibration models and validation 

We obtained high correlation coefficients from all subjects’ 

calibration curves, and a maximum SEC of 10, which is often 

considered to be small with regard to blood glucose instruments. This 

finding indicates that not only do signals from radial arteries obtained 

by FBG sensing contain information about the blood glucose level, 

NNW models are able to extract meaningful information from these 

signals. This experiment which is equivalent to the first trial for apply 

NNW is not sophisticated toward the machine learning yet. The analysis 

condition stated here may just be a one of the ways to analyzes which 

may be presence a lot. This trial could not adopt to use the high 

specification computer which be loaded GPU for calculating. When it 

is available to use, we should validate the expand the limitation which 

we have. Especially, this time, the number of middle units were limited 

to 1000, due to the consuming time. The more suitable condition should 

be appeared with high frequency processor. 

We also note that all the validation points are plotted in the A or 

B zones, suggesting that the system we are proposing is capable of 
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highly accurate measurement. However, there were differences between 

each subject’s SEP score, which ranged between 14 and 38 mg/dl. In 

particular, the SEP scores for Subjects C and D were remarkably high. 

Focusing on Subject C, who had the biggest SEP, only 60% of data was 

in the A zone of the EGA plot, the lowest in this study. For analysis of 

this phenomenon, the ranges of blood glucose levels obtained in 

validation are listed below, for comparison with the reference values 

listed in the results section.  

Subject A: 136 mg/dl – 80 mg/dl.  

Subject B: 214 mg/dl – 94 mg/dl. 

Subject C: 176 mg/dl – 95 mg/dl. 

Subject D: 202 mg/dl – 124 mg/dl. 

Referring list, each subject has blood glucose range, 56 mg/dl, 124 

mg/dl, 81 mg/dl, and 78 mg/dl. We can find subject C and D has narrow 

blood glucose range, compare with subject A and B. Especially, we note 

that for Subject C, the range of the blood glucose values is about 80 

mg/dl in both calibration and validation. In addition, we also note from 

Figure 3-3 (e) that data points for Subject C are grouped into two 

distinct clusters. Further investigation revealed that Subject C’s blood 

glucose level changed drastically because of the glucose load of their 
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regular lunch, causing the unnatural plots observed. Hence, the 

calibration curve for Subject C was optimized for narrow and divided 

range of blood glucose level data sets, causing the bigger SEP. However, 

regardless of their larger SEP scores, a high correlation coefficient was 

still obtained in calibration with data from Subjects C and D. High 

correlation coefficient will not always directly show the good 

calibration in this case, we need to pay attention to validation data more. 

To improve this error, data gathering should be repeated with a wider 

and continuous range of blood glucose levels. However, about this 

time's result, we didn't show the any plot in zone C, D and E, means 

there is only small error which we can ignore clinically. Moreover, 

correlation coefficient was quite high. There is no room for doubt there 

are some relationship between blood glucose level and pulse wave.  

On the other hand, validation methods do not provide the 

validation with over individual person, this time. Pulse wave form 

depend on each person, unprepared individual calibration and 

validation lead bigger error, for now. This matter is problem for validity 

and certainty of measurement, we are going to work and discuss against 

those problems in future. Moreover, the characteristic blood glucose 

range of healthy subjects and subjects with diabetes differ. Healthy 
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person is difficult to show the over 200 mg / dl blood glucose level, on 

the other hand, person with diabetes often show the over 300 or 400 mg 

/ dl blood glucose level. Therefore, this paper's result is limited as just 

for healthy blood glucose level, we need validation with quite high 

blood glucose level, we need more detailed validation is required. There 

are a lot of steps which we have to make it clear before practical use, 

this paper leads various follow up studies. 

 

 Blood glucose measurement using FBG 

sensors 

We conducted our experiments based on the assumption that 

continuous pulse wave signals obtained from FBG sensor systems 

contain information about blood glucose levels, since these signals are 

similar to the acceleration pulse wave (the second derivative of the 

fingertip volume pulse wave signal) [18]. Thus, the presence of a 

correlation between blood glucose level and FBG signals is to be 

expected, based on the results of the former study. However, in spite of 

this correlation, there was no visible concrete correspondence or 

relationship between these two parameters, as shown in Figure 3-2 at a 
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glance. Referring to the former study, multivariate analysis can make 

such a correspondence clear [12, 20]. We enumerate some physiological 

factors suggesting the validity of using pulse wave pattern data for 

blood glucose sensing below, which also serve as explanations for why 

the correspondence between the two parameters is not immediately 

clear. 

The primary reason for measuring blood glucose with FBG 

sensors is that blood viscosity is generally considered to change 

according to glucose concentration. In the former study, it was noted 

that prediction accuracy improved when the latter part of a one pulse 

wave signal was considered with two way of analysis, indicating that 

the change in blood glucose level caused a change in blood flow with 

respect to time [12]. Thus, it can be said that blood viscosity or elasticity 

alters blood flow, leading to a change in the nature of the pulse wave. 

However, viscosity can change clearly with quite high concentration of 

glucose solution, on the other hand, low concentration of glucose 

solution which human might show could not see the clear 

correspondence between with viscosity and concentration of glucose. 

This phenomenon is verified our preliminary study. Now, we think the 

effect of the viscosity is not dominative, just a one of small factor for 
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detecting blood glucose. 

In addition, we consider FBG sensor operation, particularly, the 

effect of anatomical structures on sensor response. Concretely, as FBG 

sensors are strain sensors, the thickness of structures such as blood 

vessels, skin, and tissue can affect their response. Different studies have 

noted the relationship between blood glucose and blood vessel stiffness, 

with elevated blood glucose promoting arteriosclerosis over a long time 

period. Similarly, over short time periods, high blood glucose level 

states are also able to change the osmotic pressure of blood plasma. 

Other reports have stated that both short- and long-term exposure to 

“High Glucose” and “High mannitol” states decreased the expression 

of the active, phosphorylated form of endothelial nitric oxide synthase 

(Ser1146-eNOS), and, in parallel, increased the expression of the 

vascular cell adhesion molecule (VCAM)-1 protein. The presence of 

glucose also affects cell generation and metabolism, as has been 

detailed elsewhere previously. This report concludes that correction of 

hyperosmolarity by targeting its osmosignaling pathway may thus 

represent a novel strategy to counteract the detrimental vascular 

consequences of diabetic hyperglycemia [39]. We have been 

considering these phenomena could be one of valid principle for sensing 
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blood glucose. 

Finally, research conducted by Li et al. [34] has demonstrated 

significant differences between the shapes of pulse waves obtained 

from healthy subjects and subjects with diabetes, in both the amplitude 

of the wave, and with respect to time. This study quantitatively assessed 

changes in arterial pulse waveform parameters in patients with type 2 

diabetes. These changes are in addition to the delay of blood flow that 

has been used as an indicator for arteriosclerosis. Consequently, they 

were able to conclude that the pulse waveform characteristics could be 

used as indices of arterial stiffness in patients with type 2 diabetes [34]. 

Moreover, there are also interesting research about pulse wave and 

diabetes.  This reports study about relationship between pulse wave 

shape and diabetes. They conclude that the results demonstrated that the 

noninvasive and convenient pulse-taking diagnosis described in this 

paper has the potential to become a low-cost and accurate method to 

monitor the development of diabetes [35]. 

These studies all indicate a variety of ways in which blood 

glucose level can affect strain, highlighting the validity of using FBG 

sensors for measurement. However, as the combination of these effects 

is complex, a suitable classification method is required to obtain 
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accurate blood glucose data, explaining our use of machine learning 

techniques. 

 

 

 Conclusion and prospects 

Our technique consists of data gathering using the FBG sensor 

system, construction of a calibration curve using NNW analysis, and 

subsequent estimation of the blood glucose level. Data calibration and 

validation was conducted with four subjects, and errors were evaluated using 

EGA, designed specifically for blood glucose instruments. All validation 

data points were plotted in the “safe zone,” indicating that FBG sensor 

system and analyzing method are suitable for non-invasive blood glucose 

measurement. That's why, we can conclude that the blood glucose level can 

be calculated from the pulse wave with NNW. 

However, we note a limitation in this study, in that all subjects were 

healthy young males. From previous chapter it has been noted that the 

characteristic blood glucose range of healthy subjects and subjects with 

diabetes differ. To ensure that this technique is valid with diabetic patient, 

experiments should be conducted with the cooperation of subjects with 
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diabetes, and with a wider demographic, as supervised by an accredited 

institution. In addition, the effects of prolonged high-blood glucose levels 

should be simulated. This report is just a first step of the development. 

Nevertheless, the success of our technique suggests that the creation 

of a wearable measurement device is viable. The FBG sensor’s fibrous shape 

makes it suitable for inclusion in a smart textile or garment, particularly as 

we have already developed some surface treatment techniques that enable 

the weaving of these devices. Incorporation of these devices into smart 

textiles would lead to the creation of a revolutionary product: a “wearable 

multiple vital sign measurement device.” The combination of the demand for 

continuous blood glucose monitoring, these surface treatment techniques, 

and our promising FBG sensor findings suggest that the establishment of 

such wearable devices is not far in the future. 
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Chapter 4 
Trial for acquisition  

of vital signs in 
bed-environment 
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Trial for acquisition of vital 
signs in bed-environment 

 

 Introduction 

Quality of sleep is important for performance and wellbeing of 

people. The thermal environment people are exposed to be important for the 

sleep quality. Therefore, control of the thermal environment during sleep is 

important. One control possibility is to measure and use body physiological 

signals in response to the thermal environment. During the recent year’s 

continuous measurement of blood pressure changes during sleep has 

attracted much attention because of "Early morning hypertension" or 

"Nocturnal hypertension" studies. However, good devices which can 

monitor sleeping person with waking up had never been appeared. We need 

vital sign monitoring device which can measure blood pressure without 

preventing comfortable sleep. 

In order to achieve, this task, we consider FBG sensor system can be 

one of a good solution. Former study already reports the application of FBG 
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sensor for pulse rate, breathing rate, stress loading, blood pressure and blood 

glucose measurement [22], [33]. Especially, bed-environment is surrounded 

by a lot of textile products. FBG sensor system can achieve vital sign 

monitoring just by one optical fiber. By weaving FBG sensor to the various 

textile products, ideal measurement condition can be proposed without 

preventing comfortable sleep. 

Hence, there are some merit for introduce FBG sensor system to bed 

environment. However, measuring situation is different with former 

experiments. Hence, this Chapter reports the first trial that what kind of 

signal can we get from the sleeping person for introducing FBG sensor 

system to the bed-environment. 

 

 Material and methods 

  FBG sensor system 

In this experiment, FBG sensor and an interrogator unit 

(SMART FIBERS co. LTD: Smart Scan SBI Single Board Interrogator) 

compose the system. This interrogator is relatively small compare with 

former chapter's interrogator, and possible to detect strain with 10 

channels. Instead of multi-channel detection, this device has some 
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limitation with sampling rate, does not have the stiff machine box, like 

showed in Figure 4-1. Specification detail are described below in Table 

4-1 

 

 

Table 4-1  Specification of Smart Scan SBI 

Measurement and processing Smart Scan SBI 

Central Bragg wavelength  

[nm] 
1550 

Tolerance of Bragg wavelength 

[nm] 
±0.5 

Type Single mode fiber colorless 

Material SiO2 

Recoating material UV resin 

Diameter [μm] 250 

Core diameter [μm] 10 
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Figure 4-1 Over view of FBG sensor system 

 (smart scan SBI single Board Interrogator) 

 

 

 How to set the FBG sensor 

Referring former study, FBG sensor is mainly attached on the 

wrist to obtain pulse wave signal. Wrist is brilliant point to detect pulse, 

on the other hand, it is difficult for adapt for sleeping person. Current 

FBG sensor system has to connect some interrogator which is not so 

small like watch. It is obvious that sleeping person moves hand 

recklessly. In order to prevent various accident, we first need to consider 

some point to attached the FBG sensor. 
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How to set the sensor was considered. Firstly, whether the 

sensor can get pulse wave signal or not was checked with one person. 

Measurement points are neck and pillow. Neck was the candidate for 

measurement point. Hence, by attaching FBG sensor several points 

where around neck, checked the what signal can sensor get. Subject is 

a twenties Male with sitting position. Sensor position are described 

below. 

i. Right of neck 

ii. Central of neck 

iii. Diagonally left back of neck 

iv. Back of neck 

The detail of the sensing points is described below in Table 4-2.  

Second plan, installing sensor on the pillow was considered like 

in Figure 4-2. In this case, it was difficult to decide the measurement 

points strictly. Just in case, we set 2 sensors on the pillow, canter of 

pillow and side of pillow. 
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Table 4-2 The detail of the sensing points 

Sensing points 
Illustrate of the 

 sensing point 

Picture of the  

sensing point 

i. Right 

of neck 
 

 

ii. Central 

of neck 
 

 

iii. Diagonally 

right back 

of neck  
 

iv. Back 

of neck 
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Figure 4-2 Location of sensor on the pillow 

 

 

 Experiment condition 

In this study, we adopt the occipital region as sensing site. The FBG 

sensor was installed on the center of pillow by medical adhesive tape 

like in Figure 4-3. Due to its flexibility and high intrusiveness, the 

sensor is not felt by people uncomfortable and does not disturb sleep. 

Four subjects (2 males and 2 females in their twenties) participated 

in the experiment. The experiment was performed in a climate chamber. 
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The subjects were lying in a bed for 2 hour and 50 min. All subjects 

participated over 3 days in experiments at room air temperature 15, 20, 

and 25°C. Respectively during the experiments the subjects were 

covered consequently with four different quilts for 30minutes. During 

this period, the FBG sensor get the signal from the occipital region. In 

total, experiment was conducted like showed in Figure 4-5, Scene of 

measurement is showed in Figure 4-4 

 

 

 

Figure 4-3 FBG sensor on the pillow. 
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Figure 4-4 Scene of measurement 

 

 

 
Figure 4-5 Experiments flow 
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 Results 

 How to set the FBG sensor 

Signals what sensor could get are shown in Figure 4-6, Figure 

4-7, Figure 4-8, and Figure 4-9. We can see some peaks in Figure 4-6. 

We can guess there may be some information. About the Figure 4-7, 

there un-clear periodic peaks. Next, Figure 4-8 could not show clear 

signal, because the small amount of change. As same with former one, 

Figure 4-9 could not show the clear signal.  

From these results, it can be concluded that the neck is not good 

points for measurement, because the vibration of blood vessel is not 

clear. Hence, it is considered there are not enough pressure against the 

neck is not enough to detect the vibrations. 
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(a) (b) 

Figure 4-6 Signal from right of neck 

(a) measurement 1, (b) measurement 2. 

 

 

   

(a) (b) 

Figure 4-7 Signal from central of neck 

(a) measurement 1, (b) measurement 2. 
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(a) (b) 

Figure 4-8 Signal from diagonally right back of neck 

(a) measurement 1, (b) measurement 2. 

 

 

  

(a) (b) 

Figure 4-9 Signal from back of neck 

(a) measurement 1, (b) measurement 2. 
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As next strategy, the second plan was considered. Put the sensor 

on the pillow and press the sensor by subject's head. Much bigger 

pressure can be applied to sensor. Result is showed at the Figure 4-10. 

There are huge peaks which may drive from the body movements. On 

the other hands, there are clear periodic signal on the latter part. 

Compare with (a) and (b), (a) has the bigger amount of change in 

periodic peaks. That why, it can conclude the center of pillow is 

adequate to obtain signals from body. 

 

 

 

  

(a) (b) 

Figure 4-10 Signal from diagonally right back of neck 

(a) from center of pillow, (b) from side of pillow. 
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(A) 

 

(B) 

 

(C) 

 

(D) 

Figure 4-11 Scene of measurement, (A) from subject A, (B) from subject B, (C) 

from subject C, (D) from subject D. 

 

 

 The signal from the pillow 

Figure 4-11 show the example of measurement from each 

subject with same condition. There are present the periodic peaks, those 

periodic peak are hidden by the huge drift of signal or bigger peaks. 

This means that the center of pillow is good points for taking up signals, 

and, there is also sensitive for body movements and noises. Bed-
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environment is totally different with sitting position or standing position, 

it can guess that the difficulties of measurement while sleeping.  

 

 

 Discussion 

A lot of experiment conditions were prepared, however, there might 

not clear correspondence between signals and temperature, room 

temperature, exposure time, kind of quilts, nor day of schedule. Because, 

body movement was much dominative in this narrow area: head and pillow, 

rather than various parameters. Especially, measurement point was not 

visible, it was difficult to control and monitor.  

Figure 4-12 show the typical 3 samples from all of measurement 

ignoring subject categories. All of measurement data are able to be classified 

with these 3 categories. Figure 4-12 (I.) sample is consisted from small 

parodic peaks and huge sharp peak. Figure 4-12 (II.) doesn't have huge 

peaks; entire signal is slightly drifting. Finally, Figure 4-12 (III.) show the 

extreme big amount of change: 0 to 1550 nm. It can easily guess that (I.) and 

(II.) may include some information of body. On the other hands, (III.) are 

dominated by huge amount of changes, not possible to taking up some 
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meaningful signals. This strange signal is occurred by the overweight against 

the sensor. Under the body, or quilts, sometimes FBG sensor got too much 

pressure and got bended, then lost the measurement function. In normal use, 

this never seen often, special condition; we can say it is bed-environment 

specific trouble. It can be stated that bed-environment does require the sensor 

which is neither just only high sensitivity, nor robustness. 
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I. Sample i 

 

II. Sample ii 

 

III. Sample iii 

Figure 4-12 Representative three samples by classification 
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Focusing of details Figure 4-12 (I.), it is possible to find small 

periodic peaks like Figure 4-13. Then, Fast Fourier Transform (FFT) 

was applied for  Figure 4-12 (I.) and (II.). Figure 4-14 show the signal 

after FFT. Strong peak around 0.3 Hz, the circled by red square, is 

considered as a frequency of inhalation and exhalation, this peak means 

the signal contain the information of breathing. Peaks around 1.1Hz, 2.2 

Hz, and 3.3 Hz, the part rounded by red circle, can be considered as 

overtone of 1.1 Hz, corresponds the frequency of heart rate. 
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Figure 4-13 Detail of the signal “I. Sample i.” 

 

 

(P) (Q) 

Figure 4-14 Representative three samples by classification 
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 Conclusion and prospects 

Tried to applied the FBG sensor to bed-environment for measurement 

vital signs. The point to measure and what the sensor measure were 

considered in this chapter. As a result, instead of attaching the sensor to the 

human body, it was founded that attaching the sensor on the center of pillow 

is better. 

Taking this result, measurement was carried with 4 subjects. 

Measurement was got effected by bed-environment specific factors. 

However, some of signal show the periodic peaks which may be driven from 

body functions. Appling FFT, it was founded that those signals includes the 

information of breathing rate, heart rate and body movement.  

It could be concluded that we can get the several vital signs from the 

pillow, even there is no direct contact with blood vessel and sensor. This 

result will help to improve the sleeping quality or detect disease in early 

phase. Moreover, the method also may be used for improving sleep quality, 

not only to develop functional pillow. 

Currently, devices that measure the human body during sleep have 

appeared on the market. As shown in the figure below, there are devices that 

lay under sheets or the like and those that incorporate sensors in pillows like 
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in Figure 4-15. For these products, the FBG sensor system has an advantage 

in the high definition of the data that can be obtained. Those devices cannot 

measure blood pressure nor blood glucose level. Addition, there is no blood 

glucose level instrument which be possible to measure while sleeping. By 

progressing study of how to install the FBG sensor, we can make more 

functional product than those current devices. 

 

 
Figure 4-15 Example of the marketed product (Nemuri scan) 
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Chapter 5 
Development of active vital 
sign measurement system 
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Development of active vital 
sign measurement system 

 

 Introduction 

In order to helping aging society or daily Self-monitoring blood 

glucose (SMBG), we had been studied for developing wearable vital sign 

monitoring device. However, the measurement is decided, conducted, 

managed by their own. If miss the timing to measure, or forget to measure, 

measurement cannot achieve the role. With the elderly people or child, even 

if measurement can be performed with existing products, sometimes they 

cannot interpret with respect to the obtained values. When measuring various 

vital signs in hospitals and the like, an error factor so-called “white coat 

hypertension” may be included in the measurement. 

Hence, we suggest the health managing with robot equipped vital 

sign sensor. This robot aims to approach like preventive medicine and 

support the measurement staff. Addition, robot is desired to record the 

measurement and urge the measurement, which traditional devices never 
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have done. Moreover, reducing the effect of white coat hypertension is also 

expected. 

Towards the goal written above this chapter report the trial for 

assemble robot which has vital sign measurement function. The FBG sensor 

system, known as a multi-vital sign monitor device, is mounted on the fingers 

of a commercially available humanoid robot “Pepper”. We aimed to 

assemble the system which possible to calculate vital signs of four items of 

respiratory rate, pulse rate, systolic blood pressure, and diastolic blood 

pressure in about 20 seconds simply by touching the hand of the robot 

“Pepper”. 

 

 Material and methods 

 FBG sensor system Employing Optical 

Edge Filter: Satoshi 

Interrogator has been used mechanism like an interferometer, it 

can conduct measurement with high stability. On the other hands, the 

machine box must be big, that was a problem, this time, the system aims 

to be installed to the robot, it is difficult to apply Mach‐Zehnder 

interferometer, as well. Therefore, the "Wireless, Portable Fiber Bragg 
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Grating Interrogation System Employing Optical Edge Filter" which 

reported by K. Ogawa et al. [40] was adapted as mechanism, named 

“Satoshi”. This is developed to obtain vital sign more accuracy than 

current interrogator, entire system was got smaller by employing optical 

edge filter [2-3]. The comparison between the PF-20 (Nagano Keiki co. 

ltd.) which is previous interrogator and this interrogator; Satoshi is 

described below in Table 5-1. 

 

Table 5-1 Size of interrogator 

 PF20 Satoshi 

Wide [mm] 214 74 

Depth [mm] 262 97 

Hight [mm] 90 57 

Weight [g] 2800 175 

 

 

 Optical edge filter 

The optical edge filter is one of optical components and is a kind 

of derivative thin film. It is applied to various products as a Wavelength 
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Division Multiplexing (WDM) filter and usually detects using the pass 

band and stop band [41]. 

However, this interrogator focused on the slope part [40] of the 

edge filter as shown in Figure 5-1, uses the property that the ratio of 

transmitted light and cut-off light changes depending on the wavelength. 

This time, two wavelength gradient filters with the same reflected / 

transmitted light intensity at 1543 nm and 1561 nm were used. Since 

the Bragg wavelength of the FBG sensor varies greatly depending on 

the fixed pressure, body temperature, and ambient temperature when 

affixed to the human body, the Bragg wavelength may not exist in the 

inclined region. Therefore, a wavelength gradient filter having a 

gradient region within the range of 1 nm was employed in this 

experiment. As a result, the change in Bragg wavelength returned from 

the FBG sensor can be calculated from the ratio of transmitted light and 

reflected light. 
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Figure 5-1 Wavelength characteristic line of Optical edge filter 

 

 Human shaped robot: Pepper 

The humanoid robot used is Pepper made by Softbank robotics. 

In this research, Pepper for Biz, a product for enterprises, is adopted. 

This machine is characterized by being able to speak Japanese very 

smoothly, and is equipped with various sensors throughout the body so 

that it can run in the room without touching obstacles. In addition, it is 

possible to provide a height suitable for human’s blood pressure 

measurement due to its high overall height, having 5 fingers, and to be 

able to present visual information with a tablet terminal on the chest, 

which is an advantage over other humanoid robots. 

Owing to these features, this robot can perform active 

measurements and allow unlike previous vital sign measuring 
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instruments. 

 

 Vital sign calculating methods 

In this study, the measurement target is pulse, respiratory rate, 

systolic blood pressure, and diastolic blood pressure. FBG sensor and 

multivariate analysis were used for calculation. It is known that an FBG 

sensor can measure several vital signs from a pulse shape by combining 

it with a pulsation point of a human body and combining analysis 

methods such as multivariate analysis. This step conducted by 

analyzing the obtained pulse wave and the reference value to construct 

a calibration curve. In this paper, various values are calculated using the 

calibration curve previously constructed using the FBG sensor. The 

calibration curve is constructed by 60 points of measurement data from 

a male in his 20s. 

 

 

 System Formation 

The entire system is mainly composed of three components: FBG 

sensor system; Satoshi, Pepper, and server, like showed in Figure 5-2. FBG 
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sensor is installed on Pepper's right hand's index finger. This FBG sensor 

connect to the laptop computer via a wired LAN cable. The laptop is 

connected to the Internet via a mobile router and Wi-Fi. Information is 

stocked on the server, which Pepper can read it, and finally displays it as a 

measurement result on the chest tablet.  
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Figure 5-2 Data transition flow of entire system 
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 Getting pulse wave signals 

The FBG sensor system obtains a signal by touching the 

pulsation point of the human body. In this system, the pulsation point is 

defined as the left wrist. This is because, in many previous chapters and 

studies using the FBG sensor system, the calibration data used by the 

left wrist was also obtained from the left wrist.  

As shown in the Figure 5-3, the subject conduct measurement 

facing the Pepper. The FBG sensor is adjusted to be close to the beat 

point of the person's left wrist. 
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Figure 5-3 State during measurement 
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 Pepper as a human interface 

This system used the Pepper to guide the subject to use the FBG 

sensor system, to communicate data, and to show the results. It is set to 

pay close attention to the movement, so that it does not touch person 

himself, guides the subject to be measured, and guides the measurement 

and result report by voice, video, gesture. The behavior patterns are 

shown below in Figure 5-4.  
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Figure 5-4 Flow of behavior for Pepper as a human interface 
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 Measurement result and discussion 

Table 5-2 below shows the results of measurement with this system 

installed. Measurements were made as much as possible with the explanation 

by Pepper, reducing human intervention. In addition, the subject was a 

person who visited randomly, and NaN in the composition table means 

measurement failure. 

It is not possible to determine the authenticity of the value only from 

the main measurement result. However, there are obvious measurement 

failures such as pulse rate over 300 and number of breaths 0 in the table. In 

such a case, measurement of blood pressure often fails. Such measurement 

failure has never occurred with the other FBG sensor system and is a problem 

unique to this system. The failure of these measurements is due to the sensor 

part of the system not having good contact with the subject's pulsation point. 

In order to improve this measurement, there is a primary need to 

refine Pepper's induction. Second, Pepper's fingers have no sensory function. 

Therefore, it is not possible to have a mechanism for detecting a pulsation 

point, and it is not possible to make a fine adjustment to change the 

measurement point subtly. In the future, it will be necessary to devise ways 

to supplement functions that do not exist in Pepper. 
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Table 5-2 Summary of measurement with system 

Number of Pulse Number of Systolic blood Diastolic blood 

Measurement Rate breath pressure [mmHG] pressure [mmHG] 

1 113 10 106 56 
2 37 8 99 55 
3 123 9 95 50 
4 29 15 87 47 
5 102 10 81 45 
6 118 11 87 47 
7 316 14 NaN NaN 
8 201 14 72 39 
9 115 12 90 50 

10 155 12 95 49 
11 12 7 81 44 
12 113 13 91 48 
13 84 12 97 52 
14 119 0 NaN NaN 
15 64 6 99 55 
16 110 14 94 50 
17 83 12 102 57 
18 104 12 80 43 
19 104 14 85 45 
20 162 16 NaN NaN 
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 Conclusion and prospects 

This system operated satisfactorily in the mobile router usable area. 

There was also no problem with continuous operation. As a result, in many 

subjects, this device was able to measure respiratory rate, pulse, and blood 

pressure. It can be said that the role as a prototype was fulfilled more than 

expected. 

On the other hand, some of the elderly people got somewhat 

suspicious results. It was suggested that more stable measurement is possible 

by providing an interface and calibration according to the age of the person 

to be measured. 

In future developments, we are considering using the functions 

installed in Pepper more satisfactorily as well as ensuring measurement 

accuracy. First, there is identification and identification of individuals by 

face recognition, and accumulation and tracking of individual measurement 

data. We believe that we can contribute not only to temporary vital sign 

measurement but also to tracking more than a certain period of time to pick 

up more information and early detection of serious diseases. 

In addition, taking advantage of the characteristics of being always 

connected to the network, it is possible to transmit data obtained at home 
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nursing, etc., in order to provide remote medical treatment at a hospital. 

Schematic view of estimated future system is showed in Figure 5-5. This 

kind of personal identification and information management via the Internet 

can be expected to achieve the creation and installation of multiple units. In 

that case, we can expect a future where this machine can be provided and 

operated not only in nursing homes and hospitals, but also in hot bath 

facilities, pharmacies, and eventually in places where health care is required, 

such as schools and gyms. 

 

 
Figure 5-5 Under using system with subject 
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Conclusion 
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Conclusion 
 

6.1 Conclusion 

This dissertation considered how to measure blood glucose level and 

way of application FBG sensor system, in order to develop vital sign 

monitoring devices using optical fiber sensor. 

Chapter 1 focused on the fact that aging society and increasing of 

diabetes. When the environment in aged society, it cannot avoid to lack of 

medical worker. Then, we proposed a preventive medical approach by 

monitoring various vital signs. Along with this, the present status of the vital 

sign measuring instrument and the advantages of this research using the FBG 

sensor system were described. On the other hand, since SMBG is 

indispensable for the treatment of diabetes, we mentioned the problems of 

current measurement instruments. In order to solve these problems, we 

described the aspect of the FBG sensor system as a non-invasive blood 

glucose monitor. 

At chapter 2 and 3, the method to pick up the information of blood 

glucose level from pulse wave signal got from FBG sensor system was 
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discussed with two analyze way. As a result, it was found possible to measure 

blood glucose level with small error at healthy subject. 

Chapter 4 explained about trial of introducing an FBG sensor system 

in a sleeping environment. We found the possibility of capturing the pulse 

and breathing during sleep without disturbing sleep and without installing it 

on the human body. 

Chapter 5 described research on mounting FBG sensors on robots to 

construct a system that actively performs vital sign measurements. Study 

reached one stage, robot report was able to report the pulse rate, breathing 

rate, and blood pressure with about 30 seconds.  
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 Prospect 

The main purpose of this dissertation is to improve the quality of 

human life and medical care through vital sign monitoring technology. The 

FBG sensor system was proposed as the method, and the blood glucose level 

measurement method and the application method of the sensor system itself 

were sought. As a result, it was shown that blood glucose levels can be 

measured completely non-invasively and the FBG sensor system can be 

applied to a sleeping environment and installed on a robot. Therefore, a 

device capable of measuring not only blood pressure, pulse rate, respiratory 

rate, and stress but also blood glucose level can be provided. This makes it 

possible to check various vital signs without visiting a medical institution, in 

addition, since wireless communication is already possible, it is possible to 

transmit measurement data to a doctor and perform remote medical care. 

There is no need to bother a medical institution more than necessary. This 

enables early detection and early response by a medical institution when an 

abnormality occurs in vital signs. Thereby, it can contribute to efficiency 

improvement of medical care and reduction of medical expenses. 

Furthermore, as mentioned earlier, this paper was able to measure 

blood glucose levels from pulse wave signals. As a result, it has been shown 
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that there is a possibility that it can be proposed as a new SMBG method if 

it has been developed and can be applied to everyone. Eventually, it will be 

a revolutionary approach among the current SMBG which is not to avoid 

bleeding. Ultimately, it will be a device that can provide blood glucose level 

and other signs while being always worn like a wristwatch or active 

measurement assistant. 
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� Shintaro Kurasawa, Hiroaki Ishizawa, Keisaku Fujimoto, Shun Chino, 

Shouhei Koyama. “Development of Smart Textiles for Self-Monitoring 

Blood Glucose by Using Optical Fiber Sensor.” Journal of Science and 
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