
Doctoral Dissertation (Shinshu University)

Robust and efficient geometric primitive detection in
3D point clouds

September 2020
Sandoval Gálvez Jaime Alberto

Sandoval Gálvez Jaime Alberto: Robust and efficient geometric primitive
detection in 3D point clouds, © September 2020

I dedicate this thesis to my family for all their unconditional love and
support

A B S T R A C T

Recently, with the advent of low-cost 3D sensing technology, the need
for processing, analyzing, and detecting patterns in 3D point clouds has
been getting the focus of industry and the academy.

Assistant robots and the introduction of intelligent robotics in the
industry will play a major role in how well we address population aging
and even disaster prevention and management. In reverse engineering,
we are able to create new pieces without blueprints. The acquisition
of 3D point clouds and the detection of its geometry are crucial to
numerous applications.

One main characteristic of urban environments and man-made objects
is their geometric nature. They are comprised of several geometric shapes
such as planes, spheres, and cylinders. Due to their broad applications,
detecting them is an important task in 3D point cloud processing.
However, their detection in point clouds is not trivial.

The first part of this thesis focuses on describing different 3D sensing
technologies and the characteristics of their resulting point clouds as
well as the discussion of geometric primitive detection. Conventional
geometric primitive detection algorithms rely on the correct estimation
of local features such as normal vectors. In most cases, their efficient and
correct computation is not yet possible. RANSAC based methods and
the Randomized Hough Transform (RHT), use random sampling to find
hypothetical models faster. In RANSAC based methods, deficiencies
arise with a poor inliers/outliers ratio, which is a common scenario in
high-range sensors or even low-cost sensors due to noise. Sometimes, the
iterations are not enough to detect shapes diminishing their efficiency
and accuracy.

Hough Transform methods suffer from the quantization of their ac-
cumulator, they need to rely on further refitting the detected shapes
during the voting process. Moreover, for 3D shapes, it is only defined
for planes since an accumulator of more than 3 dimensions would need
an unfeasible amount of memory.

In the first part of this thesis, I explain the basic concepts behind
3D sensors. Therefore, in this thesis, I focus on solving the problem of
geometric primitive detection in 3D point clouds.

As planes are the most common geometric primitive, the second part
of this thesis focus on a more efficient approach for plane detection:
the Fast and Deterministic Hough Transform based plane detector
(FDHT). The key for its efficiency is that we opted for analyzing fewer
voxelized regions as opposed to pixel-wise neighborhoods to detect
planes. Points are filtered using a Scaled Difference of Normals (SDoN)
over these voxels. Then, instead of random sampling, the proposed
plane detector analyzes deterministically the whole point cloud with
higher efficiency. Because the detection mechanism is based on Hough
voting, I proposed a novel memory model for the accumulator based on

v

nested trees instead of contiguous arrays to avoid memory saturation in
Hough space. Nevertheless, it still requires improvement in robustness
and efficiency since it needs a pre-filtering mechanism (SDoN) which
adds computational complexity.

Therefore, based on existing knowledge about sliding windows in
object detection, in the third part of this thesis, I propose a novel plane
detector approach based on sliding voxels.

Instead of analyzing independent voxels of the point clouds, over-
lapping voxelized regions of the point cloud. A 3x3x3 sliding voxel
is defined for each voxelized region in the point cloud. An efficient
non-planar filtering method can be performed simultaneously while
the sliding voxels are sorted by their planarity. These planar regions
define hypothetical planes that are sorted by their number of inliers.
Finally, by removing planes from bigger to smaller we can detect planes
with superior robustness and efficiency. Experiments from realistic point
cloud simulations show that the proposed sliding voxel plane detector
is drastically more efficient and robust than the state-of-the-art planes
detectors.

Since the main key of the sliding voxel algorithm is its efficiency
generating hypothetical models from point clouds. We explored this
paradigm to sphere detection.

As opposed to planes, which are simple and linear geometric models,
spheres are closed surface quadrics. The sliding voxel for sphere detection
provides an efficient local sphere fitting algorithm that gets the most
probable sphere at each sliding voxel using robust statistics. This allows
us to robustly generate hypothetical spheres with high efficiency. For
each hypothetical sphere, Hough voting is performed on a 4D sparse
accumulator to detect the most prominent spheres. After extracting
spheres from the accumulator, the algorithm refits them and filter by a
novel measure of completeness.

The sliding voxel sphere detector has drastically higher efficiency
while being more precise than the conventional method in realistic point
cloud simulations. It demonstrated superior robustness by keeping its
high accuracy while increasing Gaussian noise. Furthermore, it shines
when processing LIDAR point clouds. They tend to be massive and with
high range; hence, their number of model outliers are overwhelming for
methods based on random sampling. There, the proposed sphere detector
had not only superior efficiency but its accuracy was exceptionally high.

The sliding voxel paradigm showed that we can design highly efficient
and robust shape detectors. Further works in the detection of arbitrary
shapes is a promising line of research that opens from this thesis.

vi

P U B L I C AT I O N S

The contributions of this thesis have appeared previously in my publi-
cations[68–70].

vii

A C K N O W L E D G M E N T S

I am eternally grateful to my family, my wife, my daughter, and my
mother who gave me the courage to keep on track during difficult times.

I wish to express my deepest gratitude to my supervisor, Professor
Tanaka Kiyoshi, for all his valuable kind support and encouragement
through the master and doctoral courses. Every monthly seminar we
have been holding in Tokyo and Nagano, my supervisor, and Professor
Iwakiri Munetoshi always gave me excellent feedback. I am indebted to
them for all the advice they kindly brought me.

I also want to thank Professor Aguirre Hernan for his valuable aca-
demic and personal support through these 5 years. My senpai Mr.
Uenishi Kazuma, who guided me in putting into practice point cloud
processing in the PCL library.

I want thanks to faculty members, Ms. Watanabe Masako, Ms.
Takayanagi Azusa, and Ms. Nishizawa Keiko for their support in ad-
ministrative work and my adaptation to life in Japan.

Last but not least, I want to thank the Japanese taxpayers and the
Japanese Government because I was able to pursue a postgraduate
diploma thanks to the scholarship for foreigners of the Ministry of
Education, Culture, Sports, Science, and Technology (MEXT).

ix

C O N T E N T S

1 recent directions and trends in information

and communication technologies 1
1.1 Computer perception and 3D information 1

1.1.1 Types of 3D information 2
1.1.2 A formal definition of point clouds 3

1.2 Advanced sensing technologies in point cloud acquisition 3
1.2.1 Passive 3D sensing 4
1.2.2 Active 3D sensing 5

1.3 Brief overview of 3D point clouds applications 9
1.4 Challenges in point clouds processing 9

1.4.1 Noise and sensor artifacts 9
1.4.2 Unorganized nature of point clouds 10

2 research objectives 11
2.1 Geometric primitive detection and its applications . . . 11
2.2 Plane detection and representation 12
2.3 Sphere detection and representation 13
2.4 Problems when detecting geometric primitives 14

2.4.1 Inefficiency . 14
2.4.2 Inaccuracy . 15

2.5 Research objectives . 15
2.6 Organization . 16

3 conventional plane detection methods 19
3.1 Random Sample Consensus (RANSAC) 19
3.2 RANSAC for plane detection 19

3.2.1 Coarse-to-Fine RANSAC and Ultrafine RANSAC 21
3.2.2 Efficient RANSAC 22

3.3 Randomized Hough Transform (RHT) 22
4 fast and deterministic method for plane de-

tection 25
4.1 Introduction . 25
4.2 Proposed method . 25

4.2.1 Fast and Deterministic Hough Transform 25
4.2.2 Scaled Difference of Normals 30

4.3 Experiments . 33
4.3.1 Datasets . 34

4.4 Evaluation . 35
4.5 Results . 36

4.5.1 Efficiency and error 36
4.5.2 Qualitative results 38

4.6 Conclusions and future works 39
5 sliding voxels for plane detection 47

5.1 Introduction . 47
5.2 Proposed Method . 47

5.2.1 Hypothetical plane extraction from coplanar voxels 48

xi

xii contents

5.2.2 Global verification 49
5.2.3 Plane extraction 50

5.3 Experimental Setup . 51
5.3.1 Datasets and evaluation method 51
5.3.2 Experiments results and discussion 55

6 sliding voxels for sphere detection 63
6.1 Introduction . 63
6.2 Previous Work . 64

6.2.1 Literature overview 64
6.2.2 RANSAC-based methods 65
6.2.3 Efficient RANSAC 66
6.2.4 Drawbacks of conventional methods 67

6.3 Proposed Method . 67
6.3.1 Main features and superiority 67
6.3.2 Process flow . 68
6.3.3 Hypothetical spheres generation 69
6.3.4 Hypothesis verification 73

6.4 Experiments and Discussion 74
6.4.1 Datasets . 74
6.4.2 Experimental setup 78
6.4.3 Experiments results and discussion 80

6.5 Conclusions and Future Works 85
7 conclusions and future work 87

7.1 Conclusions . 87
7.2 Future challenges . 88

bibliography 91

L I S T O F F I G U R E S

Figure 1.1 Color and depth image taken from a Kinect™ sen-
sor [28] . 2

Figure 1.2 Stanford bunny reconstruction [43] 3
Figure 1.3 3D point cloud acquisition and applications . . 4
Figure 1.4 Stereovision . 4
Figure 1.5 Structure-from-motion (SfM) 6
Figure 1.6 Structured light sensing [71] 7
Figure 1.7 2D LIDAR sensor mechanism [24] 7
Figure 1.8 3D LIDAR sensor mechanism [25] 7
Figure 1.9 3D LIDAR point cloud example from the KITTI

dataset [18] . 8
Figure 1.10 Cube model and point clouds sampled from dif-

ferent methods 8
Figure 1.11 Nuissances of point clouds 9
Figure 1.12 Structured light sensors depth quantization pattern 10
Figure 2.1 Primitives detector diagram 12
Figure 2.2 Plane diagram and parameters 13
Figure 2.3 Sphere diagram and parameters 13
Figure 3.1 RANSAC general strategy for plane detection . 19
Figure 3.2 A plane defined from 3 points and a cross product 20
Figure 3.3 UFRANSAC process illustration 21
Figure 3.4 General flow of the RHT for plane detection [5] 23
Figure 3.5 The angular parameters of the Hough Transform

for 3D planes: θ and φ. The distance parameter
ρ = −d . 24

Figure 4.1 Diagram of the FDHT algorithm 26
Figure 4.2 Coplanar voxels and octrees 26
Figure 4.3 Voxel plane refinement using coplanar points . . 27
Figure 4.4 Comparison of the positive cosine distance and

positive cosine similarity functions 28
Figure 4.5 Nested map structure of the FDHT accumulator 29
Figure 4.6 Sideview of a normals calculations with a small

search radius in the presence of Kinect noise . . 30
Figure 4.7 Curvatures heatmap under Gaussian and Kinect

noise . 31
Figure 4.8 Planar section affected with simulated Kinect

noise and its points distribution before and after
Voxel Grid filtering 32

Figure 4.9 Simple diagram of the SDoN calculation process 33
Figure 4.10 Noisy and noiseless car point cloud obtained by

Kinect simulation. 37
Figure 4.11 Noisy and noiseless room point cloud obtained

by Kinect simulation. 37

xiii

xiv list of figures

Figure 4.12 Noisy and noiseless room point cloud obtained
by Kinect simulation 37

Figure 4.13 Numerical results of the evaluated methods against
the datasets . 40

Figure 4.14 Room graphical results 41
Figure 4.15 Kitchen graphical results 42
Figure 4.16 Car graphical results 43
Figure 4.17 Room (noisy) graphical results 44
Figure 4.18 Kitchen (noisy) graphical results 45
Figure 4.19 Car (noisy) graphical results 46
Figure 5.1 Flowchart of the proposed method 48
Figure 5.2 Point cloud of a room model, color represents a

heatmap of the scores Sr of each voxel 49
Figure 5.3 Room R datasets models 52
Figure 5.4 Kitchen K datasets models 53
Figure 5.5 Detection example of the proposed method . . . 54
Figure 5.6 Plane detection inliers using the noiseless dataset 58
Figure 5.7 Plane detection inliers using the noisy dataset . 59
Figure 5.8 Processing time, precision and recall of the eval-

uated methods 60
Figure 5.9 Accuracy and F1 score of the proposed method

compared against the conventional methods . . 61
Figure 6.1 Overview of the proposed method 68
Figure 6.2 3D space subdivision using an octree 69
Figure 6.3 Sphere estimated with two points and their nor-

mal vectors . 70
Figure 6.4 Sphere fitting with sliding voxels 73
Figure 6.5 Spheres accumulator structure 73
Figure 6.6 Synthetic dataset M 75
Figure 6.7 Point cloud example from the M dataset with

ground truth spheres 76
Figure 6.8 Rendering of all subsets of the N dataset 76
Figure 6.9 Sensor locations of the N dataset 77
Figure 6.10 Example of sensed spheres and their respective

ground truth 3D models of the R4 (LIDAR)
point cloud . 78

Figure 6.11 η and processing time experiment results of the
M dataset . 80

Figure 6.12 η results using the N dataset, higher is better . 81
Figure 6.13 Processing time[s] evaluation results using the

N dataset, lower is better 82
Figure 6.14 F1 score (η) results using the N dataset, higher

is better . 83
Figure 6.15 Precision (γ) results using the N dataset, higher

is better . 83
Figure 6.16 Recall (ζ) results using the N dataset, higher is

better . 83
Figure 6.17 R3 point cloud from the N dataset 84
Figure 6.18 Graphical comparison: M dataset 84

Figure 6.19 Graphical comparison: N dataset (G1) 85

L I S T O F TA B L E S

Table 4.1 Example of SDoN scores table with a minimum
score set to 0.9. 33

Table 4.2 Parameters of the proposed method 34
Table 4.3 Dataset detailed information 35
Table 5.1 Proposed method parameters 51
Table 5.2 Dataset information 51
Table 5.3 Parameters of the proposed method in the eval-

uation experiments 55
Table 5.4 Parameters values of the segmentation algorithm 55
Table 6.1 Summary of conventional methods 67
Table 6.2 Datasets information 78
Table 6.3 EFRANSAC parameters 79
Table 6.4 Proposed method parameters 79
Table 6.5 Detailed results per ground truth sphere of ex-

periments with synthetic data of M. 81

xv

1
R E C E N T D I R E C T I O N S A N D T R E N D S I N

I N F O R M AT I O N A N D C O M M U N I C AT I O N

T E C H N O L O G I E S

1.1 computer perception and 3d information

Recently, Information and Communication Technologies (ICT) have
been playing a central role in improving the way we live, socialize,
and work. Since the widespread availability of digital cameras and
broadband connections, we can communicate instantly with others with
high-reliability thanks to advances in communications and image and
audio compression. Also, image sensing techniques allowed physicians
to diagnose patients without invading the body of their patients. These
advances are possible because we can acquire, process, transmit, and
visualize data from sensors to something understandable by humans.
However, due to technological limitations, those sensing techniques were
constrained to 2D images.

One of the goals of computer vision is to percept and analyze the en-
vironment automatically such that computers or automata can perform
actions we need such as navigate, manipulate, categorize, and so on.
This has played a main role in reducing operating costs, also reduces
the risks of operation when we need to work in hazardous environments
for humans [90].

Many European countries and particularly Japan are experiencing
acute aging of their population. Population aging is known to impact
seriously in the economy, productivity, and the sustainability of pensions
among others. Automatization is one of the approaches to alleviate this
problem but some tasks require precise information about the 3D world.

Images are just projections on the camera sensor; hence, we lose depth
information when taking photographs. This limits their applications in
many important areas such as reverse engineering [64], user-centered
product development [54], patient-specific 3D models in medicine [66]
just to mention a few of them. With 3D spatial information we can give
precise information to devices that operate in the real world, right now,
we cannot devise fully autonomous navigation, disaster management,
topography, augmented reality, among others without 3D information.
Their applications will increase exponentially as we figure out how to
efficiently and accurately obtain, process, and analyze the structure of
surfaces of the real world in 3D.

Therefore, because of its future potential, methods for obtaining 3D
information have been in very active research in the past few years. Some
of them are already implemented in small devices such as smartphones
or tablets.

1

2 recent directions and trends in ict

(a) Color image (b) Depth image

Figure 1.1: Color and depth image taken from a Kinect™ sensor [28]

1.1.1 Types of 3D information

Several methods to capture spatial or 3D information exists as well as
the formats they output. 3D sensing methods can be categorized as
passive or active.

Their output formats are also categorized in mainly 3 types of formats:
depth images, point clouds, and 3D Models. Depth images are images in
which their intensity channel is replaced by a measure of depth (usually
quantized for better performance). Spatial information from this type
of image is called 2.5D because they are not completely 3D, i. e., we can
not get depth information that was not exposed to the sensor field of
view. Low-cost and entertainment-focused sensors produce this type of
3D information.

Figure 1.1 shows both a color and depth image of a PrimeSense
sensor from left to right. Depth is encoded as a grayscale image in
Figure 1.1(b). Comparing depth with Figure 1.1(a), we can notice a lack
of spatial information in some regions due to the physical limitations of
the sensor.

3D Models are set of polygons (usually triangles) that as a whole
represent the shape and texture of objects. Usually, 3D models are
the cleanest and most complete type of 3D information we can get
Nevertheless, they are obtained later in a computationally expensive
3D reconstruction pipeline. Therefore, it is avoidable unless is necessary
for the application.

Point clouds are just sets of points in a 3D space that represent
the surface of objects. They might include other types of information
like color or intensity and are considered a core type in 3D spatial
information. Depth images and 3D models can be transformed into
their point clouds form. In the case of 3D models, we can preserve some
geometric information (normal vectors) but we lose the relationship
between points in the form of polygons. Therefore, in this thesis, we
focus on point cloud processing.

1.2 advanced sensing technologies in point cloud acquisition 3

1.1.2 A formal definition of point clouds

Let P be a set of points pi of at least 3 dimensions. The set of minimum
dimensions represent only the [x, y, z]T coordinates of each point. As
each point can be integrated with different kinds of information the
number of dimensions can grow.

Depending on the acquisition method a point cloud can include other
features that come from sensors such as color or intensity. Moreover,
we can estimate point-wise unit normal vectors by adding another
3 dimensions, or curvatures by adding 1 dimension. However, these
estimations come with a degree of uncertainty and their correctness or
availability should not be taken for granted. Therefore, Point Clouds
processing algorithms can utilize this information but should not be
limited or negatively affected by this extra information.

Figure 1.2 shows a photo, the 3D model, and a point cloud of the
reconstruction process of the Stanford bunny [43]. The bunny figure
from Figure 1.2(a) was scanned using a rotating table laser scanner.
The point cloud in Figure 1.2(c) are just the vertices of its 3D model
Figure 1.2(b). As the point cloud is aligned wit the XY plane, the z
coordinates of the plane were encoded with a heatmap to understand
the point’s depth in the picture.

1.2 advanced sensing technologies in point cloud

acquisition

The upper part of Figure 1.3 illustrates the different acquisition methods,
and the lower part show their applications. Each application drives
the acquisition method. For instance, low-range scanners are suitable
for indoor scenes or small objects reconstruction since they offer a
short minimum scan distance. Large range scanners are suitable for
Simultaneous Localization and Mapping since they can obtain a better
picture of objects far away.

There are several acquisition methods to obtain spatial information
or 3D point clouds. We can put them into 2 categories: Passive 3D
sensing and Active 3D sensing.

(a) Photo (b) 3D Model (c) Point cloud

Figure 1.2: Stanford bunny reconstruction [43]

4 recent directions and trends in ict

Figure 1.3: 3D point cloud acquisition and applications

Figure 1.4: Stereovision

1.2.1 Passive 3D sensing

Passive 3D sensing refers to a 3D scanning technique that utilizes
natural light and conventional cameras. Stereovision and structure-from-
motion (SfM) are two popular passive 3D sensing techniques. Both
require a well-illuminated scene with textured objects and two images.
The main difference between stereovision and SfM is that stereovision

1.2 advanced sensing technologies in point cloud acquisition 5

expects both images to be taken at the same time and SfM expects
both images were taken at different times.

Figure 1.4 shows a simplified example of stereovision. It assumes a
pair of images are taken from two cameras at the same time. Let x
and x′ be corresponding point pairs of X from I and I ′ of respectively.
These correspondences are estimated by keypoints detection and feature
extraction.

Keypoints are characteristic pixels of each image that have a high
probability of being found if we capture the same object with similar
visibility settings. Once matches are found, the algorithm needs to find
the epipolar lines. To calculate them one must compute the Funda-
mental Matrix F in which is the algebraic representation of epipolar
geometry. Epipolar lines and translation between correspondences can
be performed with F . To simplify the processing, both images are rec-
tified by applying a transformation such that both rely on the same
plane [58] and the epipolar lines become parallel to the horizontal axis
of the rectified image.

As seen in Figure 1.5, SfM works similarly but by moving a single
camera over the scene. This makes matching more complex since objects
can be moved, soft-objects can bend, and the cameras might not be the
same thus requiring a more robust matching of the keypoints inside the
scene.

One strong point of this type of sensing is that we can generate
colored point clouds when we have a minimum of 8 matches in the
image [46]. However, these techniques are not suitable for low-light and
texture-less environments with homogeneous geometry [41]. The lack
of a reference frame forces every passive stereovision-based method to
use the first image as the reference frame for rotation and a translation.
Therefore, 3D information generated by these algorithms in 2 or more
separated batches will have arbitrary scales.

1.2.2 Active 3D sensing

On the other hand, in Active 3D sensing, a device emits laser beams to
illuminate a scene and detect 3D shapes. There are mainly 3 different
types of Active 3D sensing techniques, Structured Light, Light Detection
and Ranging (LIDAR) and Time-of-Flight (ToF).

Structured Light is a type of active stereovision. Figure 1.6 exemplify
the basic operation of a structured light sensor. It consists on a projector
that emits a known pattern of infrared laser beams, and a camera that
captures the distortion of those patterns to detect the shape of objects.
To calculate depth, the camera needs to be calibrated and the baseline
needs to be known with precision. Structured light sensors such as the
Microsoft Kinect™and Asus Xtion™ PRO use a set of IR and RGB
cameras to get both color and depth.

LIDAR and ToF utilize laser pulses to detect the relative position
of the objects. Both measure the time the emitted pulses takes to be
captured into the sensor to measure depth.

6 recent directions and trends in ict

LIDAR was once an acronym for Laser RADAR because it works
similarly. Since it was the first ToF-based technology, it has been widely
used in Terrestrial and Aerial Surveying. It is comprised of a rotating
laser beam that emits pulses that are captured by an infrared sensor.
As the pulse is captured, it measures the distance on the laser beam
direction by using the time that took to reach the sensor.

When a LIDAR has only 1 laser beam, we can say it is a 2D LIDAR
because it detects depth over the plane the laser beam is rotating.
Figure 1.7 shows the basic mechanism of a 2D LIDAR, a set of fixed
and rotated mirrors is used to reflect and capture the laser pulse.

If multiple laser beams are emitted, the sensor is a 3D LIDAR.
Figure 1.8 illustrates a Velodyne 3D LIDAR sensor [25]. It emits several
laser pulses from LEDs fixed vertically in the sensor. In this type of
sensors, its light-emitting head rotates and produces a 360-degree field-
of-view point cloud. Aside from measuring distance, the reflectivity of
objects as the intensity of the laser pulses can be captured with this
technique as an additional sensor-dependent feature of point clouds.

Figure 1.9 shows two images of a LIDAR point cloud taken from a
Velodyne HDL-64E in movement. The intensity of the detected pulses
is color-encoded in a heatmap for better visualization. In Figure 1.9(a)
we can observe a near-ground level projection of the point cloud. The
rotating patterns are visible even in near objects, and the empty space
in the middle indicates the sensor’s location, which defines the minimum
distance required for sensing.

Figure 1.9(b) is an aerial view of the same point cloud. We can observe
that as we get far from the sensor, the distance between scanlines is
increased, the distance between points is also getting bigger. Recently,

Figure 1.5: Structure-from-motion (SfM)

1.2 advanced sensing technologies in point cloud acquisition 7

Figure 1.6: Structured light sensing [71]

Figure 1.7: 2D LIDAR sensor mechanism [24]

in aims to introduce more features to these 3D LIDAR point clouds,
advanced techniques to add color information have been developed [25,
65, 84].

A ToF camera emits modulated wave signals to objects and an IR
camera captures all the signals at once [41]. When 3D LIDAR sensors
posses rotating elements, this type of camera is assisted When the
camera detects a different signal it measures the time it has taken and
by using a simple formula one can detect per-pixel depth. Similarly
to Structured Light sensors, additional RGB cameras paired with IR
cameras can be used to obtain color.

Another type of point cloud acquisition method are model sampling
and sensor simulation. While model vertices can be utilized as point
clouds, it is inconvenient when the model has been built using CAD soft-
ware or has been simplified using geometric primitives. The Point Cloud
Library [67] offers two tools to accomplish these tasks mesh_sampling

Figure 1.8: 3D LIDAR sensor mechanism [25]

8 recent directions and trends in ict

(a) Ground view (b) Aerial view

Figure 1.9: 3D LIDAR point cloud example from the KITTI dataset [18]

and mesh2pcd. mesh_sampling uses raytracing to sample 3D points
from the models and mesh2pcd performs uniform random sampling
over the model faces. In Figure 1.10 we can visualize the different ap-
proaches of sampling point clouds from models. Figure 1.10(a) shows
a cube model rendering. We can visually understand that the vertices
of Figure 1.10(b) are descriptive enough to analyze its shape because
of the lack of points describing the surface of the cube. However, Fig-
ure 1.10(c) shows the random patterns of the mesh_sampling tool. In
Figure 1.10(d) we can observe the model has been sampled much more
uniformly. However, it has an induced thickness due to the quantization
of the 3D space while performing raytracing over a grid.

3D sensing techniques can be simulated in software. Blensor [23] is a
version of Blender, a 3D computer graphics software, that integrates a
sensor simulation plugin. This sensor simulation is highly realistic and is
capable of simulating ToF, LIDAR, and Structured Light (Kinect™V1).

3D point cloud sensing is becoming ubiquitous and its applications
are in increasing demand. From terrestrial and aerial surveys a few
decades ago, we were witnesses of their introduction to consumer elec-
tronics with the Kinect™sensor, and the recent introduction of massive
consumer electronics such as smartphones and tablets. Therefore, their
applications are expected to be extended with high speed in the years
to come.

(a) Cube model (b) Cube vertices (c) mesh_sampling
point cloud

(d) mesh2pcd
point cloud

Figure 1.10: Cube model and point clouds sampled from different methods

1.3 brief overview of 3d point clouds applications 9

1.3 brief overview of 3d point clouds applications

The applications of 3D point clouds have been increasing in recent years
due to increasing computing power and the development or advanced
algorithms. Robotics is one of the most direct applications of this
technology but not limited to it. 3D-guided navigation has been used
for numerous situations, even in missions to Mars [47].

Reconstruction of objects and scenes [28] is increasingly in demand by
industry and entertainment. Kinect fusion is a technique that fuses point
clouds in a grid called the Truncated Signed Distance Function (TSDF),
and reconstructs a model from the integration of several registered
depth images in a volume.

1.4 challenges in point clouds processing

1.4.1 Noise and sensor artifacts

Different 3D sensing techniques share some defects such as variable
sparsity, occlusion and the presence of artifacts. Noise is present in
every type of sensing method as fluctuations (wiggling) in the position
of points from the sampled surfaces. Deformations in objects from poor
calibration in Structured Light sensors can diminish the accuracy of
algorithms. Also, empty holes in point clouds derived from occlusion is
a constant in almost every type of sensing as shown in Figure 1.11(a).

Aside from regular gaussian-like noise, every sensing technique have
their type of artifacts and variations in points density. For instance,
Structured Light Sensors suffer from adverse effects of depth quantiza-
tion [10, 11] as shown in Figure 1.11(b).

Figure 1.12 shows a 3D point cloud of a wall sensed using a noiseless
Kinect™V1 sensor simulation in Blensor. In Figure 1.12(a) we can
observe a point cloud, where the circled region lies on a wall. This
wall as seen from the sensor perspective is completely planar, we can

(a) Occlusion (b) Noise and sensor artifacts

Figure 1.11: Nuissances of point clouds

10 recent directions and trends in ict

(a) Point cloud (b) Front (sensor) view (c) Side view

Figure 1.12: Structured light sensors depth quantization pattern

confirm this in Figure 1.12(b). Nonetheless, Figure 1.12(c) is the region
but taken in which we can notice with high clarity the structured light
sensor depth quantization.

This pattern, while combined with x-noise [10], and point fluctuations
makes it extremely difficult to define thresholds for search radius, voxel
size, or other algorithm parameters that are dependent on the point
cloud’s resolution.

It is well known that points are more distant from each other as they
are farther from the sensors. LIDAR sensors, as high range devices,
their precision is much worse near the limits of their range as seen in
Figure 1.9(b). ToF sensors suffer from flying pixels [87] when under
high solar radiation or when a cell in the sensor receives 2 pulses [6],
i. e.when the pulse is just at the edge of an occlusion.

1.4.2 Unorganized nature of point clouds

Point clouds can be divided into organized or unorganized. Organized
point clouds are originated from passive or active stereovision-based
techniques because they can be organized as a collection of pixels and
depth. This eases the search for neighboring points since the points are
already organized in a grid. Organized point clouds are 2.5D since they
normally include highly occluded scenes. Objects and scenes are not
fully 3D since we are unable to sense beyond the sensor’s field-of-view.

On the other hand, unorganized point clouds are sensed from image-
less sensing techniques such as LIDAR or SfM. They are just sets
of points without any inherent organization, not even point sorting
gives a glimpse of their underlying geometry or structure. To get basic
information about the extension, density, and organization of the point
cloud one has to compute 3D bounding boxes, 3D grids, or even more
complex structures such as kd-trees or octrees [36, 51].

While image compression is a well-established area of research, point
cloud compression non-trivial many approaches are exploring geometric
and neural-based techniques [8, 34, 52, 72, 75, 78].

For the sake of generalization, we treat all point clouds as unorganized
unless it is necessary to exploit the organized nature of some point clouds
to increase the efficiency of algorithms [29, 30, 82].

2
R E S E A R C H O B J E C T I V E S

2.1 geometric primitive detection and its applica-

tions

In urban environments, and when surrounded by man-made things,
the most common types of structures are geometric because they have
convenient properties: they are stable and easier to manufacture. For
instance, buildings and streets are comprised of many planar surfaces
while car wheels are similar to a torus. Complex objects with many
geometric features such as statues and people can be approximated by
several geometric primitives[73].

Geometric primitives are parameterized objects that can be expressed
mathematically. The most common geometric objects are planes, spheres,
and cylinders. We can reconstruct a scene full of geometric objects easily
if we know their coefficients. However, their detection in point clouds
is not a trivial task and has been addressed in several works in the
literature[5, 15, 29, 57, 59, 73].

The detection of geometric primitives can also be useful for reverse
engineering since the reconstructed 3D models tend to approximate a
surface by small polygons and their geometry needs to be simplified in
a post-processing stage. Simplifying the geometry of point clouds also
opens a door for geometric compression[8, 34, 52, 78].

However, geometric primitive detection is not a trivial task. Since
we are working with sparse and unorganized points, we have to infer
the underlying geometric efficiently, and to do it robustly even in the
presence of highly noisy environments with huge variations of noise
patterns.

In general terms, a geometric primitives detector is a software that
inputs a set of points and outputs a set of coefficients. Figure 2.1
illustrates a diagram of a generic primitive shapes detector. It inputs a
point cloud P with at least 3 dimensions (np ≥ 3) alongside with noise
and artifacts. The detector can be defined as a map f(P, ε) : Rns �→
R

ns , where np is the dimensionality of the point cloud and ns is the
dimensionality of the detected primitive shapes Sdet.

The dimensionality of Sdet depends on the number of parameters
required to describe each shape. It can be variable, for instance, a plane
in space can be represented by its equation coefficients (4), a point and
a normal vector (6), or by applying the Hough Transform (3).

Planes and spheres are the most basic geometric primitives. They
possess uniform geometry in two different ways:

• A plane has zero Gaussian curvature, they expand linearly and
indefinitely over any direction as long as it is orthogonal to its
normal vector.

11

12 research objectives

Figure 2.1: Primitives detector diagram

• A sphere has constant positive Gaussian curvature, i. e., it bends
uniformly in every direction.

These characteristics endow them with interesting applications. Planes
are also developable surfaces; therefore, they can be used as a repre-
sentation of tangential portions of curved surfaces. Because of their
constant curvature, spheres preserve geometric features independently
of the point of view of a sensor making them excellent targets for 3D
scanning.

Because of their wide area of applications, in this thesis, we fo-
cused on solving problems of plane and sphere detection in
unorganized point clouds.

2.2 plane detection and representation

Planes are the most common primitives. In intelligent robotics, a core
task is to recognize environment patterns, especially those from human
crafted objects and scenes, which are describable by a set of planar
structures.

Therefore, the detection of planar surfaces such as obstacles, floor,
stairs, and walls is crucial to several applications; i.e., virtual keypoint
detection [83], object detection [45], reconstruction [93], localization
and mapping [42, 61, 62, 88], roof detection [79], forest mapping[63],
and augmented reality [22]. Besides, plane detection is involved in
essential robotics tasks such as placing objects onto planar surfaces [57]
or climbing stairs [59].

Planes can be expressed in equations by their their Hessian normal
form, where the normal vector and a point on the plane can be used

n̂ · pn + ρ = 0. (2.1)

A point pn over a plane is represented by its coordinates (x, y, z)T .
Then, the plane equation is defined by the distance from the plane point
pn to the origin in its normal vector n̂ direction. Figure 2.2 illustrates
the role of the main components of the Hessian normal form of a plane.
The dot product of pn · n̂ results in:

ax + by + cz + d = 0, (2.2)

2.3 sphere detection and representation 13

Figure 2.2: Plane diagram and parameters

where ρ = −d and n̂ = (a, b, c)T in Equation (2.1). This is the general
and canonical plane equation. Its coefficients are (a, b, c, d), and a set of
them is expected in the output of a plane detector.

Planar surfaces extend indefinitely over the space. Therefore, some
algorithms may opt to offer a set of inlier points that belong to P or to
provide a transformation of P.

2.3 sphere detection and representation

Sphere detection is an important technique in 3D computer vision with
applications in broad areas such as materials engineering[37], measuring
[53], medicine[19] among others. They have promising applications in
point cloud registration [17, 86, 92].

A sphere is defined by its center coordinates C = (Cx, Cy, Cz)T and
its radius r

(x − Cx)2 + (y − Cy)2 + (z − Cz)2 = r2. (2.3)

Figure 2.3 shows the graphical explanation of the sphere parameters.

Figure 2.3: Sphere diagram and parameters

14 research objectives

Both its center and radius are expressed in the same units. Therefore,
in point clouds obtained from active sensing, their units are usually
meters.

2.4 problems when detecting geometric primitives

Aside from the challenges of processing point clouds metioned in Sec-
tion 1.4, there are still many problems to solve in the detection of
parametric shapes in point clouds. A shape detector can be seen as a
search problem, in which, the strategy of the search defines the perfor-
mance in terms of efficiency and accuracy of the algorithms. Although
conventional methods will be described later in detail, in this section, I
will briefly explain their schemes and direct implications in efficiency
and accuracy.

geometric features of points neighborhoods A single
point is not descriptive enough to define any shape; hence, every method
use each point as a reference, and search for its nearest neighbors. Since
point clouds have no definite order, nearest neighbor search is performed
by employing 3D space subdivision such as kd-trees or octrees. Once
we can estimate the nearest neighbor set for each point, features can be
extracted from their points’ distribution. Therefore, parametric shape
detection algorithms are expecting or computing features for each point
and their neighbors. However, efficiently finding their neighbors and
defining an appropriate search extent are processes that depend on the
local distribution of points. Moreover, the processing time increases
exponentially as points and their neighbor’s density increase because
these operations are performed point-wise.

2.4.1 Inefficiency

normals vectors estimation The most basic and commonly
used feature of point clouds is a normal vector. Normal vectors are unit
vectors that define the estimated orientation of a surface at each point
using their nearest neighbors. They are calculated point-wise using
PCA; hence, its processing time increases exponentially with respect to
an increment in the number of points. Moreover, nearest points share
geometric properties and neighborhoods point sets with high overlap will
output similar normal vectors. Therefore, their point-wise estimation is
causing a severe inefficiency issue in conventional methods that use this
feature [73, 83].

Additionally, conventional methods are using random sampling by
assuming the number of inliers of the current detection target is relatively
high. Although this is true for planes in urban environments, the search
becomes more difficult, like finding a needle in a haystack, hence, time
consuming as other less common primitives such as spheres or cylinders
are meant to be detected.

2.5 research objectives 15

point-wise detection A greedy approach to object detection
would be to fix a minimum number of samples and generate hypothetical
shapes by iterating over all possible combinations. Therefore, instead
of searching for all combinations, algorithms usually rely on Random
Sample Consensus or Random Subsampling which drastically reduces
processing times and the feasibility of the shape search at the cost of
falling in the aforementioned problems of finding needle in a haystack or
losing geometric detail by an aggresive subsampling. In this way, their
will poorly scale to point clouds with numerous points like those from
dense reconstructions or long-range 3D LIDAR scans.

Another greedy approach is to use the Standard Hough Transform
(SHT) to vote for all the possible shapes that can be defined for each
point. That is, for each point we have to iterate over all the parameter
space, which can be of higher dimensions that the points. This is a
notorious costly process which can be unfeasible for high dimensions
(> 2) parametric shapes. Therefore, instead of iterating over the whole
parameter space, a random sampling strategy is selected to cast a vote
for each random sample. Other non-deterministic approach consists on
reducing the amount of points using random subsampling. Nonetheless,
we end falling with the aforementioned problems when the search space
becomes too narrow.

2.4.2 Inaccuracy

Conventional methods are expected to work with a relatively high
number of inliers. According to [73], their shape detector start to detect
false positives when the outliers are 20% of the points or above. These
outliers can be present in any kind of point cloud but more often in
noisy low-cost sensors or Terrestrial Laser Scanning (TLS) point clouds.

Their accuracy highly depends on normal vectors estimation, which
is performed by PCA; a method known to be susceptible to noise and
outliers. When the point cloud is organized, there exist faster algorithms
to compute them [29, 30] at the cost of losing accuracy. Even now, their
efficient and robust computation of normal vectors in unorganized point
clouds is still an open topic.

These issues related to the complexity of the search space, and their
non-deterministic schemes limit dramatically the applications of geo-
metric primitive detection. Therefore, in the following chapters of this
thesis, we will describe 3 different approaches in chronological order
about how these issues were analyzed and addressed.

2.5 research objectives

To solve the aforementioned issues of geometric primitive detection, in
this thesis, we defined the following objectives.

• To improve the applicability of geometric primitive detection: its
accuracy and efficiency.

16 research objectives

– To study the problems of geometric primitive detection re-
garding accuracy and efficiency.

∗ Study the schemes of conventional planes and spheres
detector.

∗ Measure accuracy numerically and qualitatively with
ground truth data.

∗ Measure efficiency with processing time.
∗ Identify failure cases when accuracy and efficiency drops,

and hypothesize the reasons.
∗ Assess hypothetical solutions derived from the previous

objective, on how to improve accuracy and efficiency
without being affected with tradeoffs between them.

– To develop a drastically more accurate and efficient geometric
primitives detector.

∗ Analyze the reduction of the computations needed to gen-
erate hypothetical shape models without losing accuracy
or robustness to noise and outliers.

∗ Develop a method that validates hypothetical shapes ef-
ficiently using geometric features to improve robustness.

– To validate the results visually and numerically against
ground truth data.

∗ Generate point clouds and ground truth shapes from
realistic sensor simulation.

∗ Select an appropriate evaluation metric for shape detec-
tion accuracy and efficiency.

∗ Execute comprehensive experiments on the performance
of the evaluated methods in at least two metrics corre-
sponding to accuracy and efficiency.
· Conduct experiments on noiseless and noisy data

with challenging sensor patterns.
· Conduct experiments with short and high-range

point clouds.
∗ Visualize the experiments results in order to qualitatively

compare them against ground truth data.
∗ Execute experiments with real sensors data.

2.6 organization

In the following sections, I will describe the prior art in sphere and
plane detection focusing on briefly describing their key mechanisms and
foundations, and pointing out hints about their weak points.

Conventional plane detection methods are briefly explained in Chap-
ter 3. Then, a plane detector based on the Hough transform is described

2.6 organization 17

in Chapter 4. Consequently, derived from the lessons learned from
this plane detector, a novel plane detector based on sliding voxels is
introduced in Chapter 5. Under the hypothesis that the sliding voxel
approach can be generalized to more shapes, we applied this approach
to sphere detection. Therefore, we proposed a sphere detection method
based on sliding voxels in Chapter 6.

3
C O N V E N T I O N A L P L A N E D E T E C T I O N

M E T H O D S

3.1 random sample consensus (ransac)

RANSAC [16] is a simple but robust model-fitting algorithm, in com-
puter vision is widely used for feature matching but also can be used for
lines and plane fitting. It is the most popular method for plane detection.
As its name indicates, is a non-deterministic and generalized method for
model fitting, and has demonstrated to be effective in feature matching.

To increase its robustness when matching correspondences, many
variations of the original method have been created. For instance, MSAC
& MLESAC [81] provide an enhanced evaluation of the model quality
function in the verification step. PROSAC [12] enhances the hypothesis
generation by sorting samples using a quality function.

RANSAC is an iterative approach consisting mainly in hypothesis
and verification steps. A subset of n random samples are drawn from
the point cloud and a hypothetical model M is generated. For each M,
an error metric between the points and M is computed. The model is
verified by counting the number of inliers τ within an error threshold
ε. If τ does not reach a threshold τ ′, the process is repeated until k
iterations. Once a proper M is found, then its coefficients should be
refined by other methods such as least squares.

3.2 ransac for plane detection

Figure 3.1 illustrates the general strategy of RANSAC for plane detec-
tion. Variations and extensions of RANSAC follow this basic approach
or an extension. It draws random samples from the point cloud until it
finds a good model by thresholding its number of inliers.

Figure 3.1: RANSAC general strategy for plane detection

19

20 conventional plane detection methods

Figure 3.2: A plane defined from 3 points and a cross product

For plane detection, the number of required samples is 3. These points,
p1, p2 and p3 are randomly selected from the dataset. Then, a model
is instantiated by calculating the unit normal vector n̂ using the cross
product of two vectors over the plane,

n̂ = τ #»n = (p2 − p1) × (p3 − p1), (3.1)

where τ = | #»n |−1 and |·| represents the Euclidean norm.
Figure 3.2 shows how the combination of 3 non-collinear points forms

a normal vector using the cross product.
Once RANSAC obtains the plane equation coefficients (a, b, c, d) from

the samples. It evaluates the quality of a model by counting the inliers
within a defined distance threshold. If the model is not good enough, is
discarded and the process starts again until k iterations. k is calculated
from the probability of drawing good samples from the data, i. e., samples
that generate accurate models. Let w be the probability of drawing an
inlier from the data, then b = wn will be the probability of finding a
good set of samples from P, then to ensure a probability z of RANSAC
to withdraw a valid model it defines k as

k =
log(1 − z)
log(1 − b)

. (3.2)

In real-world data, particularly in the presence of quantized noise,
there is a well-documented study [77] on the bias of RANSAC model
fitting in the presence of surface discontinuities.

Additionally, as we encounter with point clouds with a small inlier-
s/outliers ratio, its performance decreases even if we set the probability
of success to 99%. For instance, suppose we have a noiseless point cloud
with 3 planes. If we want RANSAC to find one plane model with high
probability, let’s say z = 0.99, w = 1/3 and n = 3, then we have to
iterate up to 122 times per plane.

However, if we have noise and other non-planar points (outliers) then
we have to modify w and set a lower value, then the maximum iterations

3.2 ransac for plane detection 21

per plane increase drastically. When we test for w ∈ {1/4, 1/5, 1/6} the
maximum iterations per-plane increases from 122 to 292, 573, and 992
respectively.

This method is non–deterministic and it has two main disadvantages
when applying it to point clouds. First, to find a model we have to
assume that the inliers/outliers ratio w is relatively low since even
in noiseless point clouds it should approximate the ratio between the
number of points of the smallest plane over the whole point cloud, thus
increasing the maximum iterations per plane. Second, since point clouds
are multi-model, we have to execute RANSAC several times. Clearly,
this adds finishing conditions difficult to configure.

Furthermore, from a geometric perspective, RANSAC is only testing
plane models against point-model distance inliers, i.e., it is not aware
of points curvatures, hence generating spurious models across noisy
regions in the case of realistic point clouds.

3.2.1 Coarse-to-Fine RANSAC and Ultrafine RANSAC

An iterative Coarse-to-Fine RANSAC, hereinafter referred to as CFRANSAC,
was developed to be used for virtual keypoints detection [83]. This
method employs RANSAC iteratively to detect each model in a coarse-
to-fine approach, with Euclidean clustering spatially separating plane
inliers in segments before refining its coefficients.

Geometry-aware RANSAC methods like this filter distance inliers by
using point normals: a local feature of point clouds that is not sensed and
has to be estimated. Apart from the distance threshold ε, it introduces
an angular threshold θ between the hypothetical plane normal vector
and each point normal vector.

First, the coarse step detects surfaces that are roughly planar with big
threshold values. However, when these surfaces are neighbors of similar
planar surfaces RANSAC tends to report inaccurate results. Therefore,
the coarse inliers are refined by using RANSAC again but with stricter
thresholds.

Since nearly parallel planes far from each other can be erroneously
detected as one, it can produce an error when refining the model
coefficients. Thus, planes inliers are spatially clustered, where each
cluster is treated as a different model if they meet a specified points

(a) Step 1, coarse threshold (b) Step 2, fine threshold (c) Step 3, ultrafine threshold

Figure 3.3: UFRANSAC process illustration

22 conventional plane detection methods

number threshold τ ′. Lastly, plane candidates are refitted against their
inliers in a least squares sense.

CFRANSAC does not perform well in the presence of surface dis-
continuities patterns [77]. Figure 3.3 shows how UFRANSAC works.
The points are side-views of two different planar surfaces. Figure 3.3(a)
and Figure 3.3(b) show how iteratively running RANSAC with a coarse
threshold Cth and a fine threshold Fth can improve the accuracy of the
detected model.

However, in the presence of close planes, an additional step with an
ultrafine threshold UFth can improve further the accuracy and detect
both planar models in Figure 3.3(c). Therefore, to improve the accuracy
an ultrafine step was added to the process after the fine segmentation.
This UltraFine RANSAC method is called UFRANSAC.

3.2.2 Efficient RANSAC

Efficient RANSAC[73] (EFRANSAC) executes iteratively RANSAC on
disjoint random subsets under the assumption that valid planes models
will be detected in most of the subsets. Therefore, it only accepts models
that are prominent in the number of inliers, and were found in most of
the disjoint subsets. Every accepted model removes its inliers from the
point cloud and the process iterates again until the finishing criteria is
met.

Unlike CFRANSAC, EFRANSAC filters out points with large devia-
tions among their respective normal vectors during random sampling.
It also filters points with normals deviating more than a defined angle
from the plane normal vector. Moreover, it filters from the inliers only
the largest connected component on the plane model by discretizing the
inlier points translated to the plane coordinates. Finally, the candidate
shapes are refitted using their inliers and removed from P.

Even though its core functionality is faster than conventional RANSAC
methods, it requires point-wise normals estimation, increasing its com-
putational cost drastically.

3.3 randomized hough transform (rht)

The Hough Transform is an important parametric shape detection
method in pattern recognition and image processing literature. It con-
sists of transforming a datum into all the possible instances of a shape
it can represent in their Hough space (or parameter space). Models can
be anything that can be parameterized.

A well-known bottleneck of the Generalized Hough Transform is the
voting procedure. The Randomized Hough Transform (RHT) [89] is
a big improvement to the Hough Voting of the Generalized Hough
Transform [3] which was originally proposed by Paul Hough [32].

While the Standard Hough Transform performs numerous point-wise
calculations, the Randomized Hough Transform [89], RHT, exploits
random sampling to accelerate the voting process.

3.3 randomized hough transform (rht) 23

Figure 3.4: General flow of the RHT for plane detection [5]

Similar to RANSAC, in each iteration, RHT selects a sample of 3
points within a given distance, then the spanning plane for those points
is calculated using their cross product. Finally, the plane is voted once
in an accumulator. Then, a plane model is detected by the algorithm
when a cell in the accumulator reaches a given amount of votes. After
several iterations, it can approximate the full accumulator data without
having to process the entire parameter space.

Figure 3.4 illustrates the general process of the RHT for plane detec-
tion [5]. The RHT picks 3 random samples of points within a certain
distance and constructs a model. Using the plane coefficients (a, b, c, d)
from Equation (2.2), the plane coefficients are then transformed into
Hough Space using their polar coordinates (θ, φ, ρ)

xi cos θ sin φ + yi sin θ sin φ + zi cos φ − ρ = 0, (3.3)

where their equivalences with the cartesian coordinates coefficients are
shown in Figure 3.5.

The RHT is not aware of points geometry, but of the parameter
space during the voting process. Thus, it does not need normal vectors
to compute planes coefficients with reasonable accuracy and speed.
A drawback of this approach is that it is not aware of the points
distributions of the detected plane models.

Even though, the ball accumulator solved some accumulator problems
[5], it is non–trivial to adjust the discretization parameters, among
others who affect directly the precision of the algorithm, including
measurements to control the minimum and maximum distance between
the random samples and a restriction on the smallest eigenvalue size of
the spanned planes.

The latter restrictions are not possible only with the plane voting
process. Therefore, the RHT needs to be aware of the inliers points
distribution by recurring to a sorted clustering of the most prominent
planes.

Since it is non-deterministic, the finishing conditions have to be chosen
carefully. The algorithm will stop when the remaining points go lower a
given threshold, or if the algorithm fails to build a plane model in a given

24 conventional plane detection methods

(a) θ angle (b) φ angle

Figure 3.5: The angular parameters of the Hough Transform for 3D planes: θ
and φ. The distance parameter ρ = −d

amount of iterations. If these conditions are not properly configured,
the algorithm may not find all the most prominent planes, or it may
take longer to stop. Additionally, the performance of the RHT decrease
drastically when there is a large number of planes to be detected, or if
the number of non-planar points is increased as shown in the hall and
arena model experiments of Borrmann et. al [5].

ρ = −d

θ = atan2
(

b

a

)
φ = cos−1(c).

(3.4)

Then using the Hough Space coefficients (θ, φ, ρ), RHT casts 1 vote
into the accumulator. In each iteration, the algorithm performs peak
detection for the current cell. If a cell reaches a certain number of votes,
a plane is detected. Additionally, the processed j samples are removed
from the dataset in each iteration.

It finishes when there are a certain number of points left, a specified
maximum number of planes is reached or if the algorithm fails to
generate a model more than a defined number of times.

One remarkable proposal is a novel accumulator design which im-
proves the accuracy of 3D planes detection[5]. However, it can take
longer processing time as the amount of non-planar points in the data
increases.

4
FA S T A N D D E T E R M I N I S T I C M E T H O D F O R

P L A N E D E T E C T I O N

4.1 introduction

In urban environments, most objects and scenes are composed of many
planar surfaces. Therefore, it is necessary to provide efficient and accu-
rate algorithms to detect 3D planes.

Current methods can be categorized into two types. The first type
performs heavy point-wise calculations on point clouds, e.g. Generalized
Hough Transform [3]. The second type exploits random sampling to
acquire faster speeds, e.g. RANSAC[16]. Therefore, non-deterministic
methods are the most popular since they are robust and relatively fast.
However, they are far from realtime speeds even in modern CPUs, and
cannot be parallelized entirely on GPUs due to their serial nature.

In this chapter we propose a novel filtering method, the Scaled Dif-
ference of Normals (SDoN), and an improved Fast and Deterministic
Hough Transform (FDHT).

First, SDoN removes non-planar points robustly even in the presence
of noise artifacts, then the points distribution and normals are passed to
FDHT to detect planes. The improved FDHT uses the already calculated
voxel centroids and normals to refine the final results.

We evaluated this algorithm and concluded it is robust to noise
artifacts and has better accuracy while preserving low computational
costs.

4.2 proposed method

4.2.1 Fast and Deterministic Hough Transform

In the Fast and Deterministic Hough Transform (FDHT), instead of
reducing computational costs of the voting procedure using random sam-
pling. It reduces computational complexity by voting once for coplanar
patches instead of voting several times for each point.

Figure 4.1 shows a diagram that describes the flow of the proposed
FDHT algorithm. The main concept behind the FDHT is the assumption
that normal vectors of coplanar regions are similar.

As seen in Figure 4.2(a), planar regions have identical or similar
normal vectors. Therefore it is more likely for a patch to be in a plane
when is coplanar.

FDHT starts by dividing the 3D space into voxels using an Octree.
As seen in Figure 4.2(b) and Figure 4.2(c), the octree subdivides the
3D space into 8 cubes recursively until it reaches a defined voxel size
Vs. Then voxel information is stored in the leaves, such as occupancy,

25

26 fast and deterministic method for plane detection

Voxels
available?

Get planes from
accumulator

No

Yes

Voxel points
planar?

Octree voxels

No

Calculate plane

Yes

Difference of
Centroids

Eigenvalues of the
covariance matrix

Hough
Transform

Vote into
accumulator

SDoN filtering

Figure 4.1: Diagram of the FDHT algorithm

centroid, points indices, among others. In FDHT, points indices are
stored in leaves to query points inside each voxel later.

Consequently, for each voxel the planarity and coplanarity of its points
distribution is evaluated. For this purpose, since is fast to calculate
centroids, Difference of Centroids[27] is used to calculate the probability
of a voxel to be planar. Then, we use the centroid μp to generate the
covariance matrix and its eigenvalues λ1 < λ2 < λ3 using PCA.

These eigenvalues are used to filter planar voxels [44], a planar region
can be filtered out by using two constraints: thickness and isotropy. For
thickness the relationship between the first and second eigenvalue is
used as follows,

λ2 > αλ1. (4.1)

For isotropy, the relationship between the second and third eigenvalue
is used,

βλ2 > λ3. (4.2)

Coplanar voxels

(a) Normal vectors of copla-
nar voxels

(b) 3D space sub-
division of oc-
trees

(c) Voxel hierarchical struc-
ture stored in memory

Figure 4.2: Coplanar voxels and octrees

4.2 proposed method 27

Voxel

Figure 4.3: Voxel plane refinement using coplanar points

Since λ1 < λ2 < λ3, valid values for α and β are within the range (1, ∞).
With these constraints if is planar enough, the unit normal vector n̂
is obtained from PCA, corresponding to the eigenvector associated to
the smallest eigenvalue. Then the spanning plane is calculated with the
voxel centroid and its normal vector using the Equation (2.1).

To detect coplanarity, we measure the difference between two normals
at a different radius from the current voxel centroid. The normal vector
of the voxel plane is set to n̂1 and the normal vector at an expanded
radius is set to n̂2. Figure 4.3 shows how the search radius is expanded
F times to look for inliers (in orange) within a threshold Th from the
detected plane outside the current voxel.

If the orange points describe another surface n̂1 and n̂2 will point to
different directions. Therefore, if the cosine distance δ between n̂1 and
n̂2 is less than 0.1, then the voxel is coplanar with its expanded radius.
The cosine distance δ is illustrated in Figure 4.4. Where the absolute
cosine | cos(θ)| is defined as

ψ = |n̂1 · n̂2| �→ [0, 1] (4.3)

since both n̂1 and n̂1 are unit vectors. Therefore, its angle becomes the
normalized angular distance δ defined as

δ =
2 cos−1(ψ)

π
. (4.4)

The coplanarity radius Cr is defined by the voxel size Vs and a factor
γ,

Cr = γ
Vs

2
. (4.5)

Using the Hessian normal form of the plane from Equation (2.1),
for every coplanar patch the plane coefficients are calculated using its

28 fast and deterministic method for plane detection

0

0.2

0.4

0.6

0.8

1

0◦ 45◦ 90◦ 135◦ 180◦

N
or

m
al

iz
ed

di
st

an
ce

θ [degrees]

ψ = |cos(θ)|

δ = 2 cos−1(ψ)
π

Figure 4.4: Comparison of the positive cosine distance and positive cosine
similarity functions

centroid μp and its normal vector #»n already calculated by PCA. Then
the plane coefficients from the spatial domain (a, b, c, d) are transformed
into the Hough Space (θ, φ, ρ).

The next step is Hough Voting. Each dimension of the accumulator
is divided into a defined amount of bins (θbin, φbin, ρbin). The number
of bins defines the precision of the accumulator. Votes are cast into the
corresponding accumulator cell in Hough Space by using the number of
inliers from the coplanarity checking.

Because FDHT votes only for coplanar voxels, a dense accumulator is
not required; hence it uses a sparse memory model for the accumulator.
Therefore a new accumulator structure was proposed for this method.
It consists on a nested map structure of (θ, φ, ρ) values as illustrated by
Figure 4.5. The nodes corresponding to ρ stores the accumulator votes
data and other useful information such as the detection location and a
list of inliers.

From the sparse accumulator, planes are sorted by votes in descending
order and extracted until the remaining votes reach a Vt percentage.
When cells have higher votes, the corresponding plane has more local
representations in the point cloud. Therefore, only the most voted planes
are extracted.

Conventionally, to eliminate duplicates due to subtle variations in the
plane equations, their Euclidean distance in R

4 space was computed in
the past as a measure of similarity. However, planes are more globally
describable than locally. Then, to further eliminate the negative influence

4.2 proposed method 29

Nodes

Nodes

NodesNodes

Data

Nested

Nested

Nested

Figure 4.5: Nested map structure of the FDHT accumulator

of noise inside each planar voxel, the following planes refinement has
been developed for FDHT.

During the voting procedure, the voxel centroid and normal vector
of each coplanar voxel was saved in a centroids point cloud Pc. This
downsampled point cloud is used for a final plane refinement.

Iteratively, inliers are selected from inside Pc for each plane reusing
the coplanarity threshold. Additionally, the angular distance (Figure 4.4)
between the normals of the points inliers in Pc and the current plane
normal is also considered for inliers selection. Once inliers are defined
for each plane, they are removed from Pc. Finally, the refined planes
are the ones who have at least 1 inlier in Pc.

Difference of Normals (DoN)[35] is an operator that works on multiple
scales, it subtracts two normal vectors # »n1 and # »n2 at radius of different
sizes, r1 and r2. The DoN value is the L2 norm between these two
vectors.

DoN =
∣∣∣∣

»n2 − # »n1
2

∣∣∣∣ . (4.6)

Nonetheless, if the normals are not oriented towards a viewpoint, it can
miscalculate the value. Therefore, to prevent this issue the normalized
positive cosine distance δ of Figure 4.4 is used as the DoN value.

The cosine distance is a normalized angular distance between two
vectors, its range is [0, 1], where 1 indicates orthogonality and a value
near 0 indicates collinearity.

A weakness of DoN is its dependence on normals calculation, hence in
PCA. Therefore the method itself remains weak to non-gaussian noise.
Particularly in the case of Kinect noise where points are grouped into
independent and self-correlated planar clusters.

30 fast and deterministic method for plane detection

Surface

Kinect
artifacts

Figure 4.6: Sideview of a normals calculations with a small search radius in
the presence of Kinect noise

4.2.2 Scaled Difference of Normals

Figure 4.6 shows a case when normals calculation fails. The dotted line
is the real surface of the original model, the vector marked as #»n is its
normal vector.

This case can be visualized from the curvature calculated from the
eigenvalues of the covariance matrix,

c =
{

λ1
λ1 + λ2 + λ3

∈
[
0,

1
3

) ∣∣∣ λ1 < λ2 < λ3

}
. (4.7)

Figure 4.7 shows heatmaps of the local curvatures at each point with a
fixed radius of 10[mr]. Figure 4.7(a) has an added gaussian noise of 2[mr].
Figure 4.7(b) features several types of noise artifacts generated by the
simulation of a Kinect sensor. Even though the surface thickness of both
point clouds were increased similarly due to noise, Figure 4.7(a) shows
that when using a uniform search radius to calculate the curvatures
using PCA, the curvature pattern is uniform.

However, in Figure 4.7(b) in spite of having an analogous search
radius. The curvature pattern is not uniform, and the structure of the
Kinect noise artifacts can be still seen.

A normal workaround for this noise pattern is to provide a bigger
search radius, which can increase the computational costs and affect
normals calculation near sharp surfaces.

Therefore, we propose the Scaled Difference of Normals (SDoN), an
extension of FDHT which transforms and filters undesired points to
reduce the impact of both Gaussian and quantized noise.

SDoN calculates point normals, Difference of Normals and planarity
for each point after resolution downscaling to alleviate quantization

4.2 proposed method 31

(a) Curvatures of the room point cloud (b) Curvatures of room point cloud with
Kinect noise

Figure 4.7: Curvatures heatmap under Gaussian and Kinect noise

artifacts. Consequently, it downscales and calculates DoN scores iter-
atively. In each iteration point scores are generated and stored in an
array which will be used to decide whether to filter out a point or not.

For resolution downscaling we used the Voxel Grid Filtering imple-
mentation of the PCL library[67]. Instead of doing computationally
expensive point-wise calculations, it subdivides the 3D space using
octrees. Then it replaces the point cloud with the centroids of the octree.
This method acts as a low-pass filter, which downsamples the points
and therefore downscales its resolution. For that reason, in the proposed
method we will use the term downscaling to refer the application of
Voxel Grid Filtering.

Figure 4.8 shows an example of minimization of noise artifacts us-
ing downsampling. The observed location is pointed by Figure 4.8(a).
Figure 4.8(b) and Figure 4.8(c) show respectively the front and side
views of points over a plane in a simulation of a Kinect scan. The left
part shows the noisy Kinect scan. The right part shows the same point
cloud but with a downscaling of 15[mr].

As seen in Figure 4.8(b), the effect of Kinect quantization is not
visible because it is view from the sensor perspective. However, after
rotating the view, the pattern of Figure 4.8(c) arises and planar clusters
can be seen across the surface. When comparing both right and left
images, it is clear that the negative influence of Kinect noise decreases
at the cost of reducing the number of details and small surfaces.

In other words, as the point cloud is downscaled, planar surfaces
become clearly visible at the cost of increasing the distance between
points. For that reason, SDoN preserves the points from the first down-
scaling, and analyzes the respective points distribution down through
the scales.

It is noted that the DoN value is treated as a score and not a distance
metric, the proper distance metric from Figure 4.4 is used as a reference
to define the DoN score:

DoN = 1 − δ. (4.8)

Figure 4.9 is the flow of the SDoN process. The points of the initial
downscaling will be the reference points. These are used as the search

32 fast and deterministic method for plane detection

(b),(c)

(a) Location of the zoomed in region in the
render

(b) Front view of the wall with Kinect
noise

(c) Side view of the wall with Kinect
noise

Figure 4.8: Planar section affected with simulated Kinect noise and its points
distribution before and after Voxel Grid filtering

radius center for DoN, then the input data for normals calculation is
the downscaled point cloud. It is noted that in each iteration, SDoN
expands the search radius based on the mesh resolution of the new point
cloud to avoid running out of points for the normal vector calculation.
This process is run iteratively to build a DoN score table for each point
and also for each downscaling.

The scores table is built to decide which of the reference points are
filtered out. The decision criteria of the algorithm is to keep only the
points that are planar in many scales. For this purpose, DoN scores of
the multiple scales are thresholded by a minimum value. If any of them
goes down a defined DoN score, the point is discarded.

However, there may be cases in which a reference point does not have
enough neighboring points to calculate DoN on the downscaled point
cloud, particularly in higher iterations when the point cloud downscaling
becomes too aggressive. In that case, the undefined DoN score is ignored
and only the remaining scores are utilized.

A minimal example is shown in Table 4.1. In this case SDoN is
configured to a minimum score of 0.9. The table shows that only Point
1 is discarded because its score at the first downscaling falls below the
minimum: 0.9. It is noticed that Point 2 does not have a DoN value
at the second downscaling because the number of points k became
insufficient for calculating the normal vector (k < 3). Nonetheless, the

4.3 experiments 33

Figure 4.9: Simple diagram of the SDoN calculation process

Table 4.1: Example of SDoN scores table with a minimum score set to 0.9.

Downscaling Point 1 Point 2 Point 3
1st 0.7 0.93 0.91
2nd 0.91 N/A 0.99

point is not discarded because in the first downscaling it has a score
above 0.9.

SDoN enhances FDHT as it filters and preprocess data for 3D planes
detection. Particularly, the normals of reference points are reused for
coplanarity checking and the final filtering of FDHT.

Normals calculation is critical to SDoN accuracy. SDoN uses PCA
to calculate them. However it was demonstrated that PCA is prone
to noise, particularly with non-gaussian noise[91]. Hence, the study of
normals calculation in noisy data is out of the scope of this work.

The summary of the proposed method parameters is described in
Table 4.2. They are divided into 2 groups: SDoN parameters, and the
improved FDHT parameters.

4.3 experiments

The objective of the experiments is to evaluate the efficiency and pre-
cision of the 3D planes detectors algorithm and to compare its results
with the proposed method.

34 fast and deterministic method for plane detection

Table 4.2: Parameters of the proposed method
Group Parameter Description Unit

SDoN SDONvs SDoN initial voxel size [mr]
SDONit SDoN iterations #

FDHT

Vs Voxel Size [mr]
α Planarity factor N/D
β Isotropy factor N/D
Th Plane inliers threshold for coplanarity [mr]
F Coplanarity radius expansion factor N/D
θbin Accumulator θ bins #
φbin Accumulator φ bins #
ρbin Accumulator ρ bins #
Vt Votes tolerance %
Kt Angular tolerance [degrees]

Three metrics are used for this purpose: processing time T , the
number of correctly detected planes nd and total error E. CFRANSAC,
UFRANSAC and RHT, since they are non-deterministic, the average
values of 50 executions defined the metrics results.

The Fast and Deterministic Hough Transform (FDHT) was also
included to show the impact of not having SDoN both in computational
efficiency and precision.

It is noted that the processing time T of each method was evaluated
using wall time. On the other hand, since the variations of processing
time along executions is negligible for the proposed method and FDHT,
the result of a single execution was used as their processing time metric.

4.3.1 Datasets

We used synthetic point clouds generated by Blensor 1.0.17[23], which
can provide both clean point clouds and realistic noise simulations from
a variety of sensors.

For 3D point clouds generation, we used 3D models with several
planar surfaces, a room[26] and a kitchen1. Additionally, a model of
a car[60] with slightly curved surfaces was used to test out which
methods are good detecting planarity in this scenario. The car model is
particularly difficult for the proposed method since for the underlying
3D planes detection, FDHT, it might vote for the different tangent
planes of the curved surface into the accumulator instead of the global
surface.

To prepare a more realistic dataset we did not use clean point clouds.
Instead, a Gaussian noise of 1[mr] was added to each point of the
synthetic clean datasets. These point clouds are not named by any

1 Marela kitchen red&white, https://3dwarehouse.sketchup.com

4.4 evaluation 35

Table 4.3: Dataset detailed information
Name Mesh resolution[mm] Points[#] AABB volume [m3]
Car 4.11 180,323 1.02
Car (noisy) 3.98 416,189 1.04
Room 5.08 307,200 19.69
Room (noisy) 5.05 307,200 19.20
Kitchen 6.75 245,928 30.32
Kitchen (noisy) 6.80 494,507 31.01

particular annotation; however, the point clouds with Kinect noise are
marked as noisy.

Figure 4.10, Figure 4.11 and Figure 4.12 show the input point clouds
and their details are in Table 4.3. The room point clouds shown in
Figure 4.11(a) and Figure 4.11(b) were created with a single Kinect
scanning, while the Kitchen point clouds (Figure 4.12(a), Figure 4.12(b))
and Car point clouds (Figure 4.10(a), Figure 4.10(b)) were created by
simulating a noisy gaussian and non-gaussian noisy registration. This
was done in Blensor by moving the camera 10 times through a path, at
each step, both noiseless and noisy Kinect scans were obtained in world
coordinates. Finally, the point cloud was concatenated to simulate a
perfect registration.

UFRANSAC was run several times over the clean point clouds to
capture all the correct planes with high accuracy. Since there exists false
positives in the detection, only correct planes were manually selected
from in each iteration. Thereupon their final coefficients were saved as
the ground truth data.

4.4 evaluation

The precision evaluation algorithm is defined in Algorithm (1). It consists
in generating one-to-many relationships between the ground truth planes
and the detected planes. For this purpose it is necessary to provide a
list of coefficients of the ground truth planes Planesgt and the detected
planes Planesdet.

Each plane coefficient is a normalized unit vector in an R
4 vector

space. Therefore, to compare plane coefficients the angle between plane
coefficients vectors was utilized. This angle δθ is based on δ from Fig-
ure 4.4, where

δθ = 180 δ �→ [0, 180]. (4.9)

First, each combination of detected and ground truth planes is eval-
uated using the function bestmatch of line 1, the output is the match
of ground truth planes and detected planes with the minimum angular
distance.

Then, the match is evaluated by thresholding its angle δθ under 9
degrees in line 14. Although δθ can be adjusted to any value, we found
that 9 degrees matches visually with the correct number of detected

36 fast and deterministic method for plane detection

Algorithm 1 Precision evaluation
1: function bestmatch(Planesdet, Planesgt)
2: m ← emptyList
3: for Pgt in Planesgt do
4: for Pdet in Planesdet do
5: δθ ← angle(Pgt, Pdet) � Figure 4.4
6: m.add(Pgt, Pdet, δθ)
7: sort(m) � by angle, ascending
8: return m[0]
9: procedure evaluate(Planesgt, Planesdet)

10: L ← new List(Planesdet)
11: M ← emptyMap � matches
12: while l not empty do
13: m ← bestmatch(l,Planesgt)
14: if m[δθ] ≤ 9 then � Degrees
15: M [matchgt].add(m)
16: L.del(mdet)
17: else
18: break
19: nd ← size(M) � correct matches
20: while l not empty do
21: m ← bestmatch(l,Planesgt)
22: δθ ← angle(mgt, mdet) � Figure 4.4
23: if δθ ≤ 9 then
24: M [matchgt].add(mdet)
25: L.del(mdet)
26: for m in M do
27: Errgt ← ∑

mi[δθ]
28: E ← ∑

Errgti

planes, and lower value leads to a mismatch between the visual and
numeric results.

Once we reach the threshold or we run out of detected planes, the
algorithm calculates the number of correctly detected planes, i.e., the
number of ground truth planes matched with detected planes below 9
degrees.

When there are more planes with a higher angular difference, they
are matched without thresholding to calculate the total error E in line
28.

4.5 results

4.5.1 Efficiency and error

Figure 4.13(a) and Figure 4.13(b) show the proposed method has com-
petitive accuracy when compared to conventional methods.

4.5 results 37

(a) Car (b) Car (noisy)

Figure 4.10: Noisy and noiseless car point cloud obtained by Kinect simulation.

(a) Room (b) Room (noisy)

Figure 4.11: Noisy and noiseless room point cloud obtained by Kinect simula-
tion.

(a) Kitchen (b) Kitchen (noisy)

Figure 4.12: Noisy and noiseless room point cloud obtained by Kinect simula-
tion

The planes it detects remain high while the error is kept low. However,
when it faces slightly curved surfaces such as the point clouds from the
car model, its error is not low as expected. This is because the algorithm
sometimes fails at detecting locally planar surfaces as global planes.

Figure 4.13(c) shows that the proposed method is superior in process-
ing time. CFRANSAC and UFRANSAC are by far the slowest methods,
particularly in the presence of highly variant noise patterns across the
point cloud as in the noisy point cloud of the Kitchen model.

In the Room point cloud results from Figure 4.13(a), we can observe
that the proposed method has a low error and is slightly better than
CFRANSAC and UFRANSAC. Notwithstanding, Figure 4.13(c) shows
it is significantly faster than UFRANSAC, about 11 times according to
the numbers.

38 fast and deterministic method for plane detection

On the other hand, in the Room point cloud, FDHT is faster than
the proposed method. Nonetheless, it has 6.8 times more angular error.
Additionally, we can notice RHT looks close to the proposed method
efficiency but it has 2.8 times more angular error and is 2.2 times slower.

In the noisiest point cloud, i.e. the noisy Kitchen, we can observe three
important patterns. First, the error of CFRANSAC and UFRANSAC
is lower than the proposed method. The reason is that RANSAC based
methods take advantage of the high density of points near the real
surface due to a perfect simulated registration. Nonetheless, the proposed
method is 37 times faster than CFRANSAC and 41 times faster than
UFRANSAC.

Second, the processing time of FDHT and RHT are close to the
processing time of the proposed method. However, FDHT has 4.2 times
more angular error and for RHT is 2.6 times.

Third, the number of correctly detected planes shown in Figure 4.13(b)
remained the highest even though the angular error was lower for
CFRANSAC and UFRANSAC.

4.5.2 Qualitative results

Qualitative results examples are provided grouped by point cloud and
method. Plane inliers are colored using a random Hue in HSV space for
each plane, while outliers are colored in gray.

Each figure represents the results of detecting planes in a point cloud,
where subfigures are the results for each of the evaluated methods.

Figure 4.14, Figure 4.15 and Figure 4.16 show the qualitative results
of detecting planes in the Room, Kitchen and Car point cloud respec-
tively. As seen in all the subfigures, the detection results are acceptable;
notwithstanding, FDHT and RHT detected a spurious plane in the
pillow surface on the Room point cloud. Furthermore, RHT detected
the upper region of the seats as part of the Kitchen table plane.

However, in the noisy results, we can visualize a drop of accuracy due
to the quantization noise and artifacts.

In Figure 4.17, CFRANSAC, UFRANSAC and FDHT did not detect
the noisiest planar surface. Furthermore, RHT still detected the pillow
surface as a plane. The proposed method failed to detect smaller planes
such as the sofa armrest and the front of the furniture because a bigger
voxel size had to be set to detect noisy planar surfaces, hence not letting
the algorithm to detect smaller planes.

The results of the noisy Kitchen and Car point clouds were the most
difficult datasets for the plane detection algorithms.

CFRANSAC and UFRANSAC did not detect big planar portions in
the noisy Kitchen point cloud of Figure 4.18. Figure 4.19 shows that
RHT had it difficult to detect properly most of the planar surfaces. The
reason is that RHT does not perform a plane validation using surface
features such as normals or curvatures. Although it showed less angular
error than CFRANSAC and UFRANSAC, the qualitative results were
not good.

4.6 conclusions and future works 39

Finally, we confirmed visually the robustness of the proposed method
in the most difficult scenario. It detected correctly the most prominent
planar surfaces in the Car point cloud.

4.6 conclusions and future works

The conventional methods for plane detection are slow or non-deterministic.
Moreover, their accuracy tend to drop in the presence of quantized noise
and slightly curved surfaces.

Realtime applications in urban environments demand both precision
and efficiency. Therefore, we proposed the Scaled Difference of Normals
to filter out non-planar points in the presence of Gaussian noise, and
noise artifacts from low-cost sensors. It is a preprocessing step for FDHT,
which will be provided by a reduced number of points and surface
normals to decrease computational costs, and increase its accuracy.

The second contribution of this work is an improvement of FDHT,
in which a global refinement of planes is performed by validating the
detected planes using the voxel centroids and their normal vectors.

To the best of our knowledge, in this work we propose the first
quantitative evaluation of 3D planes detection accuracy. With generated
ground truth data, we confirmed numerically which method is good for
each scenario.

The results show that the proposed method is robust to difficult
scenarios such as registered quantized noise and slightly curved surfaces.
Additionally, the processing time remained in realtime while keeping
the accuracy high or at least competitive.

It is noticeable that even though the proposed method provides a supe-
rior balance between computational efficiency and precision. RANSAC
based methods are simple and can provide good results when there are
higher points density near the real surface and if processing time is not
important.

A known issue of the proposed method is the sensitivity to the voxel
size parameter. Even slight variations can cause FDHT and the proposed
method to drop its accuracy. The reason is that the octree adapts its
bounding box to fit the desired voxel size, hence causing variations in
the points distribution of each voxel.

In the future we will assess 3D space subdivision or segmentation
alternatives to reduce the sensitivity to the voxel size parameter, as
well as to further accelerate the algorithm using GPUs.

40 fast and deterministic method for plane detection

0

44

88

132

176

220

CFRANSAC UFRANSAC RHT FDHT Proposed

E
rr

or
[d

eg
re

es
]

Room
Kitchen

Car
Room noisy

Kitchen noisy
Car noisy

(a) Error in vectorial R4 space, lower is better

0

3

6

9

12

15

18

CFRANSAC UFRANSAC RHT FDHT Proposed

P
la

ne
s

[#
]

Room
Kitchen

Car
Room noisy

Kitchen noisy
Car noisy

(b) Correctly detected planes, higher is better

0

3

6

9

12

15

18

21

24

CFRANSAC UFRANSAC RHT FDHT Proposed

T
im

e
[s

]

Room
Kitchen

Car
Room noisy

Kitchen noisy
Car noisy

(c) Processing time[s], lower is better

Figure 4.13: Numerical results of the evaluated methods against the datasets

4.6 conclusions and future works 41

(a) CFRANSAC (b) UFRANSAC

(c) RHT (d) FDHT

(e) Proposed

Figure 4.14: Room graphical results

42 fast and deterministic method for plane detection

(a) CFRANSAC (b) UFRANSAC

(c) RHT (d) FDHT

(e) Proposed

Figure 4.15: Kitchen graphical results

4.6 conclusions and future works 43

(a) CFRANSAC (b) UFRANSAC

(c) RHT (d) FDHT

(e) Proposed

Figure 4.16: Car graphical results

44 fast and deterministic method for plane detection

(a) CFRANSAC (b) UFRANSAC

(c) RHT (d) FDHT

(e) Proposed

Figure 4.17: Room (noisy) graphical results

4.6 conclusions and future works 45

(a) CFRANSAC (b) UFRANSAC

(c) RHT (d) FDHT

(e) Proposed

Figure 4.18: Kitchen (noisy) graphical results

46 fast and deterministic method for plane detection

(a) CFRANSAC (b) UFRANSAC

(c) RHT (d) FDHT

(e) Proposed

Figure 4.19: Car (noisy) graphical results

5
S L I D I N G V O X E L S F O R P L A N E D E T E C T I O N

5.1 introduction

In point clouds processing, high variations of sensors noise patterns[2,
55] are challenging problems when dealing with point cloud data. Conven-
tional algorithms tend to fail to detect planar surfaces from commodity
sensors. Moreover, relying on random sampling, they need a vast amount
of model inliers to perform correctly.

Therefore, in this work we contribute with a drastically faster ap-
proach: a sliding voxel–based algorithm. It does not need pre-computed
normal vectors; instead, it directly works with the points distribution
of overlapping 3D voxels to acquire surface information. We analyze the
scattering of each sliding voxel to locate co-planar regions and detect
hypothetical planes. Then, planes are extracted from the validation of
hypothetical planes against an enhanced subset of the point cloud.

Since ground truth planes data can be obtained from 3D models,
we provided experiments with realistic point cloud simulations gener-
ated from these models as well as ground truth data. To verify the
performance of the proposed method, we measured its efficiency and
error against the most popular algorithms: two RANSAC variations[73,
83] and the Randomized Hough Transform[5] for planes detection.

5.2 proposed method

We focused on two main problems of conventional plane detection meth-
ods: speed and robustness. The major speed problem of conventional
methods is that they need to compute point-wise normals on overlapping
neighborhoods [31].

Even though planar surfaces can be described locally, it is more
precise to describe them globally. Nonetheless, algorithms that work
on the whole set of points are very slow, e.g., the Standard Hough
Transform.

Quantized noise from RGB-D and structured light sensors makes it
even harder to describe locally planar surfaces, forcing algorithms to
increase their search radius, threshold or voxel size; thus preventing to
detect smaller objects.

Speed achieved by downsampling can also vanish small surfaces and
extremely deviate their normal vectors, as the neighborhood has to be
expanded way farther the downsampling region to compute them.

Therefore, we propose a method that efficiently detects planes via
sliding voxels. Based on the Sliding Window in images, the proposed
method uses a 3D Sliding Window implemented with octree voxels. It

47

48 sliding voxels for plane detection

travels through occupied voxels of a point cloud and calculates geometric
information about the points distribution using neighbor voxels.

Figure 5.1 outlines the proposed method algorithm. First, we build
an octree with voxel size Vs and calculate tangent planes. This local
plane fitting provides us with curvature information; therefore, we use
sliding voxels to estimate the degree of coplanarity of each voxel.

Since coplanar voxels are more likely to be part of a prominent
plane, we sort and mark them as hypothetical planes. Finally, planes
are extracted from the validation of hypothetical planes against a
geometrically enriched subset of the whole point cloud.

5.2.1 Hypothetical plane extraction from coplanar voxels

For each voxel, its centroid c, unit normal vector n̂ and a planarity
value P are calculated using the eigenvalues λ1 ≤ λ2 ≤ λ3 and their
corresponding eigenvectors vi of the covariance matrix, where:

n̂ =
v1
|v1| (5.1)

and

P =
λ1
λ2

. (5.2)

start

Build octree

Estimate per-voxel
tangent planes

Extract hypothetical planes
using sliding voxels

Global veri cation of
hypothetical planes

end

Figure 5.1: Flowchart of the proposed method

5.2 proposed method 49

Figure 5.2: Point cloud of a room model, color represents a heatmap of the
scores Sr of each voxel

After the voxel information is processed, the Sliding Voxel walks
through the occupied voxels and calculates an overall score Sr for the
whole neighborhood, i.e. 26 neighbors plus the current voxel:

Sr =
n∑

i=1
Si : i ∈ Z

+
≤27, (5.3)

where Si is the planarity P of the i-th neighbor voxel. As this score gets
bigger, the less planar is the neighborhood. Therefore, a low score means
the current voxel is coplanar. For a more straightforward parametriza-
tion, this planarity measure is normalized using the maximum and
minimum observed values:

S∗
r =

Sr − n
min
i=1

Sri

nmax
i=1

Sri

, (5.4)

where n is the number of occupied voxels.
Figure 5.2 illustrates in warmer colors how this score can approximate

regions that have a low probability of being coplanar.
Coplanar voxels are further filtered and sorted in ascending order by

their score S∗
r . The resulting coplanar subset Vp is used to find planes

in a centroids point cloud C, that was enriched with their normal vector
to form an approximate representation of non-overlapping tangential
planes.

5.2.2 Global verification

At this point, we can map a voxel centroid to their voxel information
such as its score S∗

r , and the total number of points inside the voxel.
Simultaneously, its normal vector n̂ and its centroid c are used to
approximate the tangential plane pv at c, i.e., a geometrically enriched
version of the original point cloud: C.

The purpose of this point cloud is to provide efficient representation to
validate hypothetical planes in a global sense. For all coplanar voxels Vp,
their tangential plane pv is validated against c ∈ C using a decomposed

50 sliding voxels for plane detection

plane-to-plane distance: the Euclidean distance to each c and the angular
deviation between their normal vectors.

Ideally, the magnitude of the inner product between n normal vectors
of a planar surface tend to be 1, i.e. 1

n

∑n
i=0,j=0 |n̂i · n̂j | ≈ 1 where i
= j.

Therefore, inliers are selected by thresholding their Euclidean distance
and the normalized angular distance between the hypothetical plane
normal vector n̂h

v , and the corresponding tangent plane normal vector
n̂t

v. This metric is defined by the positive cosine distance cos+
d calculated

from its similarity coss as follows

coss =
n̂h

v · n̂t
v

|n̂h
v | |n̂t

v| �→ [−1, 1], (5.5)

cos+
d =

2
π

cos−1 (|coss|) �→ [0, 1]. (5.6)

When cos+
d takes the value of 1, the planes are orthogonal, and if it is

0, they are parallel. In the proposed method, it is used as a parameter
to decide whether an inlier will be rejected or not.

5.2.3 Plane extraction

Inliers of the global point cloud are sometimes too disperse and that
can lead to false positives. To avoid this issue, a fast 1-cluster euclidean
clustering is performed from the refined inliers using a distance threshold
defined by the octree voxel size Th = 4Vs, which is twice the maximum
possible distance between centroids.

From the resulting inliers, a cluster is constructed and its plane is
calculated from these via Principal Component Analysis. Since it is
impossible to calculate a plane if the number of inliers is less than 3,
the plane coefficients are copied from the tangent plane of the voxel
with the lowest score in the cluster.

If the cluster does not map enough points on the original point cloud,
or if its planarity P (see Equation (5.2)) is not low enough, then the
cluster is rejected. Otherwise, it is added to a list of detected clusters
which includes its plane coefficients and inliers.

After all hypothetical planes are processed, they are sorted by their
number of inliers. This allows us to reuse C and remove inliers progres-
sively from the most to the least prominent plane.

Once the algorithm removes all the centroids inliers of the hypothetical
planes, the process finishes and the list of clustered hypothetical planes
becomes the detected planes list. A summary of the proposed method
parameters is shown in Table 5.1.

5.3 experimental setup 51

Table 5.1: Proposed method parameters

Parameter Description
Voxel size[m] Size of the octree leaves
Planarity threshold Maximum value for S∗

r

Inliers threshold[m] Max. euclidean distance to plane
Max cosine distance Max. cos+

d of plane and inliers
Min plane size[#] Min. support of planes

Table 5.2: Dataset information

Name BBDD[m] Points[#] Planes[#]
R 6.09 295,144 9
R noisy 6.09 295,144
K 12.19 249,348 14
K noisy 12.19 503,398

5.3 experimental setup

5.3.1 Datasets and evaluation method

The datasets and ground truth planes used in the experiments can be
seen in Figure 5.3 and Figure 5.4. Point clouds from Kinect V1 sensor
simulation were built using Blensor 1.0.18 [23].

A room model[26] R was used to generate noisy and noiseless si-
multaneous scans. To create a more complicated scenario, a kitchen
model[49] K was scanned by translating and rotating 10 times the sensor
in the simulation software. All scans were performed in world coordinates
to correctly register the points via concatenation. The resulting point
cloud has a wide variety of noise patterns which makes difficult even for
humans to detect small planar surfaces in some locations. In addition to
the registered noisy scan, we also simulated a clean registration which
does not have noise or quantization artifacts. Due to registration, both
K point clouds are incredibly dense. Hence, voxel grid filter of leaf size
0.01[m] was applied to them.

Numerical information of the datasets can be seen in Table 5.2, where
BBDD stands for Bounding Box Diagonal Distance, i.e. the length of a
diagonal line that crosses the bounding box of the point cloud.

For both K and R , plane models were extracted directly from the
polygons inside Blensor. For each planar surface, plane coefficients were
generated from a polygon over each plane by using its normal vector and
barycenter. This ground truth data allows us to measure numerically
and precisely the accuracy of each plane detection method.

Regarding the processing time Tw, we used wall time since its clock
has more resolution. We note that we excluded the time it takes to load
a point cloud from disk, also, we included the time for the required

52 sliding voxels for plane detection

(a) R model

(b) R ground truth (c) R noisy ground truth

Figure 5.3: Room R datasets models

preprocessing of each algorithm. For CFRANSAC and EFRANSAC
we included the calculation of normal vectors inside Tw since they
rely heavily on them. For the proposed method, we also included the
neighborhood-aware octree preparation time.

For each run, a list of ground truth planes Pgt and detected planes
Pdet coefficients is prepared. Then, we defined 2 error metrics. First,
the angular error ω (in degrees) between the normal vector of an i-th
ground truth plane n̂gt

i ⊂ Pgt
i and the normal vector of a j-th detected

plane n̂det
j ⊂ Pdet

j , is defined as

ω = 180 cos+
d (n̂gt

i , n̂det
j) �→ [0, 180]. (5.7)

Second, the offset difference δ between the i-th ground truth plane
dgt

i ⊂ Pgt
i and the j-th detected plane ddet

j ⊂ Pdet
j is

δ =
∣∣∣|dgt

i | − |ddet
j |

∣∣∣ . (5.8)

5.3 experimental setup 53

(a) K model

(b) K ground truth (c) K noisy ground truth

Figure 5.4: Kitchen K datasets models

For a ground truth plane pgt
i ∈ Pgt, the best detection match is a

plane from pdet
j ∈ Pdet that minimizes their positive cosine distance

cos+
d as vectors in R

4, then similar to Equation (5.6)

cos+
d =

2
π

cos−1

⎛
⎝

∣∣∣∣∣∣
pgt

i · pdet
j∣∣∣pgt

i

∣∣∣ ∣∣∣pdet
j

∣∣∣
∣∣∣∣∣∣
⎞
⎠ . (5.9)

Also, a match is rejected if their ω > 15[deg] and δ > 20[cm]. Thus,
its result will be a list of matches K of ground truth planes associated
with their best detected plane match satisfying the above conditions.

Let Ki = {Pgt
i , Pdet

i }, where i = {1, 2, . . . , M} and M is the total
number of matched planes (true positives), then we can define the
precision γ as

γ =
M

|Pdet| , (5.10)

54 sliding voxels for plane detection

Figure 5.5: Detection example of the proposed method

and recall ζ of the detection as

ζ =
M

|Pgt| , (5.11)

where |Pdet| is the number of detected planes and |Pgt| is the number of
ground truth planes. Therefore, the harmonic mean between precision
and recall, i.e. the F1 score[48] is defined as

F1 =
2

γ−1 + ζ−1 . (5.12)

The range of the above metrics is [0, 1] where higher values mean better
results.

On the other hand, the (true) efficiency Eff measures how fast the
evaluated methods detected correct planes, i.e., the number of true
positives M , over the processing time Tw

Eff =
M

Tw
. (5.13)

Note that since the conventional methods are non–deterministic, we
used the average and standard deviation of 50 runs.

Qualitative results are evaluated by segmenting the output planes list
Pdet of each method. Although inlier points can be obtained from every
method natively, their patterns can confuse the reader and generate an
unfair comparison. For instance, RHT results may look cleaner while it
mistakenly selects protruding noise patterns as part of a planar surface,
producing more significant errors in the coefficients of the resulting
planes.

A native output of the proposed method is shown in Figure 5.5, for
every plane in the detection result, the centroids inliers are shown,
then for each plane, a different color was chosen according to the
Glasbey lookup table[21], otherwise, points are kept black. Therefore,
we segmented the results only by looking at the standard output of the
evaluated algorithms: the list of planes coefficients Pdet.

As a prerequisite, point-wise normal vectors are calculated within
a support of k-neighbors via local plane fitting. The segmentation

5.3 experimental setup 55

Table 5.3: Parameters of the proposed method in the evaluation experiments

Parameter K K noisy R R noisy
Voxel size[m] 0.14 0.16 0.12 0.12
Planarity threshold 0.001 0.1 0.02 0.02
Inliers threshold[m] 0.04 0.07 0.07 0.07
Max cosine distance 0.04 0.2 0.05 0.05
Min plane size[#] 500 2500 1300 1000

Table 5.4: Parameters values of the segmentation algorithm

Parameter K K noisy R R noisy
k[#] 50 100 50 100
dε[m] 0.03 0.05 0.025 0.05
θε[deg.] 45 45 45 45

algorithm share similarities with the last step of the proposed method.
For each plane pdet

j ∈ Pdet, plane-to-plane inliers are selected within
a distance threshold of dε and an angular threshold θε. Planes are
sorted in descending order by their amount of inliers. In that order,
we extract and remove the inliers of each plane from the point cloud.
This ensures the most prominent planes are segmented correctly and
the segmentation of false positives is minimum.

The parameters of the proposed method are shown in Table 5.3 and
for the segmentation are shown in Table 5.4.

5.3.2 Experiments results and discussion

The computer used to run the experiments has a CPU Intel Core
i7-6700K with 32GB of RAM, it runs on Ubuntu 18.04.2 with PCL
1.8.1 [67], CGAL 4.11 [80], and clang++ 3.8.0. The proposed method
was implemented using routines of the PCL library with O3 compiler
optimizations.

Figure 5.6 and Figure 5.7 show the visual results of executing the
segmentation algorithm over the ground truth and the resulting planes
of the evaluated methods.

Figure 5.6 shows the visual results of the noiseless point clouds.
Figure 5.6(a) and Figure 5.6(f) depict the segmented ground truth
planes of R and K respectively. In Figure 5.6(a), we can visualize the
ground truth planes selection for the R model, avoiding slightly curved
surfaces such as the backrest of the sofa and the pillow. Additionally,
we avoided selecting parallel planes that are not far from each other,
because it would be sporadic to detect those structures in noisy point
clouds.

The upper row of Figure 5.6 shows the results of the R point cloud.
Noticeably, the proposed method has zero false positives in Figure 5.6(b).

56 sliding voxels for plane detection

RHT detected spurious planes in the bookshelf as well as several planes
over the sofa backrest in Figure 5.6(c). CFRANSAC erroneously detected
the pillow and the sofa backrest as planar in Figure 5.6(d). Although
EFRANSAC detected some planes with good precision in Figure 5.6(e),
it tends to detect several spurious planes while it failed to detect even
a prominent planar structure such as the wall on the left side.

The second row of Figure 5.6 shows the results of the K point cloud.
Because of its lack of noise and higher density, most methods performed
accurately except for RHT, which could not detect the dining table as
seen in Figure 5.6(h). EFRANSAC performed fairly good in Figure 5.6(j)
because the higher density of K allows its random subsets to be more
descriptive. However, its precision and recall are lower than the proposed
method (as described numerically later).

Figure 5.7 shows the results of executing the evaluated methods over
the noisy datasets. Figure 5.7(a) and Figure 5.7(f) depict the segmented
ground truth planes similar to Figure 5.6.

The first row of Figure 5.7 illustrates the segmentation results on the
R noisy point cloud. In Figure 5.7(b), the proposed method detected
most of the planar structures with high accuracy and no spurious
planes, showing similar segmentation patterns when comparing its
results with the ground truth. Noticeably, CFRANSAC detected several
spurious planes in the noisiest region of the point cloud in Figure 5.7(d),
whereas EFRANSAC detected less spurious planes than CFRANSAC
in Figure 5.7(e).

The second row of Figure 5.7 shows the segmentation results on the
K noisy point cloud. Figure 5.7(g) shows that the proposed method
detected most of the planes while having no false positives. In Fig-
ure 5.7(h), illustrates that RHT was able to identify the most prominent
planes; nonetheless, it detected fewer planes than the proposed method.
CFRANSAC detected more false positives in Figure 5.7(i) while it
failed to detect several planar structures. In Figure 5.7(j) EFRANSAC
detected slightly more planes than the proposed method because it got
benefited with the higher density of the K noisy point cloud. However,
its precision is inferior as described numerically later.

While we confirmed the robustness of the proposed method visually,
now we show objective assessment. Processing time, precision and recall
are shown in Figure 5.8. Each bar represents the result of executing an
evaluated method over a point cloud of the dataset, where smaller bars
denote better results. For the conventional methods we used the average
of 50 executions and show their standard deviation as error bars.

Figure 5.8(a) shows the processing time Tw in logarithmic scale. There
we can confirm that the proposed method is drastically faster than the
conventional methods in every case.

The variations in terms of the mean angular and offset error of the
evaluated methods are negligible; therefore, we show their assessment
based on more standard metrics used in binary classification tasks:
precision γ, recall ζ and F1 score.

Figure 5.8(b) shows the precision γ of the evaluated methods (see
Equation (5.10)). This metric measures how relevant were the detection

5.3 experimental setup 57

results. Noticeably, the proposed method precisely detected appropriate
planes in all tested datasets.

In Figure 5.8(c), we show the recall ζ as defined in Equation (5.11).
This metric tells us how many of the ground truth planes were detected
by the evaluated methods. The proposed method most of the time
detected more ground truth planes than the evaluated methods. Only in
the R noisy point cloud, its recall is paired with EFRANSAC; noticeably
EFRANSAC had a very low precision (<0.6) as shown in Figure 5.8(b).

In addition to the above metrics, we evaluated the F1 score and
efficiency Eff of the evaluated methods as defined in Equation (5.12)
and Equation (5.13) respectively. Figure 5.9 shows the results of applying
these metrics on the experiment results. Figure 5.9(a) shows the overall
precision of the evaluated methods. The proposed method shows a
superior precision in every case; it had better scores than the best
execution of the conventional methods. Figure 5.9(b) shows the efficiency
of the evaluated methods in logarithmic scale. Here, we confirm the
proposed method detects planes more accurately in a drastically more
efficient way.

Furthermore, it should be noted that the parameters set of the
proposed method is smaller and easier to configure. It has only 5
parameters while EFRANSAC, CFRANSAC, and RHT have 6, 12, and
16 parameters respectively.

58 sliding voxels for plane detection

(a) R : Ground truth

(b) R : Proposed (c) R : RHT (d) R : CFRANSAC (e) R : EFRANSAC

(f) K : Ground truth

(g) K : Proposed (h) K : RHT (i) K : CFRANSAC (j) K : EFRANSAC

Figure 5.6: Plane detection inliers using the noiseless dataset

5.3 experimental setup 59

(a) R : Ground truth

(b) R : Proposed (c) R : RHT (d) R : CFRANSAC (e) R : EFRANSAC

(f) K : Ground truth

(g) K : Proposed (h) K : RHT (i) K : CFRANSAC (j) K : EFRANSAC

Figure 5.7: Plane detection inliers using the noisy dataset

60 sliding voxels for plane detection

(a) Processing time Tw (lower is better)

(b) Precision γ (higher is better)

(c) Recall ζ (higher is better)

Figure 5.8: Processing time, precision and recall of the evaluated methods

5.3 experimental setup 61

(a) F1 score (higher is better)

(b) Efficiency Eff (higher is better)

Figure 5.9: Accuracy and F1 score of the proposed method compared against
the conventional methods

6
S L I D I N G V O X E L S F O R S P H E R E D E T E C T I O N

6.1 introduction

Point clouds are sets of points in an R
3 space that resemble the surface

of objects. They can be obtained by a wide variety of laser-based sensing
techniques and photogrammetry. However, because of these diverse ways
of obtaining them, we face several problems such as huge variations in
points density, sensing patterns, sensor artifacts, and noise.

Point clouds can be categorized as organized and unorganized. Or-
ganized point clouds can be arranged into an image-like 2D matrix,
in which each pixel is associated with a 3D point. These point clouds
come from range/depth sensors or stereovision. On the other hand, un-
organized point clouds have no specified order and are just a list of 3D
points, which are a more general form than the organized counterparts.
These come from sensors that change their coordinate system while
scanning, like rotating-head 3D LIDAR sensors or dense point clouds
from photogrammetry. However, because unorganized point clouds have
no order, basic techniques such as nearest neighbor searching become
increasingly difficult and time-consuming in unorganized point clouds.
Therefore, in this paper, we focus on developing algorithms for unorga-
nized point clouds, which are in high demand because of their numerous
applications.

Man-made objects can be approximated by geometric primitives such
as spheres, planes, and cylinders[9, 73]. These geometric primitives can
act as proxy entities for other real-world objects, for instance, the trunk
of a tree and human arms and legs can be approximated by cylinders,
also, the head of animals and humans can be approximated as spheres.

Sphere detection is an important technique in 3D computer vision
with applications in broad areas such as materials engineering[37],
measuring[53], medicine[20] among others. As opposed to other para-
metric shapes such as planes or other quadric surfaces, spheres have a
viewpoint-independent geometry. This property allows us to calculate
its coefficients with partial views such as those obtained from 3D sensors.
Therefore, they are preferred as targets in in point clouds registration
[17, 86, 92] where it is crucial to detect their coefficients with the highest
accuracy.

However, the conventional sphere detection methods [1, 7, 56, 73, 76]
fail to detect spheres when the inliers ratio becomes too small due to
noise, and the range of the point cloud.

Moreover, the processing time can increase exponentially as some
algorithms depend on point-wise normal vectors, and their accuracy is
highly dependent on their estimation. Also, normal vectors are calculated
via Principal Component Analysis (PCA), a method known to be very
susceptible to noise and outliers.

63

64 sliding voxels for sphere detection

Therefore, in this paper, we propose a novel, highly accurate, robust,
and drastically more efficient (high speed) method for sphere detection
based on sliding voxels. Instead of random sampling, it uses an efficient
octree subdivision to detect robustly hypothetical spheres determin-
istically. Then, the most prominent spheres are detected via Hough
voting [3, 32, 33] . Lastly, its coefficients are refined and pruned by their
completeness. Experiments with synthetic and real point cloud data
from Terrestrial Laser Scanning (TLS) confirm the superior performance
of the proposed method.

6.2 previous work

6.2.1 Literature overview

Several approaches to detect spheres using spatial i-nformation have
been developed in recent years. A survey work [38] summarizes the
conventional methods for geometric primitive detection from 3D data.
Region growing clusters similar regions of the point cloud at random
locations iteratively. Although computationally expensive, it can be
used to later fit geometric primitives in segmented regions.

Hough Transform (HT) [3, 32] based algorithms for parametric shape
detection have been proposed in the past. As spheres become perfect
circles when projected into a plane, the circular HT was applied to
detect spheres as circles in images [39] . Unfortunately, unorganized point
clouds do not have a defined projection to an image array. Moreover,
when using images to detect spheres, the radius of circles vary depending
on the distance from the sensor.

The parameter space for the sphere has four dimensions. Therefore,
applying the Standard Hough Transform (SHT) [3] is unfeasible both in
computational complexity and in memory usage of the accumulator array
used to store votes and detect shapes. Ogundana et al. [56] proposed
a fast HT detector by fixing the radius, casting a single vote for each
point, and detecting spheres using a sparse accumulator. Nonetheless,
they require computationally expensive point-wise normals estimation.
Also, fixing the radius limits its applications in real-world scenarios
where it is usually unknown.

Abuzaina et al. [1] also proposed a HT for sphere detection using a
sparse accumulator. Their approach uses a polar representation of the
parameter space and a more exhaustive per-point voting. To overcome
this, they fixed the radius and reduced the number of input points based
on the points’ density of a Kinect sensor limited at a certain range.

In the past, strategies based on random sampling were proposed to
reduce the computational complexity of the voting phase in Hough
transform methods. The Probabilistic Hough Transform (PHT) [40]
reduces the number of evaluated points by selecting a random subset.
The Combined Multi-Point Hough Transform (CMPHT) [7] follows
the PHT approach to reduce computational complexity, and evaluates
several Hough transforms for sphere detection. A single-point HT with

6.2 previous work 65

coarse accumulator quantization serves as an efficient coarse approxi-
mation that identifies regions-of-interest (ROI) where spheres are more
likely to be found. Then, a 4-point Hough transform is chosen as a
detection refinement over the ROI. Experiments with real point clouds
with a Kinect sensor showed that the computational complexity and
the success rate of CMPHT are highly affected by the inliers ratio

φr =
Nin
N

, (6.1)

where Nin is the number of inliers of the point cloud and N is the number
of total points, which means that lower φr contains more outliers induced
by noise or other non-spherical surfaces.

Reducing the dimensions of the parameter space was an unexplored
approach for primitive detection. A recent work [76] shows a study of
a multi-shape and multi-model detector based on Point-Pair Features
(PPF). However, it expects an input cloud with normal vectors, and
the PPF is highly dependent on the correct estimation of its normal
orientation. Although it outperforms state-of-the-art primitive detection
in their experiments, the dataset they used were CAD models and point
clouds with removed background and geometric primitives present in
the foreground where points are denser and less noisy. Theoretically, if
we remove the computational complexity of normal vectors estimation,
its processing time is still heavily dependent on the total number of
points since it needs to compute PPFs for every unique combination of
point-pairs with normals. Therefore, the authors restricted the number
of points to compute to 2048 random points, which is unacceptable for
long-range (long distance between the sensor and its farthest point)
point clouds such as those used in TLS or large-scale photogrammetry.

6.2.2 RANSAC-based methods

RANSAC tries to fit a model into a point cloud by random sampling
iteratively. The number of trials k is defined by

k =
log(1 − z)
log(1 − b)

, (6.2)

where z is the probability that at least one of the data points is error-
free, and b is the probability that any set of selected data points is
within the error tolerance to the model. Finally, it selects the model
that has above a defined number of inliers within a threshold distance.
As b can be calculated from the sampling, z is a parameter defined by
the user.

RANSAC and its variations, such as MSAC [81] are implemented
alongside geometric models of planes, spheres, and cylinders. However,
the PCL implementation follows the original RANSAC [16], which is a
single-instance and single-model fitting algorithm. When detecting more
than one sphere using this approach, we would need to iteratively detect
and remove inliers each time we find a good model. Hence, decreasing

66 sliding voxels for sphere detection

φr in each successful detection making it increasingly difficult to detect
more shapes, and to decide finishing conditions.

Wang et al. combine a RANSAC-like sampling strategy with energy
minimization to detect spheres in Kinect point clouds [85]. It starts by
drawing a small set of hypothetical sphere models from random samples
and then use energy minimization to label spherical points. Although it
is not dependent on distance thresholds, its accuracy depends on the
initial sphere models and weighing terms of the energy minimization
function, which have to be guessed by the user depending on the outliers
rate.

Spheres are a subtype of quadric surfaces (quadrics); therefore, they
have nine Degrees-of-Freedom (DoF) parameters. A study [4] provides a
quadric detector algorithm that overcomes current limitations by using
RANSAC to search for sets of points (basis) that are likely to be on a
quadric surface. These bases provide a coarse identification of a quadric
surface to be further refined. Nonetheless, they proposed to fit linearly,
a non-linear (quadric) surface. Hence, their fitting results are biased,
and the effect of this bias in the final model coefficients of their method
is unknown since it was out of the scope of their study [4] . Therefore,
this method is not suitable for applications where the accuracy of the
resulting sphere coefficients is crucial [17, 86, 92]. Furthermore, selecting
an appropriate basis out of a long-range point cloud becomes complex
task and highly depends on the inliers ratio of the point cloud (φr) since
it inherits RANSAC disadvantages.

6.2.3 Efficient RANSAC

Efficient RANSAC (EFRANSAC) [73] uses octrees for a more efficient
localized sampling. For spheres, it uses two random sampled points with
their normal vectors to generate hypothetical spheres. Then, iteratively
executes RANSAC over disjoint random subsets of the point cloud to
validate the generated model.

Each sphere is refined by thresholding the expected curvature at
each point Nth. Also, they map sphere inliers within a threshold ε to
a low-distortion bitmap that resembles the surface of the sphere. This
bitmap of bin size Cε allows EFRANSAC to select the biggest connected
component as the final inliers of each hypothetical sphere. The final
coefficients are refined using non-linear least squares[74].

EFRANSAC finishing condition takes into account the octree level of
the samples and is parameterized similarly to RANSAC. At a lower z,
these algorithms will increase their determinism at the cost of increasing
their iterations. According to the EFRANSAC implementation in the
CGAL library[80], z is thresholded against

stopp =
(

1 − |Lc|
4|P |Odepth

)|C|
, (6.3)

where Lc is the largest candidate size (in number of points), and |P | is
the number of available points that are not part of the selected shape

6.3 proposed method 67

Table 6.1: Summary of conventional methods
Method Detection ap-

proach Efficiency strategy Drawbacks

Fast HT [56] Single-vote HT Fixing radius, sparse accumulator Fixed radius
Kinect HT [1] SHT [3] Background points removal Point-wise search
CMPHT [7] PHT [40] Coarse-to-fine voting, random subsampling Weak to low φr

PPF Hough voting [76] PPF [14] Random subsampling (up to 2048 points) High combinatorial com-
plexity, weak to low φr

Wang et al. [85] RANSAC[16],
energy minimization Random sampling Weak to low φr

Birdal et al. [4] RANSAC[16],
quadric voting Random sampling Weak to low φr, biased

EFRANSAC [73] RANSAC[16],
energy minimization Random sampling, octree Weak to low φr, biased

candidates. Odepth is the depth of the octree, and |C| is the number of
candidates drawn so far.

6.2.4 Drawbacks of conventional methods

Table 6.1 lists the conventional methods, their approach for sphere
detection, efficiency strategies, and their drawbacks. Conventional meth-
ods are inefficient because they depend on point-wise voting or normal
vectors estimation to generate hypothetical spheres.

Methods based on the Hough transform (and Hough voting), due to
point-wise exhaustive search, they resort to fix the radius of the spheres
they can detect[56], or to limit the points they process[1, 7, 76]; thus,
diminishing their accuracy and narrowing their applicability. To avoid
doing exhaustive search, RANSAC-based methods [4, 73, 85] resort to
random sampling; making them weak to the inliers ratio φr of point
clouds. As noise or outliers in point clouds increase, these methods fail
to obtain valid hypothetical spheres; leading to misdetections. Moreover,
their accuracy highly depends on the correct estimation of point-wise
normal vectors.

Furthermore, 3D LIDAR point clouds possess a long-range, and the
detection of relatively small and non-invasive sphere targets [17, 86, 92]
is an extremely difficult task for all the conventional methods proposed
so far.

In addition, most of the conventional methods lack of public imple-
mentations, only EFRANSAC [73] is implemented in the CGAL Library
[80]. Therefore, in this work, we provide comparative assessments with
EFRANSAC and the proposed method.

6.3 proposed method

6.3.1 Main features and superiority

In order to solve the aforementioned drawbacks of the conventional
methods, in this paper, we propose an efficient and deterministic method
to detect spheres in unorganized point clouds. The proposed method
has two main features; (i) it employs a 3D space subdivision called
sliding voxels that generates hypothetical spheres for Hough voting

68 sliding voxels for sphere detection

Figure 6.1: Overview of the proposed method

without discarding any point. In other words, the proposed method is
capable of analyzing the whole point cloud without resorting to naive
random sampling for hypothesis generation. Therefore, the sliding voxel
technique contributes to achieving superior accuracy and robustness in
sphere detection even in point clouds with low φr. (ii) Also, the proposed
method transforms voxelized regions of the point cloud into local planes,
which efficiently reduces the number of computations for Hough voting.
That is, as opposed to conventional subsampling strategies prone to
noise and outliers, the proposed method can achieve highly efficient
Hough voting by employing sliding voxels, which contributes to reducing
the entire processing time drastically without deteriorating its accuracy.
Moreover, these superiorities allow us to extend the applicability of
the proposed method to the case of processing a huge amount of point
clouds captured by TLS in real-world situations.

6.3.2 Process flow

Figure 6.1 shows a graphical overview of the proposed method. We
proposed an efficient octree-based point cloud subdivision to robustly
estimate hypothetical spheres with our novel sphere fitting algorithm.
To globally detect those spheres, we performed Hough voting with a
memory-efficient accumulator based on nested tree structures. Finally,
the spheres are pruned by a completeness score and refitted using the
connected components of the projecting bitmap.

The proposed method starts by dividing the point cloud space in
a 3D grid using an octree. Figure 6.2 shows how the 3D space of the
point cloud is enclosed by an Axis Aligned Bounding Box (AABB) and
subdivision occurs recursively until it complies with a voxel size Vs. The
bounding box is expanded accordingly such that the leaves of the octree
match the desired voxel size.

In each node of the octree, we save information about the local
geometry of its points: centroid and normal vector. The normal vector
was computed using PCA and corresponds to the eigenvector associated
with the smallest eigenvalue. Therefore, the number of points to process
becomes the number of occupied voxels with three or more points.

6.3 proposed method 69

3D
space

Octree
nodes

Axis
Aligned

Bounding
Box

Figure 6.2: 3D space subdivision using an octree

For each leaf, we are going to select their 26-neighbors leaves, such
that contiguous cells overlap and share geometrical properties, i.e., a
3D (3 × 3 × 3) sliding window with a stride of 1. We call this structure a
sliding voxel, and it helps us to robustly and efficiently identify spherical-
like regions in the point cloud. Then we take advantage of this structure
to generate a hypothetical sphere for every sliding voxel in a point cloud.

6.3.3 Hypothetical spheres generation

Several local sphere fitting methods exists, among them, algebraic
fitting uses linear least squares to fit a sphere in a point set. It works
by rearranging the sphere equation

(x − Cx)2 + (y − Cy)2 + (z − Cz)2 = r2 (6.4)

to the following

2xCx + 2yCy + 2zCz + α = x2 + y2 + z2, (6.5)

where {Cx, Cy, Cz, r} are the parameters of the sphere and α = r2 −
C2

x − C2
y − C2

z .
Then, we can obtain the sphere parameters using the least squares

normal equation of its matrix representation

AT Ax = AT b. (6.6)

As AT A is symmetric and positive-definite, it can be solved with
Cholesky factorization to get the sphere parameters from x.

70 sliding voxels for sphere detection

Figure 6.3: Sphere estimated with two points and their normal vectors

A second alternative is to use a non-linear least-squares approach. The
Levenberg-Marquardt(LM)[50] method uses gradient-based optimization
to find the sphere coefficients that minimize the error between a sphere
model and a point set. In the proposed method we used the error
function

arg min
C,r

n∑
i=1

(Pi − C)T (Pi − C) − r2 (6.7)

where Pi is a point of a set of n number of points, C is the center of
the sphere and r is the radius. The Jacobian J of Equation (6.8) given
a point Pi is

J = [−2(Pix − Cx), −2(Piy − Cy), −2(Piz − Cz), −2r]T (6.8)

where {Pix, Piy, Piz} are the point coordinates.
Since its correct convergence depends on an initial hypothesis, it is

not clear which value is best for each case. When a sliding voxel falls
in a planar surface we would expect to get a sphere with an arbitrarily
far center and a big radius. However, both linear and non-linear least-
squares approaches produce unpredictable results on planar point sets
and are greatly affected by their number of outliers.

Therefore, we introduce a novel local fitting algorithm that provides
a robust estimate of the best fit sphere of a point set. Given a set of N
points with normal vectors Ψ of every sliding voxel, for all combinations
of its items

(N
2

)
, we estimate a sphere using the model generation method

described by Schnabel, et al. [73] which uses two points and their normal
vectors to estimate the parameters of one hypothetical sphere at a time.
However, they do not indicate the specific method they used to estimate
the sphere center. Therefore, I will describe the method used to generate
hypothetical spheres from two oriented points.

6.3.3.1 Sphere estimation from two oriented points

It starts by detecting the shortest segment between two lines defined
by two oriented points P1 and P2 using Sunday’s approach[13]. Fig-

6.3 proposed method 71

ure 6.3 illustrates how the center C = {Cx, Cy, Cz} of the sphere can
be calculated from the line segments L1 = P1n̂1 and L2 = P2n̂2. C is
the midpoint between the shortest line segment L∗ = E1E2 between L1
and L2. L∗ is the shortest line segment if and only if it is orthogonal to
L1 and L2 simultaneously. To estimate the endpoints E1 and E2, we
need to parameterize L1 and L2 as follows,

E1(s) = P1 + sn̂1, where s ∈ R,

E2(t) = P2 + tn̂2, where t ∈ R.
(6.9)

Then, we need to estimate s∗ and t∗ such that the resulting line segment

L∗(s∗, t∗) = E1(s∗) − E2(t∗)
L∗(s∗, t∗) = P1 − P2 + s∗n̂1 − t∗n̂2

(6.10)

is parallel to both L1 and L2.
The angle between L∗ and {L1, L2} can be derived from the equations

n̂1 · L∗(s∗, t∗) = ‖n̂1‖2 ‖L∗(s∗, t∗)‖2 cos θ and
n̂2 · L∗(s∗, t∗) = ‖n̂2‖2 ‖L∗(s∗, t∗)‖2 cos φ.

(6.11)

Since we need to fix θ = φ = 90[deg], then substituting cos (90[deg]) =
0 in Equation (6.11) results in the following equations

n̂1 · L∗(s∗, t∗) = 0, (6.12)
n̂2 · L∗(s∗, t∗) = 0. (6.13)

In other words, given the parameterized points E1(s) and E2(t) from
Equation (6.9), we need to find s and t such that the conditions of
Equation (6.12) and Equation (6.13) apply simultaneously and will
name them s∗ and t∗.

By substituting Equation (6.9) in Equation (6.12) and Equation (6.13),
we get

s(n̂1 · n̂1) − t(n̂1 · n̂2) = −n̂1(P1 − P2) and (6.14)
s(n̂1 · n̂2) − t(n̂2 · n̂2) = −n̂2(P1 − P2). (6.15)

For the sake of simplicity we are going to apply the following substi-
tutions to Equation (6.14) and Equation (6.15)

a = n̂1 · n̂1

b = n̂1 · n̂2

c = n̂2 · n̂2

d = n̂1(P1 − P2)
e = n̂2(P1 − P2).

(6.16)

Then Equation (6.14) and Equation (6.15) become

sa − tb = −d (6.17)
sb − tc = −e. (6.18)

72 sliding voxels for sphere detection

To solve s and t we apply Cramer’s rule and obtain

s =
cd − be

b2 − ac
(6.19)

t =
db − ae

b2 − ac
. (6.20)

Noticeably, if n̂1 and n̂2 are nearly parallel, the denominator b2 − ac
tends to 0, and the solution is undefined. In this case, we ignore it if
b2 − ac is close to the machine epsilon.

After we estimate appropriate values of s and t, the center of the
sphere C is

C =
1
2

(E1 + E2), (6.21)

and its radius

r =
1
2

(‖P1 − C‖2 + ‖P2 − C‖2). (6.22)

6.3.3.2 Robust sphere estimation from sliding voxel

By doing this for every pair of points and normals inside each sliding
voxel, we are obtaining a set of all possible spheres S ∈ R

4. As the sliding
voxel has a maximum of 27 occupied voxels, the maximum cardinality
of S is 351. Ideally, if the surface is perfectly spherical, all the spheres
estimated will be the same, and S would have 0-variance in all its four
dimensions. If we face with noise or outliers, its variance will fluctuate
and so its mean and median.

To robustly get the most probable sphere, we select the median sphere
Sm ∈ S such that

arg min
i

‖Si − Sμ‖2, i ∈ [1, |S|] (6.23)

where Si ∈ S and |S| is the cardinality of the set S and Sμ is the mean
sphere in S.

Given the mean sphere Sμ and Sm, we also calculate the spherical
likelihood

δμ = ‖Sm − Sμ‖2 (6.24)

where ‖ · ‖2 denotes the Euclidean norm. If the sliding voxel falls into
a perfect sphere, δμ will tend to 0 and will represent the deviation of
the median with respect to the mean of the set of all possible spheres.
Therefore, δμ is thresholded with the parameter Thδμ to avoid regions
that do not possess a spherical geometry.

Figure 6.4 shows how a portion of the point cloud in the sliding
voxel can define the underlying spherical geometry by using our fitting
method.

6.3 proposed method 73

Figure 6.4: Sphere fitting with sliding voxels

Figure 6.5: Spheres accumulator structure

6.3.4 Hypothesis verification

Once all our hypothetical spheres are estimated, we make them con-
verge into a Hough accumulator since the spheres accumulator has four
dimensions, we chose a memory-efficient nested tree structure shown
in Figure 6.5. It is common in the literature to find the accumulator
discretization defined by the number of bins of each dimension. However,
since all sphere dimensions are expressed using the same metric, we can
parameterize it using the accumulator bin size Accres instead of the
bins number.

After the voting finished, the most prominent spheres are extracted by
accumulating the votes and performing peak detection in a 3 × 3 × 3 × 3
sliding window over the accumulator. A sphere will only be extracted if
it has a minimum number of votes Vmin.

As a result of the discretization, noise and outliers, the extracted
spheres are not the final spheres but an approximation of what they

74 sliding voxels for sphere detection

should be. Therefore, we have to refit and prune them, as shown in
Figure 6.1. Voting took place with sliding voxel centroids, but refitting
will take place with the actual points. Therefore, we start to search
for inliers and refit iteratively until the sphere coefficients changes are
negligible.

To avoid the negative influence of outliers, we map the inlier points
of the refitting into a plane

x =
1
π

arccos
(

Pz

‖P − C‖2

)

y =
1

2π
atan2(Py, Px) +

1
2

(6.25)

such that it results in a squared points distribution. Then a bitmap is
generated by deciding the number of the discretization bins Bbins. From
this bitmap, we perform two things:

• To select the biggest cluster using 8-neighbors clustering.

• To estimate a completeness measure.

After getting the biggest cluster, completeness K is measured by the
ratio

K =
SO

ST
(6.26)

where SO is the number of occupied pixels, and ST is the total number of
pixels. Although there is no mapping between a sphere and a plane with-
out deformations, we find this ratio to be a close approximation of the
sphere completeness. Particularly in the visible quadrants, deformations
are negligible.

This process of refitting and pruning is applied for every sphere
extracted from the accumulator. After all the extracted spheres are
processed, the algorithm finishes.

6.4 experiments and discussion

6.4.1 Datasets

We evaluated EFRANSAC and the proposed method with experiments
against synthetic and real data.

The synthetic dataset M, shown in Figure 6.6, was generated using
sensor simulation in Blensor 1.0.18-RC10[23] and a model with six
spheres, among other objects recreating realistic scenarios of occlusion
and loss of the spheres’ surface. Although the simulation provides
organized point clouds, we treat them as unorganized. In the lower
part, we can observe a render of the model used to simulate a realistic
time-of-flight (TOF) sensor point clouds. The three spheres on the back
have the same radius, but we varied their levels of potential visibility
from the sensor: 100%, 50% and 25%. Furthermore, as we are aiming

6.4 experiments and discussion 75

Figure 6.6: Synthetic dataset M

to simulate a real sensor as close as possible, we set the parameters of
the sensor simulation software to match those of the KinectV2.

The simulations occurred at the same sensor position but with varia-
tions in the level of noise, with a 0-mean Gaussian noise, and its variance
σ set to [0.004, 0.008, 0.012, . . . , 0.04]. These variations are used to mod-
ify the coordinates of the sensed points. Since it is a KinectV2 simulation
its number of points is 217,088, its Bounding Box Diagonal Distance
(BBDD) is around 9.00[m] and its resolution is about 0.014[m]. Where
BBDD is the vector length of the extreme points of the bounding box.

Figure 6.7 shows a synthetic point cloud of M that corresponds to the
lowest level of Gaussian noise (σ = 0.004). The ground truth spheres are
shown in green as 3D models, and their index is shown in the numbers
displayed above.

The NDAJ dataset N consists of 34 point clouds obtained from a
FARO® 3D LiDAR scanner, they are highly dense and cover a broad
area.

The scanning target is a building of the Engineering campus of the
National Defense Academy of Japan (NDAJ). Figure 6.8 shows a render
of the registration of all the point clouds of the dataset. This render was
generated by processing all the registered point clouds with a voxel size
of 0.05[m] and applying normals estimation with a radius of 0.075[m],
then we activated the EDL shader from the qEDL plugin in Cloud
Compare.

76 sliding voxels for sphere detection

Figure 6.7: Point cloud example from the M dataset with ground truth spheres

Figure 6.8: Rendering of all subsets of the N dataset

Figure 6.8 also shows a close up of a point cloud of N (G2) and its
location inside the rendering. Three sphere targets that were physically
placed near the sensor are shown alongside its ground truth spheres
shown in green. These are part of the ground truth spheres set. Addi-
tionally, sensor artifacts produced by moving objects in the scene are
shown.

6.4 experiments and discussion 77

Figure 6.9: Sensor locations of the N dataset

The ground truth spheres were generated by using the scanner’s
software in a user-guided process. The ground truth data spheres of the
real dataset are highly precise since it was used to register the point
clouds by manually labeling the spheres in the FARO Scene® point
cloud processing software.

The location of each categorized scan can be seen in Figure 6.9. 26
of the point clouds were taken from ground level, numbered from G1
to G26, and marked with red boxes in Figure 6.9. Eight point clouds
were taken from the roof of the building, numbered from R1 to R8, and
marked with blue boxes in Figure 6.9.

The ground truth spheres of N have fixed positions, but depending
on the distance from the sensor, the density of their points and their
noise can vary enormously. Figure 6.10 shows the effect of a sphere
sensed from 6.15[m] and 31[m], there is a big difference in the density
of their points when they are near or far from the sensor. Therefore, a
challenging feature of these long-range point clouds, is their variations
in density, which makes it difficult to validate hypothetical spheres by
only counting their inliers.

In Table 6.2, we summarize statistical information of both datasets.
The synthetic dataset consists of 10 point clouds that resemble the
ones gathered from low-cost sensors. The table shows the data from the

78 sliding voxels for sphere detection

(a) Nearest sphere: 6.15[m],
4,958 points

(b) Farthest sphere: 31[m],
169 points

Figure 6.10: Example of sensed spheres and their respective ground truth 3D
models of the R4 (LIDAR) point cloud

Table 6.2: Datasets information

Dataset Points[#] BBDD[m] CR[cm]
ML 217,088 8.77 1.00
MM 217,088 8.88 1.24
MH 217,088 8.99 1.47
NG 25,543,762.73 ±3,625,816.05 299.70±60.27 0.44±0.07
NR 18,261,275.62 ±2,615,343.03 344.15±18.81 0.30±0.04

synthetic clouds with low (ML), mid (MM), and high (MH) levels of
Gaussian noise when μ = 0 and σ become [0.004, 0.02, 0.04], respec-
tively. Also, we divided the real point clouds N dataset into two parts,
ground (NG) and roof (NR), which separates the point clouds that were
scanned at the ground level and over the building. CR stands for Cloud
Resolution, which is a measure of the average density of the point cloud
and is defined as the mean distance between each point and its nearest
neighbor.

6.4.2 Experimental setup

To evaluate the accuracy, we performed matching of the ground truth
spheres Sgt and the detected spheres Sdet coefficients. A match occurs
if a sphere in Sdet is found in Sgt by thresholding its Euclidean distance
in R

4,∣∣∣Sdeti
− Sgtj

∣∣∣ < 0.1[m]. (6.27)

This threshold provides an average maximum error tolerance of 0.025[m]
for the four parameters of a sphere model. To decide this threshold, we
ran EFRANSAC on the noisiest point cloud of M and adjusted it such
that a visible bias coming from noise, and affecting the position and
radius of spheres do not alter the true positives count TP when most
of its inliers are close to the sphere (shown later in visual assessment).

6.4 experiments and discussion 79

Table 6.3: EFRANSAC parameters

Name ε Cε Nth
Min.
support z Normals radius

ML 0.016 0.80 0.95 700 0.00010 0.04
MM 0.020 0.80 0.95 1100 0.00005 0.14
MH 0.040 0.80 0.95 1100 0.00005 0.20
NG 0.020 0.02 0.10 200 0.00005 0.05
NR 0.020 0.02 0.10 200 0.00005 0.05

Table 6.4: Proposed method parameters

Name Vs Vmin Accres ε Thδμ K Bbins

ML 0.16 20 0.05 0.020 0.4 0.1 50
MM 0.16 20 0.05 0.020 0.4 0.1 50
MH 0.18 30 0.05 0.020 0.4 0.1 50
NG 0.05 50 0.01 0.002 0.3 0.1 25
NR 0.05 50 0.01 0.002 0.3 0.1 25

All the detected spheres that satisfy Equation (6.27) are TP , then we
can define the following metrics from information retrieval[48] precision
γ, recall ζ, and F1 score η,

γ =
TP

#Sdet
(6.28)

ζ =
TP

#Sgt
(6.29)

η =
2TP

#Sdet + #Sgt
(6.30)

where # denotes set cardinality. Precision will max at 1 when we
detected only correct spheres, while recall will max at 1 when all the
ground truth spheres were detected. η is the harmonic mean between γ
and ζ.

Both algorithms implementations are in C++, compiled with gcc 7.5
and O3 optimizations. We used the EFRANSAC implementation from
the CGAL library 4.11[80], while the proposed method was implemented
mostly using routines from the PCL Library 1.9.1[67]. Since EFRANSAC
is nondeterministic, we executed the experiments 50 times and measured
both mean and standard deviation.

We adjusted the parameters of the evaluated methods based on
preliminary experiments to get the most accurate results, following to
adjustments in improving processing time without deteriorating their
accuracy. Table 6.3 and Table 6.4 show EFRANSAC and the proposed
method parameters, respectively.

80 sliding voxels for sphere detection

6.4.3 Experiments results and discussion

For each dataset, we provide results of both visual and numerical
assessment. For the synthetic datasets, we calculated η for each level of
noise when using EFRANSAC and the proposed method. Figure 6.11(a)
shows the accuracy of the evaluated methods. A value of one means the
proposed method detected all the ground truth spheres without false
positives, η goes down when either false positives or false negatives drop.
The EFRANSAC accuracy drops as the noise worsen, even when we
increased its iterations and the radius of normal vectors. On the other
hand, the proposed method detected successfully all the spheres with
high accuracy. Figure 6.11(b) is showing that the proposed method is
drastically more efficient than EFRANSAC, which is requiring more
processing power as noise increases due to the necessity of expanding
the support radius of normal vectors estimation and its iterations.

Table 6.5 shows the results of per-ground truth sphere in the dataset
M. The index of the sphere is shown in the left-most column. The two
following columns show their mean error with respect to their closest

(a) η experiment results

(b) Processing time[s] experiment results

Figure 6.11: η and processing time experiment results of the M dataset

6.4 experiments and discussion 81

match of detected spheres in R
4 by matching the ground truth spheres

with the one that minimizes the left term of Equation (6.27). Also, we
highlighted in bold the ones that showed the best results.

EFRANSAC has a slightly better detection error than the proposed
method only when its detection rate is competitive. Hence, in this step,
EFRANSAC is filtering points that do not agree with the normal vector
of the hypothetical model. However, the heavy computational costs
associated with computing point-wise normal vectors (see Fig. (b)) are
not worth a few millimeters of better precision.

On the other hand, in the detection rate of Table 6.5, we can notice
that EFRANSAC fails to detect the sphere with the least visibility.
This happens because the normal vectors near the border of the plane
wall and the sphere are imprecise. Hence, further reducing the available
surface to detect the sphere number six.

Figure 6.12 shows the η results of the evaluated methods for each
of the point cloud groups of the N dataset. The y-axis of the plot is
divided into two because of the poor results of EFRANSAC since it had
drastically lower precision and negatively affected its η. EFRANSAC
validates a model by thresholding its inliers count without considering
their geometry and completeness. Therefore, the inliers ratio φr of those
point clouds is quite low, and near the machine epsilon, it is obvious

Table 6.5: Detailed results per ground truth sphere of experiments with syn-
thetic data of M.

Sphere Mean error in
R

4[m]
(EFRANSAC)

Mean error in
R

4[m]
(proposed)

Detection
rate[%]

(EFRANSAC)

Detection
rate[%]

(proposed)

Note

1 0.1105 0.0321 89.8 100.0 Small radius (0.2[m])
2 0.0196 0.0233 100.0 100.0 Nearest
3 0.0155 0.0173 100.0 100.0 Occluded
4 0.0219 0.0138 99.8 100.0 100% Visibility
5 0.0389 0.0172 98.0 100.0 50% Visibility
6 0.0886 0.0292 73.2 100.0 25% Visibility

Figure 6.12: η results using the N dataset, higher is better

82 sliding voxels for sphere detection

that a method that relies only on random sampling like EFRANSAC is
failing very badly in the results.

Moreover, a sphere of the dataset usually contains a few hundred of
points while the whole point cloud accounts for dozens of millions. This
situation forces EFRANSAC to set a lower value of inliers count that
supports a sphere candidate, thus detecting numerous false positives
and diminishing its precision. The standard approach to address this
issue is to increase RANSAC iterations by modifying its probability
parameter described in Equation (6.2). However, this value becomes
dangerously near the machine epsilon for single float precision and thus
numerically unstable. Furthermore, its performance decreases in several
orders of magnitude.

On the other hand, the proposed method opts for a smarter strategy by
robustly measuring the likelihood of regions to be spherical, converging
hypothetical spheres from highly spherical regions into an accumulator
and filtering by their completeness. It demonstrated superior accuracy
even in massive point clouds with very low φr. We roughly estimated
that this ratio for the N dataset is less than 0.00005.

Figure 6.13 illustrates the processing time of the evaluation methods
for each point cloud of the N dataset. The y-axis is divided into two
sections with different scales to visualize the processing time results.
For better visualization, and unlike the experiments with synthetic
data, we are not including the normals vectors estimation time in these
results. If we included them, it would be extremely difficult to visualize
and compare the high efficiency of the proposed method, since it is
astronomically better than EFRANSAC.

Figure 6.14, Figure 6.15, and Figure 6.16 show the detailed results
of EFRANSAC and the proposed method against the N dataset. Fig-
ure 6.14 shows the proposed method has superior accuracy due to the low
precision of EFRANSAC shown in Figure 6.15 because EFRANSAC de-
tected numerous false positives in the N dataset. Figure 6.16 is showing
how many of the ground truth spheres were detected without consider-

Figure 6.13: Processing time[s] evaluation results using the N dataset, lower
is better

6.4 experiments and discussion 83

G1 G2 G3 G4 G5 G6 G7 G8 G9G10G11G12G13G14G15G16G17G18G19G20G21G22G23G24G25G26R1 R2 R3 R4 R5 R6 R7 R8
Datasets

0.01

0.10

0.30

1.00

F
1
sc
o
re
(η
,
lo
g
sc
a
le
)

EFRANSAC Proposed

Figure 6.14: F1 score (η) results using the N dataset, higher is better

G1 G2 G3 G4 G5 G6 G7 G8 G9G10G11G12G13G14G15G16G17G18G19G20G21G22G23G24G25G26R1 R2 R3 R4 R5 R6 R7 R8
Datasets

0.01

0.10

0.30

1.00

P
re
ci
si
o
n
(γ
,
lo
g
sc
a
le
)

EFRANSAC Proposed

Figure 6.15: Precision (γ) results using the N dataset, higher is better

G1 G2 G3 G4 G5 G6 G7 G8 G9G10G11G12G13G14G15G16G17G18G19G20G21G22G23G24G25G26R1 R2 R3 R4 R5 R6 R7 R8
Datasets

0.0

0.2

0.4

0.6

0.8

1.0

R
ec
a
ll(
ζ
)

A○ B○

EFRANSAC Proposed

Figure 6.16: Recall (ζ) results using the N dataset, higher is better

ing false positives. The proposed method showed a superior recall in all
scenarios. Noticeably, at the mark A© in Figure 6.16, EFRANSAC recall
was extremely low, and the proposed method recall was remarkably
high. EFRANSAC failed because the ground truth spheres of the point
cloud G11 are relatively far from the sensor and has a lower density, all
the spherical points account for 0.0024% of the points, and a ground
truth sphere was partially occluded.

At the mark B© in Figure 6.16, EFRANSAC recall was very close to
the proposed method. Figure 6.17(a) shows the R3 point cloud from N .
The green triangle represents the sensor location, and the blue circles
the ground truth spheres. One of the ground truth spheres is extremely
far from the sensor, its distance is represented by the red dashed line
and is about 38.33[m]. Both methods failed to detect this sphere since
it is barely recognizable due to its extremely low density.

We also show a visual assessment of the experiment results. In Fig-
ure 6.18, we can observe the results of executing the evaluated methods
on the synthetic point cloud with the least (σ = 0.004) and most noise

84 sliding voxels for sphere detection

Figure 6.17: R3 point cloud from the N dataset

Figure 6.18: Graphical comparison: M dataset

(σ = 0.04). We assigned a different color to each detected sphere in the
order they are given by the evaluated methods. The proposed method
detected the spheres flawlessly with high accuracy. EFRANSAC results
are very good with low noise scenarios, but as we test for higher levels
of noise the number of misdetections and false positives arise. Moreover,
as we need to increase thresholds and the support radius for normals
estimation, the smallest spheres tend to be undetected, and bigger errors
in the spheres coefficients become visible.

Figure 6.19 shows the ground truth and results of spheres detection
of the point cloud G1. Three ground truth spheres are not visible in
Figure 6.19(a), which were placed in the central part of the building with
a radius of 0.0381[m], neither the proposed method nor EFRANSAC

6.5 conclusions and future works 85

(a) Ground truth spheres render of G1

(b) Detection results

Figure 6.19: Graphical comparison: N dataset (G1)

were able to detect. Figure 6.19(a) shows the detected spheres of both the
proposed method and EFRANSAC. Due to the numerous false positives
and for better visualization, we omitted EFRANSAC spheres larger
than 0.3[m]. Even though the extra filtering we can notice EFRANSAC
failed to detect one target sphere and detected several false positives in
the background.

6.5 conclusions and future works

Sphere detection is a core technique in point cloud processing with
applications in computer vision, reconstruction, modeling, among others.
However, existing algorithms work with various drawbacks such as fixed
radius, low efficiency, and poor accuracy in noisy data with a numerous

86 sliding voxels for sphere detection

amount of outliers. To solve these problems, in this paper, we proposed a
new sphere detection method based on sliding voxels and Hough voting.

Through experiments we found that the proposed method achieved
50 times faster processing time and 1.08 times more accurate than
EFRANSAC for the synthetic M. In the real 3D LIDAR dataset N , the
proposed method achieved 31 times faster processing time and 183 times
more accurate (F-score) than EFRANSAC without including normals
estimation processing time. This is due to the proposed method can
analyze all the points by employing sliding voxels even for big point
clouds with numerous amount of points.

As our future works, we should investigate adaptive settings of the
voxel size for various density levels in massive point clouds to further
improve its accuracy. Also, we need more comprehensive experiments to
analyze the relationship among processing time, total number of points
and size of the spheres to give us better insight on the performance and
scalability of the sphere detection methods. Furthermore, as promising
extensions of this work for real-world applications, we are considering
to detect nearly spherical shapes, such as human heads, bone junction,
and so on.

7
C O N C L U S I O N S A N D F U T U R E W O R K

7.1 conclusions

In this thesis, the problem of geometric primitive fitting in point clouds
is investigated. Conventional methods face many problems: high compu-
tational complexity, and low accuracy. This is due to the numerous noise
and artifact patterns of point clouds, and their inliers/outliers ratio of
high-range clouds. Therefore, methods for the detection of planes and
spheres are proposed.

plane detection

Plane detection is a highly demanded task for many applications.
However, conventional methods fail extensively while trying to
detect multiple planes in unorganized point clouds. Their com-
putational complexity becomes a problem when plane detection
is a part of the pipeline of a more complex task. This lack of
efficiency and robustness comes from the way conventional algo-
rithms were designed. Methods that work in other types of data
such as images or correspondences were adapted to point clouds.
In this thesis, we considered from the beginning the nature and
main characteristics of point clouds; sensor artifacts, noise, and
variable density. Therefore, drastically more efficient and robust
methods were proposed for plane detection.

• Fast and Deterministic Hough Transform with SDoN
Filtering (FDHT).
An efficient scheme for plane detection using Hough voting
was proposed. Just after the estimation of tangent planes for
each voxel, this method pre-filters the voxels that contain
hypothetical planes with higher quality. Hough voting using
a sparse memory model for the accumulator allowed to detect
planes with finer accuracy without running out of memory.
Therefore, achieving excellent performance when compared
with conventional methods. However, it still was detecting
spurious planes and failed to detect some planar structures.

• Sliding Voxels for Plane Detection.
To increase precision and maintain efficiency a method based
on sliding voxels was proposed. This paradigm does not limit
the search for planes for single voxels, it exploits the over-
lapping nature of the sliding voxels to generate hypothetical
planes with exceptionally high precision. With the sliding
voxels, we can reduce noise, the number of points, and enrich
a point cloud with normal vectors to robustly detect planes.
The proposed sliding voxel planes detector outperforms the

87

88 conclusions and future work

state-of-the-art plane detectors as it is several orders of mag-
nitude faster, more robust, and deterministic.

sphere detection

• Sliding Voxels for Planes Detection.
Sphere detection is another important task in point cloud
processing. Spheres have geometric features that turn them
into excellent targets for point cloud registration among other
applications. However, its detection is unfeasible using con-
ventional Hough transform techniques. Moreover, RANSAC
and its variations, fail extremely in massive point clouds
that come from high-range sensors that are commonly used
for Terrestrial Laser Scanning. Therefore, in this thesis, the
sliding voxel paradigm was extended for sphere detection
and demonstrated superior efficiency and precision both in
synthetic and real 3D LIDAR point clouds. The key of its
efficiency is the increasingly reduced number of computations
needed as we analyze the points distribution of each sliding
voxel for spherical features. Its superior robustness is due
to the local sphere fitting approach that generates robust
hypothetical spheres, and its filtering by completeness.

I can say that the objectives of improving both efficiency and accu-
racy of geometric primitive detection were accomplished in this work.
Although there are future challenges that derive from the results of this
work and I consider are very important to address.

7.2 future challenges

multi-resolution, adaptive-resolution sliding voxels

Until now, the sliding voxel paradigm worked exceptionally good for
point clouds. However, further improvements in accuracy can be made
by analyzing adaptively regions defined not only by the sliding voxel,
but from the path upwards the octree. This opens a door for adaptive-
resolution or multiple-resolution approaches to detect shapes of any size
and not constrained by their voxel size. Moreover, this can lead us to
the estimation of the best threshold and voxel size depending on the
points distribution of each sliding voxel.

more geometric shapes The proposed sliding voxel paradigm
was applied to both sphere and plane detection, which are basic geo-
metric primitives with numerous applications. A generalization that
comes directly from the sphere detection approach can be used for other
parametric shapes such as cylinders, ellipsoids, and torus. Thus, its ap-
plications in the approximation of complex scenes into geometric shapes
and compression can be achieved very efficiently and with increased
robustness.

7.2 future challenges 89

arbitrary shape detection The detection of arbitrary shapes
is a complex but demanding application of point clouds. Given a 3D
model of the detection target, we must find all its instances inside a
point cloud. Sliding voxels can be used to efficiently match surfaces
between the target model and parts of the point cloud.

B I B L I O G R A P H Y

[1] Anas Abuzaina, Mark S Nixon, and John N Carter. “Sphere
detection in kinect point clouds via the 3d hough transform.” In:
International Conference on Computer Analysis of Images and
Patterns. Springer. 2013, pp. 290–297.

[2] Gerardo Atanacio-Jiménez, José-Joel González-Barbosa, Juan B
Hurtado-Ramos, Francisco J Ornelas-Rodríguez, Hugo Jiménez-
Hernández, Teresa García-Ramirez, and Ricardo González-Barbosa.
“Lidar velodyne hdl-64e calibration using pattern planes.” In: In-
ternational Journal of Advanced Robotic Systems 8.5 (2011), p. 59.

[3] Dana H Ballard. “Generalizing the Hough transform to detect
arbitrary shapes.” In: Readings in computer vision. Elsevier, 1987,
pp. 714–725.

[4] Tolga Birdal, Benjamin Busam, Nassir Navab, Slobodan Ilic, and
Peter Sturm. “A minimalist approach to type-agnostic detection of
quadrics in point clouds.” In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 3530–
3540.

[5] Dorit Borrmann, Jan Elseberg, Kai Lingemann, and Andreas
Nüchter. “The 3d hough transform for plane detection in point
clouds: A review and a new accumulator design.” In: 3D Research
2.2 (2011), p. 3.

[6] Thomas Butkiewicz. “Low-cost coastal mapping using Kinect v2
time-of-flight cameras.” In: 2014 Oceans - St. John’s, OCEANS
2014 (Jan. 2015). doi: 10.1109/OCEANS.2014.7003084.

[7] Marco Camurri, Roberto Vezzani, and Rita Cucchiara. “3D Hough
transform for sphere recognition on point clouds.” In: Machine
vision and applications 25.7 (2014), pp. 1877–1891.

[8] Jiawei Chen, Cheng Zhang, and Pingbo Tang. “Geometry-based
optimized point cloud compression methodology for construction
and infrastructure management.” In: Computing in Civil Engi-
neering 2017. 2017, pp. 377–385.

[9] Jyun-Yuan Chen, Hung-Jui Lai, and Chao-Hung Lin. “Point cloud
modeling using algebraic template.” In: International Journal
of Innovative Computing, Information and Control 7.4 (2011),
pp. 1521–1532.

[10] Benjamin Choo, Michael Landau, Michael DeVore, and Peter A
Beling. “Statistical analysis-based error models for the microsoft
kinecttm depth sensor.” In: Sensors 14.9 (2014), pp. 17430–17450.

91

92 bibliography

[11] Jacky CK Chow and Derek D Lichti. “Photogrammetric bundle
adjustment with self-calibration of the PrimeSense 3D camera
technology: Microsoft Kinect.” In: IEEE Access 1 (2013), pp. 465–
474.

[12] Ondrej Chum and Jiri Matas. “Matching with PROSAC-progressive
sample consensus.” In: 2005 IEEE computer society conference on
computer vision and pattern recognition (CVPR’05). Vol. 1. IEEE.
2005, pp. 220–226.

[13] Distance Between 3D Lines and Segments. "http://geomalgorithms.
com/a07-_distance.html". "[Online; accessed Jul-2020]". 2020.

[14] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic.
“Model globally, match locally: Efficient and robust 3D object
recognition.” In: 2010 IEEE computer society conference on com-
puter vision and pattern recognition. Ieee. 2010, pp. 998–1005.

[15] Chen Feng, Yuichi Taguchi, and Vineet R Kamat. “Fast plane
extraction in organized point clouds using agglomerative hierar-
chical clustering.” In: 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2014, pp. 6218–6225.

[16] Martin A Fischler and Robert C Bolles. “Random sample con-
sensus: a paradigm for model fitting with applications to image
analysis and automated cartography.” In: Communications of the
ACM 24.6 (1981), pp. 381–395.

[17] Marek Franaszek, Geraldine S Cheok, and Christoph Witzgall.
“Fast automatic registration of range images from 3D imaging
systems using sphere targets.” In: Automation in Construction
18.3 (2009), pp. 265–274.

[18] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urta-
sun. “Vision meets Robotics: The KITTI Dataset.” In: Interna-
tional Journal of Robotics Research (IJRR) (2013).

[19] Marjolein van der Glas, Frans M Vos, Charl P Botha, and Albert M
Vossepoel. “Determination of position and radius of ball joints.” In:
Medical Imaging 2002: Image Processing. Vol. 4684. International
Society for Optics and Photonics. 2002, pp. 1571–1577.

[20] Marjolein van der Glas, Frans M Vos, Charl P Botha, and Albert M
Vossepoel. “Determination of position and radius of ball joints.” In:
Medical Imaging 2002: Image Processing. Vol. 4684. International
Society for Optics and Photonics. 2002, pp. 1571–1577.

[21] Chris Glasbey, Gerie van der Heijden, Vivian FK Toh, and Alision
Gray. “Colour displays for categorical images.” In: Color Research
& Application: Endorsed by Inter-Society Color Council, The
Colour Group (Great Britain), Canadian Society for Color, Color
Science Association of Japan, Dutch Society for the Study of
Color, The Swedish Colour Centre Foundation, Colour Society of
Australia, Centre Français de la Couleur 32.4 (2007), pp. 304–309.

bibliography 93

[22] Gaile Gordon, Mark Billinghurst, Melanie Bell, John Woodfill, Bill
Kowalik, Alex Erendi, and Janet Tilander. “The use of dense stereo
range data in augmented reality.” In: Proceedings. International
Symposium on Mixed and Augmented Reality. IEEE. 2002, pp. 14–
23.

[23] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and Wolfgang
Pree. “BlenSor: Blender sensor simulation toolbox.” In: Interna-
tional Symposium on Visual Computing. Springer. 2011, pp. 199–
208.

[24] David S Hall. High definition lidar system. US Patent 7,969,558.
2011.

[25] David S Hall. Color lidar scanner. US Patent 8,675,181. 2014.
[26] Ankur Handa, Thomas Whelan, John McDonald, and Andrew J

Davison. “A benchmark for RGB-D visual odometry, 3D recon-
struction and SLAM.” In: 2014 IEEE international conference on
Robotics and automation (ICRA). IEEE. 2014, pp. 1524–1531.

[27] T. Hayata and M. Iwakiri. “3d point cloud feature extraction with
the difference of centers of gravity.” In: Proc. of IPSJ Interaction.
2016, pp. 1085–1087.

[28] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Di-
eter Fox. “RGB-D mapping: Using Kinect-style depth cameras for
dense 3D modeling of indoor environments.” In: The International
Journal of Robotics Research 31.5 (2012), pp. 647–663.

[29] Dirk Holz, Stefan Holzer, Radu Bogdan Rusu, and Sven Behnke.
“Real-time plane segmentation using RGB-D cameras.” In: Robot
Soccer World Cup. Springer. 2011, pp. 306–317.

[30] Stefan Holzer, Radu Bogdan Rusu, Michael Dixon, Suat Gedikli,
and Nassir Navab. “Adaptive neighborhood selection for real-time
surface normal estimation from organized point cloud data using
integral images.” In: 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE. 2012, pp. 2684–2689.

[31] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald,
and Werner Stuetzle. “Surface reconstruction from unorganized
points.” In: Proceedings of the 19th annual conference on Computer
graphics and interactive techniques. 1992, pp. 71–78.

[32] Paul VC Hough. Method and means for recognizing complex pat-
terns. US Patent 3,069,654. Dec. 1962.

[33] John Illingworth and Josef Kittler. “A survey of the Hough trans-
form.” In: Computer vision, graphics, and image processing 44.1
(1988), pp. 87–116.

[34] Ulfat Imdad, Muhammad Asif, Mirza Tahir Ahmad, Osama
Sohaib, Muhammad Kashif Hanif, and Muhammad Hasanain
Chaudary. “Three Dimensional Point Cloud Compression and
Decompression Using Polynomials of Degree One.” In: Symmetry
11.2 (2019), p. 209.

94 bibliography

[35] Y. Ioannou, B. Taati, R. Harrap, and M. Greenspan. “Differ-
ence of Normals as a Multi-scale Operator in Unorganized Point
Clouds.” In: 2012 Second International Conference on 3D Imaging,
Modeling, Processing, Visualization Transmission. 2012, pp. 501–
508.

[36] Chris L Jackins and Steven L Tanimoto. “Oct-trees and their use
in representing three-dimensional objects.” In: Computer Graphics
and Image Processing 14.3 (1980), pp. 249–270.

[37] Charles F Jekel. “Obtaining non-linear orthotropic material mod-
els for PVC-coated polyester via inverse bubble inflation.” PhD
thesis. Stellenbosch: Stellenbosch University, 2016.

[38] Adrien Kaiser, Jose Alonso Ybanez Zepeda, and Tamy Boubekeur.
“A survey of simple geometric primitives detection methods for
captured 3d data.” In: Computer Graphics Forum. Vol. 38. 1.
Wiley Online Library. 2019, pp. 167–196.

[39] M Kharbat, Nabil Aouf, Antonios Tsourdos, and B White. “Sphere
detection and tracking for a space capturing operation.” In: 2007
IEEE Conference on Advanced Video and Signal Based Surveil-
lance. IEEE. 2007, pp. 182–187.

[40] Nahum Kiryati, Yuval Eldar, and Alfred M Bruckstein. “A prob-
abilistic Hough transform.” In: Pattern recognition 24.4 (1991),
pp. 303–316.

[41] Andreas Kolb, Erhardt Barth, Reinhard Koch, and Rasmus Larsen.
“Time-of-flight cameras in computer graphics.” In: Computer
Graphics Forum. Vol. 29. 1. Wiley Online Library. 2010, pp. 141–
159.

[42] Kruno Lenac, Andrej Kitanov, Robert Cupec, and Ivan Petrović.
“Fast planar surface 3D SLAM using LIDAR.” In: Robotics and
Autonomous Systems 92 (2017), pp. 197–220.

[43] Marc Levoy, J Gerth, B Curless, and K Pull. “The Stanford 3D
scanning repository.” In: URL http:// graphics.stanford.edu /data
/3Dscanrep (2005).

[44] Frederico A Limberger and Manuel M Oliveira. “Real-time detec-
tion of planar regions in unorganized point clouds.” In: Pattern
Recognition 48.6 (2015), pp. 2043–2053.

[45] Dahua Lin, Sanja Fidler, and Raquel Urtasun. “Holistic scene
understanding for 3d object detection with rgbd cameras.” In:
Proceedings of the IEEE International Conference on Computer
Vision. 2013, pp. 1417–1424.

[46] H Christopher Longuet-Higgins. “A computer algorithm for re-
constructing a scene from two projections.” In: Nature 293.5828
(1981), pp. 133–135.

[47] Mark Maimone, Yang Cheng, and Larry Matthies. “Two years of
visual odometry on the mars exploration rovers.” In: Journal of
Field Robotics 24.3 (2007), pp. 169–186.

bibliography 95

[48] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to information retrieval. Cambridge university press,
2008.

[49] Marela kitchen red&white. "https://3dwarehouse.sketchup.
com". "[Online; accessed Dec-2019]". 2019.

[50] Donald W Marquardt. “An algorithm for least-squares estimation
of nonlinear parameters.” In: Journal of the society for Industrial
and Applied Mathematics 11.2 (1963), pp. 431–441.

[51] Donald Meagher. “Geometric modeling using octree encoding.”
In: Computer Graphics and Image Processing 19.2 (1982), pp. 129
–147. issn: 0146-664X. doi: https://doi.org/10.1016/0146-
664X(82)90104- 6. url: http://www.sciencedirect.com/
science/article/pii/0146664X82901046.

[52] Vicente Morell, Sergio Orts, Miguel Cazorla, and Jose Garcia-
Rodriguez. “Geometric 3D point cloud compression.” In: Pattern
Recognition Letters 50 (2014). Depth Image Analysis, pp. 55 –62.
issn: 0167-8655. doi: https://doi.org/10.1016/j.patrec.
2014.05.016. url: http://www.sciencedirect.com/science/
article/pii/S016786551400172X.

[53] Bala Muralikrishnan, Prem Rachakonda, Vincent Lee, Meghan
Shilling, Daniel Sawyer, Geraldine Cheok, and Luc Cournoyer.
“Relative range error evaluation of terrestrial laser scanners us-
ing a plate, a sphere, and a novel dual-sphere-plate target.” In:
Measurement 111 (2017), pp. 60–68.

[54] Helmy Mustafa, Toh Yen Pang, Thierry Perret-Ellena, and Alek-
sandar Subic. “Finite element analysis of user-centred bicycle
helmet design.” In: ARPN Journal of Engineering and Applied
Sciences 11 (2015).

[55] Chuong V Nguyen, Shahram Izadi, and David Lovell. “Modeling
kinect sensor noise for improved 3d reconstruction and tracking.”
In: 2012 second international conference on 3D imaging, modeling,
processing, visualization & transmission. IEEE. 2012, pp. 524–530.

[56] Tokunbo Ogundana, Charles Russell Coggrave, Richard Burguete,
and Jonathan Mark Huntley. “Fast Hough transform for auto-
mated detection of spheres in three-dimensional point clouds.” In:
Optical Engineering 46.5 (2007), p. 051002.

[57] Kei Okada, Satoshi Kagami, Masayuki Inaba, and Hirochika
Inoue. “Plane segment finder: algorithm, implementation and
applications.” In: Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No. 01CH37164).
Vol. 2. IEEE. 2001, pp. 2120–2125.

[58] D Oram. “Rectification for any epipolar geometry.” In: Proceedings
of the British Machine Vision Conference. doi:10.5244/C.15.67.
BMVA Press, 2001, pp. 67.1–67.10. isbn: 1-901725-16-2.

96 bibliography

[59] Stefan Oßwald, Jens-Steffen Gutmann, Armin Hornung, and
Maren Bennewitz. “From 3D point clouds to climbing stairs:
A comparison of plane segmentation approaches for humanoids.”
In: 2011 11th IEEE-RAS International Conference on Humanoid
Robots. IEEE. 2011, pp. 93–98.

[60] Panagiotis Papadakis. “The canonically posed 3D objects dataset.”
In: 2014.

[61] Kaustubh Pathak, Andreas Birk, Narunas Vaskevicius, Max Pfin-
gsthorn, Sören Schwertfeger, and Jann Poppinga. “Online three-
dimensional SLAM by registration of large planar surface seg-
ments and closed-form pose-graph relaxation.” In: Journal of Field
Robotics 27.1 (2010), pp. 52–84.

[62] Kaustubh Pathak, Andreas Birk, Narunas Vaskevicius, and Jann
Poppinga. “Fast registration based on noisy planes with unknown
correspondences for 3-D mapping.” In: IEEE Transactions on
Robotics 26.3 (2010), pp. 424–441.

[63] Marek Pierzchała, Philippe Giguère, and Rasmus Astrup. “Map-
ping forests using an unmanned ground vehicle with 3D LiDAR
and graph-SLAM.” In: Computers and Electronics in Agricul-
ture 145 (2018), pp. 217 –225. issn: 0168-1699. doi: https://
doi.org/10.1016/j.compag.2017.12.034. url: http://www.
sciencedirect.com/science/article/pii/S0168169917301631.

[64] Yulia Ponomareva. “Scanners Help Keep Naval Ships in Perfect
Condition: Combining 3D scanning and reverse engineering makes
it possible to quickly repair or replace critically important parts.”
In: Optik & Photonik 12.4 (2017), pp. 48–49.

[65] Zoltan Pusztai and Levente Hajder. “Accurate calibration of
LiDAR-camera systems using ordinary boxes.” In: Proceedings of
the IEEE International Conference on Computer Vision Work-
shops. 2017, pp. 394–402.

[66] Grzegorz Redlarski, Marek Krawczuk, and Aleksander Palkowski.
“Application of 3D whole body scanning in research on human
body surface area.” In: Book of Abstracts 3DBODY. TECH 2017
8th International Conference and Exhibition on 3D Body Scanning
and Processing Technologies, Montreal, Canada. 2017, pp. 11–12.

[67] Radu Bogdan Rusu and Steve Cousins. “3d is here: Point cloud
library (pcl).” In: 2011 IEEE international conference on robotics
and automation. IEEE. 2011, pp. 1–4.

[68] Jaime SANDOVAL, Kazuma UENISHI, Munetoshi IWAKIRI,
and Kiyoshi TANAKA. “Robust 3D Planes Detection under Noisy
Conditions Using Scaled Difference of Normals.” In: IIEEJ Trans-
actions on Image Electronics and Visual Computing 5.2 (2017),
pp. 60–73.

bibliography 97

[69] Jaime SANDOVAL, Kazuma UENISHI, Munetoshi IWAKIRI, and
Kiyoshi TANAKA. “Robust, Efficient and Deterministic Planes
Detection in Unorganized Point Clouds Based on Sliding Vox-
els.” In: IIEEJ Transactions on Image Electronics and Visual
Computing 7.2 (2019), pp. 67–77.

[70] Jaime SANDOVAL, Kazuma UENISHI, Munetoshi IWAKIRI,
and Kiyoshi TANAKA. “Robust Sphere Detection in Unorganized
3D Point Clouds Using an Efficient Hough Voting Scheme based
on Sliding Voxels.” In: IIEEJ Transactions on Image Electronics
and Visual Computing 8.2 (2020).

[71] Hamed Sarbolandi, Damien Lefloch, and Andreas Kolb. “Kinect
range sensing: Structured-light versus Time-of-Flight Kinect.” In:
Computer Vision and Image Understanding 139 (2015), pp. 1
–20. issn: 1077-3142. doi: https://doi.org/10.1016/j.cviu.
2015.05.006. url: http://www.sciencedirect.com/science/
article/pii/S1077314215001071.

[72] Ruwen Schnabel and Reinhard Klein. “Octree-based Point-Cloud
Compression.” In: Spbg 6 (2006), pp. 111–120.

[73] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. “Efficient
RANSAC for point-cloud shape detection.” In: Computer graphics
forum. Vol. 26. 2. Wiley Online Library. 2007, pp. 214–226.

[74] Craig M Shakarji. “Least-squares fitting algorithms of the NIST
algorithm testing system.” In: Journal of research of the National
Institute of Standards and Technology 103.6 (1998), p. 633.

[75] Jason Smith, G Petrova, and Scott Schaefer. “Progressive encoding
and compression of surfaces generated from point cloud data.” In:
Computers & Graphics 36.5 (2012), pp. 341–348.

[76] Christiane Sommer, Yumin Sun, Erik Bylow, and Daniel Cre-
mers. “PrimiTect: Fast Continuous Hough Voting for Primitive
Detection.” In: arXiv preprint arXiv:2005.07457 (2020).

[77] Charles V Stewart. “Bias in robust estimation caused by disconti-
nuities and multiple structures.” In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 19.8 (1997), pp. 818–833.

[78] Xuebin Sun, Han Ma, Yuxiang Sun, and Ming Liu. “A novel
point cloud compression algorithm based on clustering.” In: IEEE
Robotics and Automation Letters 4.2 (2019), pp. 2132–2139.

[79] Fayez Tarsha-Kurdi, Tania Landes, and Pierre Grussenmeyer.
“Hough-Transform and Extended RANSAC Algorithms for Auto-
matic Detection of 3D Building Roof Planes from Lidar Data.”
In: ISPRS Workshop on Laser Scanning 2007 and SilviLaser
2007. Vol. XXXVI. Espoo, Finland, Sept. 2007, pp. 407–412. url:
https://halshs.archives-ouvertes.fr/halshs-00264843.

[80] The CGAL Project. CGAL User and Reference Manual. 5.0.2.
CGAL Editorial Board, 2020. url: https://doc.cgal.org/5.0.
2/Manual/packages.html.

98 bibliography

[81] Philip HS Torr and Andrew Zisserman. “MLESAC: A new robust
estimator with application to estimating image geometry.” In:
Computer vision and image understanding 78.1 (2000), pp. 138–
156.

[82] Alexander JB Trevor, Suat Gedikli, Radu B Rusu, and Henrik I
Christensen. “Efficient organized point cloud segmentation with
connected components.” In: Semantic Perception Mapping and
Exploration (SPME) (2013).

[83] Kazuma Uenishi, Munetoshi Iwakiri, and Kiyoshi Tanaka. “VKOP:
3D Virtual Keypoint Detector adapted to geometric structures
and its feature descriptor.” In: The journal of the Institute of
Image Electronics Engineers of Japan: visual computing, devices
& communications 46.2 ((In Japanese) 2017), pp. 283–297.

[84] Martin Vel’as, Michal Španěl, Zdeněk Materna, and Adam Herout.
“Calibration of rgb camera with velodyne lidar.” In: (2014).

[85] Liang Wang, Chao Shen, Fuqing Duan, and Ke Lu. “Energy-based
automatic recognition of multiple spheres in three-dimensional
point cloud.” In: Pattern Recognition Letters 83 (2016), pp. 287–
293.

[86] Yanmin Wang, Hongbin Shi, Yanyan Zhang, and Dongmei Zhang.
“Automatic registration of laser point cloud using precisely located
sphere targets.” In: Journal of applied remote sensing 8.1 (2014),
p. 083588.

[87] Oliver Wasenmüller and Didier Stricker. “Comparison of kinect
v1 and v2 depth images in terms of accuracy and precision.” In:
Asian Conference on Computer Vision. Springer. 2016, pp. 34–45.

[88] Jan Weingarten and Roland Siegwart. “3D SLAM using planar
segments.” In: 2006 IEEE/RSJ International Conference on In-
telligent Robots and Systems. IEEE. 2006, pp. 3062–3067.

[89] Lei Xu, Erkki Oja, and Pekka Kultanen. “A new curve detec-
tion method: randomized Hough transform (RHT).” In: Pattern
recognition letters 11.5 (1990), pp. 331–338.

[90] Tomoaki Yoshida, Keiji Nagatani, Satoshi Tadokoro, Takeshi
Nishimura, and Eiji Koyanagi. “Improvements to the rescue
robot quince toward future indoor surveillance missions in the
Fukushima Daiichi nuclear power plant.” In: Field and service
robotics. Springer. 2014, pp. 19–32.

[91] Yizhou Yu. “Surface reconstruction from unorganized points using
self-organizing neural networks.” In: Proc. of IEEE visualization.
Vol. 99. 1999, pp. 61–64.

[92] Dongho Yun, Sunghan Kim, Heeyoung Heo, and Kwang Hee Ko.
“Automated registration of multi-view point clouds using sphere
targets.” In: Advanced Engineering Informatics 29.4 (2015). Collec-
tive Intelligence Modeling, Analysis, and Synthesis for Innovative
Engineering Decision Making Special Issue of the 1st International

bibliography 99

Conference on Civil and Building Engineering Informatics, pp. 930
–939. issn: 1474-0346. doi: https://doi.org/10.1016/j.aei.
2015.09.008. url: http://www.sciencedirect.com/science/
article/pii/S1474034615001032.

[93] Yizhong Zhang, Weiwei Xu, Yiying Tong, and Kun Zhou. “Online
structure analysis for real-time indoor scene reconstruction.” In:
ACM Transactions on Graphics (TOG) 34.5 (2015), pp. 1–13.

