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Abstract

We report that pendulums having a hot tip immersed in water exhibit a strong self-propelled

swing motion. This large swing motion is observed when the temperature of the hot tip becomes

that of the nucleate- to film-boiling regime. We propose a model that explains how the strong swing

motion occurs owing to the growing asymmetrical instability of heat transfer from the hot tip to

the water; i.e., the small swing motion increases the asymmetrical heat transfer and consequently

accelerates the swing motion in the liquid. We believe that our findings will contribute significantly

to a new class of self-propelled devices and energy conversion systems that convert waste heat into

usable energy.
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I. INTRODUCTION

Heat engines are machines that can convert heat energy into mechanical energy, and

they are a key technology for sustaining the modern industrialized society. However, heat

engines typically possess an expensive complex structure. Therefore, heat engines with a

simple structure are attractive as a new class of engine, particularly from the perspective

of low energy harvesting, as a large amount of heat energy is lost as waste heat. In this

context, Linke et al. [1] reported that liquids exhibit self-propelled motion at speeds of ∼5

cm/s due to Leidenfrost phenomena [2, 3] when they are placed in contact with hot surfaces

having an asymmetrical ratchetlike topology. They suggested that this occurrence would aid

the construction of pumps that are powered by waste heat. Shortly afterwards, Ok et al. [4]

demonstrated that sub-micron ratchets yield water droplet velocities reaching ∼40 cm/s. Li

et al. [5] presented a lattice Boltzmann modeling of the self-propelled Leidenfrost droplets,

whereas Würger [6] proposed a thermal creep model. Hashmi et al. [7] demonstrated that

a small cart can be levitated by its own vapor layer and can move without friction over

the hot ratchet. Furthermore, by extending the concept of Linke et al.’s device, Wells et

al. [8] demonstrated that dry-ice blocks rotate on hot turbine-like surfaces and thus can

covert the latent heat into rotational motion. Moreover, from the viewpoint of new micro

heat engines and these applications, many challenging studies have been done recently. For

example, Shi et al. [9] showed that a micro-hovercraft can move at a speed of ∼7 cm/s

by using the cold Leidenfrost phenomenon. Sugioka and Segawa [10] demonstrated that a

micro-glider having a ratchet structure moves on a shallow water layer at a speed of ∼20

cm/s. Xu et al. [11] presented self-propelled rotational Leidenfrost rotor made of wet filter

paper that exhibits angular velocities exceeding 30 rad/s. In addition, Luo et al. [12] showed

the self-propulsion of Leidenfrost drops between non-parallel structures. Pham et al. [13]

demonstrated that hydrogel drops initially at rest on a surface spontaneously jump upon

rapid heating and continue to bounce with increasing amplitudes. Bouillant et al. [14]

reported that Leidenfrost droplets initially at rest on horizontal substrates self-rotate and

self-propel in the direction that they are rolling.

However, the self-propelled devices using ordinary Leidenfrost phenomena require an

extremely large heat flux exceeding approximately 1 GW/m2, whereas the self-propelled

devices using cold Leidenfrost phenomena need an extremely cold working medium (e.g.,
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dry-ice) to sublimate. For example, if we attempt to realize an auto cooling pump (or

a power generation system on the roof) by using Linke et al.’s device [1], water is dried

immediately before the Linke et al.’s device starts to work. This is because, generally,

we cannot place liquids suddenly in contact with a hot plate at a temperature exceeding

the Leidenfrost temperature without using special electronic devices that waste energy [2].

Therefore, to overcome this problem, we must find a self-propelled device that functions at

lower temperatures (e.g., near the boiling temperature or the nucleate-boiling regime) and at

lower heat fluxes. Nevertheless, a self-propelled device using a heat energy in the nucleate-

to film-boiling regime has not been explored well to the best our knowledge, although the

heat transfer phenomena in the nucleate- to film-boiling regime have been studied well [15].

Here, we report that pendulums having a hot tip partially immersed in water, exhibit a

strong self-propelled swing motion with a tip velocity on the order of 6 cm/s in the nucleate-

to film-boiling regime at a heat flux q ∼ 5 MW/m2, which is 200 times smaller than that

of Linke et al.’s device. Thus, in contrast to Linke et al.’s device, the self-swing motion in

our study can be realized even if the tip temperature increases gradually. Therefore, it is

applicable to innovative energy harvesting devices. Further, because the tip velocity of ∼6

cm/s is a remarkable speed for an object in water using a device with a simple structure,

it is applicable to innovative microfluidic devices. Furthermore, we propose a model that

explains how the strong swing motion occurs owing to the growing asymmetrical instability

of heat transfer from the hot tip to the water; i.e., the small swing motion increases the

asymmetrical heat transfer and consequently accelerates the swing motion in the liquid.

II. EXPERIMENTAL METHOD

Figure 1 shows a schematic of the experimental setup for the self-propelled swing motion.

As shown in Fig. 1, we prepared a pendulum having a heater made of a U-shaped nichrome

wire of diameter ϕ1 = 0.26 mm, real length lh = 16 to 20 mm, and surface area A = πϕ1lh =

13.1 to 16.3 mm2. Here, the other part of the pendulum was made of two copper wires of

diameter ϕ2 = 0.9 mm. Typically, the total length L of the pendulum is 100 to 150 mm and

the projection length Lh of the U-shaped heater 6 to 9 mm. Furthermore, we immersed a

region of length Lw (typically, 9 to 12 mm) from the tip in deionized water (milli-Q, 18.2

MΩcm) at rest. Then, upon applying a DC electric voltage V0 to the nichrome wire (with
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FIG. 1. (Color online) Experimental setup for the self-propelled swing motion. Here, typically,

L = 100 to 150 mm, Lh = 6 to 9 mm, and Θ = 0 rad.

a current I0 and a power P0), we observed a significant self-propelled swing motion with a

sound. Subsequently, we determined the displacement Xp of the tip of the pendulum in the

x direction at time t by using video data of size 640×480 with a frame rate of 240 fps. Such

measurements were repeated Nf times (typically, Nf = 3) at P0. Note that, in Fig. 1, Θ is

the bending angle of the heater. However, as shown in Fig. 4(b), because the swing motion

did not depend significantly on Θ, we set Θ = 0 rad for almost all experiments.

III. EXPERIMENTAL RESULTS

Figure 2 shows the photographs of the observed typical self-propelled motion at t = 0 to

18.38 s when V0 = 7.7 V, I0 = 9.5 A, P0 = 73.2 W, R0 = 0.81 Ω, L = 150 mm, Lh = 9

mm, lh = 20 mm, ϕ1 = 0.26 mm, A = πϕ1lh = 16.3 mm2, and Lw = 12 mm. In Fig. 2(a),

we evidence bubbles by using a dark background and front illumination. Thus, the white

clouds in Figs. 2(b) and 2(c) show the bubble cloud that is released from the heater. As

shown in Figs. 2(a) to 2(c), we find that the swing motion does not occur and the bubble
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FIG. 2. (Color online) Photographs of the typical self-propelled swing motion due to the growing

instability. (a) t = 0 s; (b) t = 0.08 s; (c) t = 0.46 s; (d) t = 17.86 s; (e) t = 17.95 s; (f) t = 18.06

s; (g) t = 18.21 s; (h) t = 18.31 s; (i) t = 18.38 s. Here, V0 = 7.7 V, I0 = 9.5 A, P0 = 73.2

W, R0 = 0.81 Ω, q = 4.77 MW/m2, L = 150 mm, Lh = 9 mm, lh = 20 mm, ϕ1 = 0.26 mm,

A = πϕ1lh = 16.3 mm2, and Lw = 12 mm.

cloud becomes large until t = 0.46 s. Since the bubble cloud is rising upward, the cloud

density difference in the upward direction indicates instability of the bubble generation in

time, whereas the density difference between the right and left sides indicates instability of

the bubble generation in position. Thus, from Fig. 2(c), we understand that this instability

could be a trigger to start the swing motion. Figures 2(d) to 2(i) show the contrast-enhanced

photographs during a large swing motion to clarify the relation between the bubble cloud

and the motion of the heater. From these figures, we find that the swing motion of the

heater is associated with the presence of an asymmetric bubble cloud, larger at the rear

of the heater. Specifically, Figs. 2(d), 2(e), and 2(f) show the motion in the left direction
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(Ẋp < 0) at t = 17.86, 17.95, and 18.06 s, respectively, whereas Figs. 2(g), 2(h), and 2(i)

show the motion in the right direction (Ẋp > 0) at t = 18.21, 18.31, and 18.38 s, respectively.

From Figs. 2(d) to 2(f), we clearly recognize that the bubble cloud on the right side of the

heater is much stronger than that on the left side at Ẋp < 0, whereas the bubble cloud on

the left side of the heater is much stronger than that on the right side at Ẋp > 0 as shown in

Figs. 2(g) to 2(i). In summary, the motion of the heater is accompanied by a large bubble

cloud in the direction opposing that of the motion of the pendulum.
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FIG. 3. Resonance characteristics of the self-propelled swing motion due to the growing instability.

(a) Dependence of Xp on t; (b) Dependence of Xp on t; (c) Dependence of Up on t; (d) Dependence

of Xmax
p on q. Here, L = 100 mm, Lh = 6 mm, lh = 16 mm, ϕ1 = 0.26 mm, A = πϕ1lh = 13.1

mm2, and Lw = 9 mm; in (a) to (c), N = 3, V0 = 7 V, I0 = 10.3 A, P0 = 73.1 W, R0 = 0.68 Ω,

and q = 5.6 MW/m2.

Figures 3(a) and 3(b) depict the dependence of Xp on t, which corresponds to the swing

motion. As shown in Fig. 3(a), the amplitude of Xp initially increases with time finally

to reach a constant value (∼5 mm). Here, the response time, which is the time to reach
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the steady state, is approximately 8 s. The surprising aspect of this phenomenon is that

the vibration starts on its own and is automatically stabilized. Furthermore, as shown in

Fig. 3(b), Xp shows a regular cyclic motion of frequency fs and amplitude Xmax
p at t ≥ 10

s, where fs ≃ 1.75 Hz and Xmax
p ≃ 5.27 mm denote the frequency of this self-propelled

motion and the maximum amplitude, respectively. It is surprising that a regular oscillation

was produced from the stochastically irregular boiling phenomenon. In Fig. 3(b), if we

assume that the swing motion at the steady state is a simple harmonic motion, it can

be described as Xp = Xmax
p sin 2πfst. In this case, the velocity Up (≡ dXp

dt
) is described

as Up = 2πfsX
max
p cos 2πfst. Figure 3(c) shows the dependence of Up on t. Here, the

dependence corresponds to Fig. 3(b) and is obtained by numerical differentiation. Figure 3(c)

indicates that the maximum velocity (Umax
p ) of Up is approximately 6 cm/s; this agrees well

with the expression 2πfsX
max
p = 5.8 cm/s. Thus, the self-swing motion can be treated as

a simple harmonic motion, as the first approximation. Figure. 3(d) depicts the dependence

of Xmax
p on a heat flux q = P0/A applied on the heater. From Fig. 3(d), we find that the

self-swing motion can be observed at approximately q ≥ 2.3 MW/m2 and exhibits a peak of

Xmax
p at q ≃ 3.5 MW/m2.

To clarify the mechanism of this self-propelled swing motion, we performed several ex-

periments. Figure 4 shows the results of additional experiments. Firstly, as shown in

Fig. 4(a), the experimental frequency fs,exp of the self-swing motion and the experimental

natural frequency f0,exp of the pendulum approximately agree with the theoretical curve of

f0,th1 ≃ 1
2π

√
3g
2L
, which will be derived from the discussion of Eq. (1) in Sec. IV.B. Thus, the

self-swing motion is considered as a type of resonance phenomenon of the pendulum. Note

that fs,exp and f0,exp are determined from the same experiment. For example, those values at

L = 100 mm are determined from the steady oscillation part with V0 = 7 V at t < 17 s and

the damped oscillation part with V0 = 0 V at t > 18 s in Fig. 4(b). Thus, their experimental

conditions are completely same except V0. Secondly, as shown in Fig. 4(c), the amplitude

does not change significantly even if the tip region is bent to either the left or the right.

Thus, the asymmetricity of the shape is irrelevant to the mechanism. Thirdly, as shown

in Fig. 4(d), the water temperature T1 near the heater increases rapidly at approximately

q < 0.7 MW/m2 compared to the water temperature T2 at the bottom of the chamber.

Furthermore, T1 remains constant at approximately q ≥ 0.7 MW/m2. Here, we measured

T1 by placing the heater in contact with a thermocouple. The water just around the heater
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reaches its boiling temperature (i.e., 100 ◦C) at q ≃ 0.7 MW/m2 and attains a superheated

state if the bubbles are not generated. Note that the self-swing motion is usually accompa-

nied by a strong beep sound, which occurs due to an intense shock wave generated by the

collapse of bubbles. In fact, we observed nucleate and film boiling with a self-swing motion,

as shown in Fig. 2. In addition, Umax
p and θmax become large at approximately q ≥ 2.3

MW/m2, as shown in Figs. 4(e) and 4(f). Therefore, the self-swing motion occurs normally

in the nucleate- to film-boiling regime and occurs strongly in the transition boiling regime.

IV. MODELS TO EXPLAIN SELF-SWING PHENOMENON

A. Qualitative explanation on our experiments

Figure 5 shows the schematic of phenomenological model for the self-propelled swing

motion. We consider that a small instability (or asymmetricity) of heat transfer between

the left and right surfaces of the tip region grows into a large instability once the tip starts

to move owing to the small instability. This is because the bubbles in the front of the hot tip

region flow more than those in the rear and thus the temperature of the front becomes lower

than that of the rear. As a result, the bubble generation probability at the front becomes

lower than that of the rear, as shown in Figs. 5(a) and 5(b). Consequently, a larger amount

of bubbles at the rear side generate a larger bubble force than the bubbles at the front side.

Thus, the availability rate of the force generated by the bubble increases. Therefore, once

the pendulum starts to swing, the amplitude increases with time and reaches a steady state

when the increase in the velocity does not induce an increase in the amplitude (i.e., when

the asymmetricity of heat transfer between the front and rear becomes maximum). Relative

to a famous boiling curve, as shown in Fig. 5(c), the front region cannot move to the film

boiling regime by passing from C to E, and it remains in the nucleate boiling regime because

the bubbles at the front flow out from the surface. Note that in Fig. 5(c), q is the heat flux

of the tip, Th is the temperature of the tip (heater), and Tf is the temperature of the fluid

far from the tip.
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FIG. 4. Results for the additional experiments to clarify the mechanism of the self-propelled

swing motion. (a) Dependences of f0 and fs on L; (b) Experimental result for damped vibration;

(c) Dependence of θmax on Θ (L = 70 mm and q = 5.4 MW/m2); (d) Dependencies of T1 and T2

on q for the fixed pendulum (Θ = 0 rad and L = 90 mm); (e) Dependence of Umax
p on q (Θ = 0

rad and L = 100 mm); (f) Dependence of θmax on q (Θ = 0 rad and L = 100 mm).
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FIG. 5. (Color online) Schematic of our phenomenological model owing to the growing instability

of asymmetrical heat transfer. (a) Side view of the tip region. (b) Top view of the tip region. (c)

Boiling curve.

B. Self-swing model with the superheat ∆T as a variable (Model A)

From the above arguments, the self-swing phenomenon can be described by

Iθ̈ ≃ −mgL

2
θ + Lfb − (L− Lw

2
)fv, (1)

where m (1.2 g for the pendulum of L = 100 mm) is the mass of the pendulum, I =∫ L

0
r2m

L
dr = mL2

3
is the moment of inertia, θ ≃ Xp

L
is a swing angle in Fig. 1, and fb and fv

are forces due to bubbles and viscosity, respectively. Note that from Eq. (1), the theoretical

natural frequency is derived as f0,th1 = 1
2π

√
mgL
2I

≃ 1
2π

√
3g
2L

since I = mL2

3
. When the

Reynolds number Re = ρẊpϕ1

µ
of the system is less than ∼60, the drag coefficient cD of the

system is described by Stokes’ formula cD ≃ 24
Re

[16, 17], where ρ and µ are the density and

viscosity of water, respectively. Thus, fv is described by

fv ≃ cDρẊp
2
Av = 12µ

Av

ϕ1

Ẋp, (2)

where Av = ϕ1lh + 2(ϕ2 + 2ϕ1)(Lw − Lh) is the cross-sectional area of the part immersed in

water. Note that the nichrome wire was wrapped in a coil around the Cu wire as shown in

Fig. 2(a). Thus, the diameter of that part above the heater is ϕ2+2ϕ1. Further, Re ≃ 1.6 at
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most since Ẋmax
p ≃ 6 mm/s. Furthermore, as the first step, we phenomenologically assume

that

fb ≃
A∆P

2
RaRb ≃

A∆P

2
(1− e−

Ẋp
uc )(1− e−

∆T
∆Tc )n, (3)

where ∆T is an average surface temperature deference (superheat) of the heater (which is

measured from T0 = 373.15 K = 100◦C),

∆P (∆T ) = Ps(T0 +∆T )− Ps(T0) (4)

is an intrinsic pressure difference,

Ps(T ) ≃ pae
− r0

RT (5)

is a saturated vapor pressure determined by the Clausius–Clapeyron equation (with the

constant pa = 0.1013 MPa, the evaporation latent heat r0 = 2256.9 kJ/kg, and the gas

constant R = 0.4616 kJ/kg K of water),

Ra(Ẋp) = 1− e−
Ẋp
uc (6)

is the availability rate of the force difference due to the broken symmetry of the right and

left temperatures resulting from the non-zero value of Ẋp, uc is a critical velocity causing a

significant broken symmetry, and

Rb = (1− e−
∆T
∆Tc )n (7)

is an effective surface bubble coverage rate, which describes the surface bubble states from

the nucleate- to film-boiling regime. Here, uc = 5 mm/s is selected to explain our ex-

perimental data, the characteristic temperature ∆Tc = 60 K is selected approximately to

be the Leidenfrost temperature, and the characteristic exponent n = 8 is selected so that

∆P (170) ∼ 4.5 MPa, which is known as the pressure of the film boiling. If Ẋp

uc
≪ 1, we

obtain Ra ∼ Ẋp

uc
. Thus, by using Eqs. (2) and (3), we can approximate Eq. (1) as

mL

3
Ẍp ≃ −mg

2
Xp + A0Ẋp −B0Ẋp (at

Ẋp

uc

≪ 1), (8)

where A0 ≃ AL∆P
2uc

Rb (> 0) is the amplified factor for the driving force due to the asymmet-

rical heat transfer, and B0 ≃ 12µAv

ϕ1
(L − Lw

2
) (> 0) is the flow resistance factor due to the

fluid viscosity of water. Therefore, if A0 ≥ B0 i.e.,

AL∆P

2uc

Rb ≥ 12µ
Av

ϕ1

(L− Lw

2
), (9)
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the amplified oscillation in Fig. 2(a) starts. Further, since the moment of force Nb = Lfb

due to bubbles in Eq. (1) becomes constant at Ẋp

uc
≫ 1 (i.e., Nb ≃ AL∆P

2
Rb), the steady

oscillation in Fig. 2(b) appears. Furthermore, from Eqs.(7) and (9), the minimum of uc is

described as

u∗
c(∆T ) =

AL∆P

24µAv

ϕ1
(L− Lw

2
)
(1− e−

∆T
∆Tc )n. (10)

Since Eq. (9) is satisfied at ∆T (q) ≥ ∆T th(qth) for given uc, u
∗
c(∆T th) is considered to be

a reasonable candidate of uc, where ∆T th and qth are the threshold values of ∆T and q,

respectively. Note that you can find more detail explanations on Ra and Rb in Appendix A.

C. Model for ∆T (q) (Model B)

From the experiments in the nucleate boiling regime, it is known that the heat-transfer

coefficient α is proportional to the 2/3 power of q in the low heat flux region [15]. Thus, we

assume that

q = αA(
q

qA

2
3
)∆T, (11)

where αA denotes α at q = qA and ∆T = ∆TA (i.e., αA = qA
∆TA

). By transforming Eq. (11),

we obtain

∆T =
q

αA(
q
qA

2
3 )

= ∆TA(
q

qA
)
1
3 . (12)

Therefore, by using Eq. (12) with Eq. (1), we can predict a motion at given q.

D. The effects of parameters in Model A on fundamental values

Figure 6 shows the effects of parameters in Model A. Specifically, Fig. 6(a) shows the

dependence of Ra on Up at uc = 5,10, and 15 mm/s. As shown in Fig. 6(a), although Ra

increases linearly in the initial stage (Up ≪ uc), the increasing rate slows down at Up > uc.

This means that as Up increases, the temperature difference δT between the forward and

rear surfaces of the heater increases rapidly at Up ≪ uc but the increasing rate of δT slows

down at Up > uc since δT approaches ∆T , which is the maximum value of δT . Figure 6(b)

shows the dependence of u∗
c on ∆T . As will be explained later, we obtained ∆T th ≃ 15 K

and qth ≃ 1.5 MW/m2. Thus, we set uc = 5 mm/s in this manuscript since u∗
c = 4.5 mm/s

at ∆T = 15 K in Fig. 6(b). Figure 6(c) shows the dependence of Rb on ∆T at ∆Tc = 40, 50,
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FIG. 6. The effects of parameters in Model A. (a) Dependence of Ra on Up; (b) Dependence of

u∗c on ∆T ; (c) Dependence of Rb on ∆T (n = 8); (d) Dependences of ∆P and Rb∆P on ∆T . In

(d), we use ∆Tc = 60 K and n = 8.

and 60 K. As shown in Fig. 6(c), although Rb increases rapidly at ∆T > ∆Tc. This means

that the boiling phenomenon changes from the nucleate boiling state to the film boiling

state at ∆T ∼ ∆Tc. Although various values are reported for ∆Tc, we use ∆Tc = 60 K for

our analysis, since we experimentally obtained ∆Tc ≃ 60 K in our Leidenfrost experiments

[18]. Figure 6(d) shows the dependences of ∆P and Rb∆P on ∆T when ∆Tc = 60 K and

n = 8. Even for a strong film boiling phenomenon, it is known that ∆P is an over estimated

value for the initial pressure of the superheat layer of the bubble. For example, Asai et al.

[19] reported that the initial pressure of the superheat layer is ∼4.5 MPa at ∆T ∼ 170 K.

Thus, we set n = 8 to satisfy this condition approximately. As shown in Fig. 6(d), Rb∆P

significantly increases from the Leidenfrost temperature (∆T ≃ 60 K) and becomes 4.5 MPa

at ∆T ≃ 180 K. Here, Rb∆P just shows the possible maximum pressure. In other words,

only when Ra ̸= 0 (i.e., only when Ẋp ̸= 0), it can accelerate the pendulum. Therefore,
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although the origin of the propulsion is Rb∆P , what causes propulsion is Ra(Ẋp) and the

trigger is the instability of the bubble generation [in Fig. 2(c)]. Thus, we assumed a small

initial velocity (Ẋp = 10 µm/s at t = 0 s) as an initial initial instability in the calculations

through our manuscript.

E. Theoretical results using Model A for self-swing motions

Figure 7 shows the theoretical analysis using Model A for self-swing motions. Here, we

calculate the second order differential equation of Eq. (1) under the constant ∆T and uc. In

detail, we transform Eq. (1) as follows:

Ẋp = Up, (13)

U̇p = −CXp + f(Xp, Up), (14)

C =
mgL

2I
, (15)

f(Xp, Up) =
L

I
[Lfb − (L− Lw

2
)fv] (16)

and solved them by Euler method. That is, we calculate the difference equations

Un+1
p = Un

p +∆t[−CXn
p + f(Xn

p , U
n
p )], (17)

Xn+1
p = Xn

p +∆tUn+1
p (18)

with the initial conditions that X0
p = Xp(t) = 0 mm and U0

p = Up(0) = 10 µm/s, where ∆t is

a time interval, the superscript n indicates the time step, and t = n∆t. Note that Up(0) = 10

µm/s is assumed to represent the initial fluctuation due to the boiling phenomenon under

consideration.

As shown in Figs. 7(a) and 7(b), we find that the increasing of ∆T mainly results in the

increasing of Xmax
p , whereas the increasing of uc results in the increasing of the response

time τ1. Here, we define τ1 as τ1 ≡ t2 − t1, where t1 and t2 satisfy the condition that

Xp(t1) = 0.05Xmax
p and Xp(t2) = 0.95Xmax

p . In detail, Xmax
p and τ1 depends on ∆T and

uc, as shown in Figs. 7(c) to 7(f). Since uc is considered to be approximately 5 mm/s as

mentioned before, we can understand that Model A is justified if we can predict Xp and τ1

well at the same time for our experiments by setting suitable ∆T .
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FIG. 7. Theoretical results using Model A for self-swing motions. (a) Dependence of Xp on t

at uc = 5 mm/s; (b) Dependence of Xp on t at ∆T = 20 K; (c) Dependence of Xmax
p on uc;

(d) Dependence of τ1 on uc; (e) Dependence of Xmax
p on ∆T ; (f) Dependence of τ1 on ∆T . Here,

L = 100 mm, Lh = 6 mm, lh = 16 mm, ϕ1 = 0.26 mm, A = πϕ1lh = 13.1 mm2, and Lw = 9 mm;

µ = 1.0 mPa s, ∆Tc = 60 K, and n = 8.
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V. ANALYSIS USING THE THEORETICAL AND EXPERIMENTAL RESULTS

A. Analysis for the dependence on q

Figure 8 shows the comparison between the experimental results and the theoretical

result under the condition that L = 100 mm, Lh = 6 mm, lh = 16 mm, ϕ1 = 0.26 mm,

A = πϕ1lh = 13.1 mm2, and Lw = 9 mm. Specifically, Fig. 8(a) shows the comparison for

the damped oscillation when q = 5.6 MW/m2 was shut off. Here, we assume I∗ = 1.17I

instead of I in Eq. (1) so that the frequency of the numerical calculation well corresponds to

that of the experiment. Note that there is no free parameter for f0,th1 since it is determined

by the partial part Iθ̈ ≃ −mgL
2

of Eq. (1). Thus, I∗ = 1.17I must be adopted as a true

value of I. Furthermore, we use µ = 1.0 mPa s for our calculations as the typical value of

water at room temperature. This is probably justified as the first step since the water was

mixed in the whole region by the swing motion of the pendulum. In fact, we need not adjust

µ so that the decay time of the numerical calculation well corresponds to the experiments.

That is, as shown in Fig. 8(a), the experimental results of the damped oscillation agrees

well with the theoretical results provided by Model A not only for the frequency but also

for the decay time. Since µ is the only free parameter for I∗θ̈ ≃ −mgL
2

− (L − Lw

2
)fv, our

model is reliable at least for the viscosity term (i.e., the fv term). That is, Eqs. (1) and (2)

are justified except the fb term described in Eq. (3).

Figures 8(b), 8(c), and 8(d) show the comparison for the resonance vibrations at q = 5.6,

3.8, and 2.5 MW/m2, respectively under the same condition except q. Here, for Model A,

we assume ∆T = 20.0, 20.0, and 17.0 for q = 5.60, 3.81, and 2.56 MW/m2, respectively,

so that the amplitudes of the numerical results well correspond to those of experiments.

Note that ∆T is the only parameter for Eq. (1), if we admit that I∗ = 1.17I and µ = 1.0

mPa s with the conditions that ∆Tc = 60 K, uc = 5 mm/s, and n = 8, which conditions

are determined from the arguments in Sec. IV.D. As shown in Figs. 8(b), 8(c), and 8(d),

the experimental results of the resonance vibration agrees fairly well with the theoretical

results provided by Model A not only for the amplitudes but also for the response times.

Thus, the fb term is also justified; i.e., Model A described Eqs. (1) to (7) are justified. That

is, our model predicts that the amplitude of the pendulum increases with time and finally

reaches a constant value (which depends on the power). In other words, our model predicts
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FIG. 8. Comparison between the experimental results and the theoretical results for the depen-

dences on q. (a) Comparison for damped vibration when q = 5.60 MW/m2 was shut off; (b) Com-

parison for resonance vibration at q = 5.60 MW/m2; (c) Comparison for resonance vibration at

q = 3.81 MW/m2; (d) Comparison for resonance vibration at q = 2.56 MW/m2; (e) Dependence of

∆T on q; (f) Comparison for the dependence of Xmax
p on q. Here, the geometrical conditions are

L = 100 mm, Lh = 6 mm, lh = 16 mm, ϕ1 = 0.26 mm, A = πϕ1lh = 13.1 mm2, and Lw = 9 mm;

in (a) to (e), N = 3; in (b), (c), and (d), we assume that ∆T = 20.0, 20.0, and 17.0 K, respectively;

the conditions for the theoretical results are µ = 1.0 mPa s, ∆Tc = 60 K, uc = 5 mm/s, and n = 8.

17



experimental results very well.

Figure 8(e) shows the comparison between Models A and B for the dependence of ∆T

on q. Here, we assume ∆TA = 20.0 K, qA = 3.81 MW/m2, and αA = 0.191 MW/(m2K) for

Model B. As shown in Fig. 8(e), ∆T values obtained by Model A is consistent with those

obtained by Model B at q ≤ 3.81 MW/m2. That is, ∆T at q = 2.56 MW/m2 is predicted

well by Eq. (12). Note that there is no free parameter for this comparison once we admit

that ∆TA = 20.0 K and qA = 3.81 MW/m2, which values are determined from Fig. 8(c).

Furthermore, Fig. 6(f) shows the comparison between the experimental results of Xmax
p and

the theoretical results obtained by Model B coupled with Model A for the dependence of

∆Xmax
p on q. As shown in Fig. 8(f), the experimental results of the damped oscillation agrees

well with the theoretical results provided by Model B coupled with Model A at q ≤ 3.81

MW/m2. Note that there is also no free parameter for this comparison once we admit that

∆TA = 20.0 K and qA = 3.81 MW/m2 and thus our model is reliable. In particular, the fact

that the experimental threshold value qexpth agrees well with the theoretical threshold value

qmodel B
th justifies the assumption that uc = 5 mm/s. From those analyses, Models A and B

are justified, although we need to improve Model B at q > 3.81 MW/m2.

B. Analysis for the dependence on L

Figure 9 shows the comparison between the experimental and theoretical results for the

dependences on L at q ≃ 5.6 MW/m2 (in detail, q = 5.40 to 5.63 MW/m2). Here, the

geometrical conditions are Lh = 6.0 to 7.2 mm, lh = 15.0 to 17.0 mm, ϕ1 = 0.26 mm,

and Lw = 9.0 to 10.8 mm; the conditions for the theoretical results are µ = 0.7974 mPa s,

∆T = 20.0 or 21.8 K, ∆Tc = 60 K, uc = 5 mm/s, and n = 8. Specifically, Figs. 9(a), 9(b),

and 9(c) show the comparison for the dependences of Xmax
p , Umax

p , and θmax, respectively.

As shown in those figures, Model A captures the behavior of Xmax
p , Umax

p , and θmax to some

extent, although there exist variations in experimental data corresponding to the difference

of ∆T = 20.0 to 21.8 K. Furthermore, Fig. 9(d) shows the comparison for the dependences

of Xp and Up on t at L = 100 mm in the initial stage (t ≤ 4). As shown in Fig. 9(d), Model

A captures the initial behaviors of Xp and Up on t to some extent, although we may need

to improve our model more in the future.
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FIG. 9. Comparison between the experimental and theoretical results for the dependences on L

at q ≃ 5.6 MW/m2 (in detail, q = 5.40 to 5.63 MW/m2). (a) Comparison for the dependence of

Xmax
p on L; (b) Comparison for the dependence of Umax

p on L; (c) Comparison for the dependence

of θmax on L; (d) Comparison for the dependences of Xp and Up on t at L = 100 mm. Here, the

geometrical conditions are Lh = 6.0 to 7.2 mm, lh = 15.0 to 17.0 mm, ϕ1 = 0.26 mm, and Lw = 9.0

to 10.8 mm; the conditions for the theoretical results are µ = 1.0 mPa s, ∆T = 20.0 or 21.8 K,

∆Tc = 60 K, uc = 5 mm/s, and n = 8.

VI. DISCUSSION

A. Meaning of our study

In this study, we first reported that a pendulum having a hot tip exhibits a strong self-

swing motion at a heat flux of approximately 3.5 MW/m2. Surprisingly, in contrast to

Linke et al.’s device and other similar devices, this new self-swing device does not require

sudden contact with a temperature exceeding the Leidenfrost temperature or with a suddenly
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applied extremely large heat flux of ∼1 GW/m2. In other words, the self-swing device can

start even at room temperature by gradually increasing the heat flux of the tip region.

This characteristic is useful for developing energy conversion systems that utilize waste heat

as their energy source. For example, we consider the heat sink having plural pendulums

instead of fins. In this sink, the pendulums are immersed in water and have magnetism.

By preparing coils near the pendulums, we can convert heat energy, which is transmitted

from the base of the heat sink, into electrical energy. Here, we can use relatively low grade

thermal energies such as waste heat energy exhausted from factories and power plants, heat

energy of iron plate heated by the sun in the summer, etc. Although the temperature of

such low energy sauces usually fluctuates during the day, pendulums can start to move

when their temperature reaches boiling temperature and can convert thermal energy into

electrical energy. Furthermore, our device can be used to biomedical microfluidic devices as a

new class of self-propelled micro heat engine. For example, by replacing the pendulums with

oblique elastic beams, we can make new artificial cilia (which is expected as a next-generation

multi-functional microfluidic device [20]) and can realize a new outstanding micropump (or

microswimmer) whose velocity may exceed 5 cm/s (which is approximately 37 times larger

than that of the state of the art [21]) in the future. Thus, our finding is useful not only for

energy harvesting techniques but also for biomedical microfluidic applications.

B. Reasons why our models are justified

As explained above, there are several reasons that justify our models. That is, (i) Eq. (1)

is justified under the condition fa = fb = 0, since our observed swing motions are recognized

as a resonance phenomenon from Fig. 4(a). (ii) Eq. (2) is justified from Fig. 8(a). Thus,

there is no doubt about fv. (iii) Eqs. (3) to (7) are justified from Figs. 8(b) to 8(d); i.e., a

bubble force term fb is justified. In particular, since the shape of the resonance oscillation

is complex, it is difficult to match Xmax
p and τ1 with the experimental values at the same

time, if Model A is not correct. Thus, Model A is reliable. (iv) The choice of uc = 5 mm/s is

justified since u∗
c(∆T th) ∼ 5 mm/s since qth ∼ 1.5 MW/m2 and ∆T th ∼ 15 K from Figs. 8(e)

and 8(f). In other words, our models are self-consistent in our analysis. (v) The predicted

∆T using Model A [i.e., ∆T = 15 to 20 K for q = 2.56 to 5.60 MW/m2 in Fig. 8(e)] are

reasonable as the values in the transition region [22]. That is, our models are consistent
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FIG. 10. Fourier analysis on the self-propelled swing motion. Here, open circles show the

results for the oscillation during transition state (0 ≤ t ≤ 8.5 s) in Fig. 3(a), while open triangles

show the results for the oscillation during steady state (10.0 ≤ t ≤ 14.3 s) in Fig. 3(b); n = 512,

∆t = 0.008333 s, ∆f = 1
n∆t = 0.234 Hz; L = 100 mm, Lh = 6 mm, lh = 16 mm, ϕ1 = 0.26 mm,

A = πϕ1lh = 13.1 mm2, and Lw = 9 mm; N = 3, V0 = 7 V, I0 = 10.3 A, P0 = 73.1 W, R0 = 0.68

Ω, and q = 5.6 MW/m2.

with results from other literature. (vi) Model B is justified from Figs. 8(e) and 8(f). In

particular, Model B used with Model A depicts the dependence of Xmax
p on q clearly at

q ≤ 3.81 MW/m2. Note that as shown in Figs. 8(e) and 8(f), ∆T and Xmax
p are almost

constant at q ≥ 3.81 MW/m2; i.e., ∆T ∼ 20 K and Xmax
p ∼ 5 mm/s at q ≥ 3.81 MW/m2.

Although it means that results of Model B do not agree with the experimental values at

q ≥ 3.81 MW/m2, we consider that this is the evidence that the phenomenon occurs in the

transition boiling region. In other words, we consider that our self-swing motion occurs near

the C point in the boiling curve in Fig. 5(c) at q ≥ 3.81 MW/m2. From those arguments, we

consider that our models described by Eq. (1) to (7), (10), and (12) are justified definitely.

C. About the Fourier analysis on the oscillation

Figure 10 shows the Fourier analysis on the self-propelled swing motion. That is, we use

the fast Fourier transform (FFT) of the sample number n = 512, while F shows the result

of FFT for Xp(t). In Fig. 10, open circles show the results for the oscillation during the

transition state (0 ≤ t ≤ 8.5 s) in Fig. 3(a), while open triangles show the results for the

oscillation during the steady state (10.0 ≤ t ≤ 14.3 s) in Fig. 3(b). As shown in Fig. 10,
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FIG. 11. Phase diagram in our dynamical systems. (a) Transition from AD to LC; (b) Limit

cycle; (c) Two parameter (Φ1 vs ∆T ) phase diagram denoting the transition between AD to LC

for Model A; (d) Two parameter (Φ1 vs q) phase diagram denoting the transition between AD to

LC for Model B.

the peak frequency fp is 1.64 Hz for the transition and steady states. Thus, we find that

fp obtained by FFT agrees with fs = 1.75 Hz (which is discussed in Sec. III) within the

frequency accuracy (∆f = 1
n∆t

= 0.234 Hz) of the FFT, where ∆t = 0.008333 s is the time

interval of the date. In other words, from Fig. 10, we confirm that the oscillation of the

self-propelled swing motion is the simple harmonic oscillation, as discussed in Sec. III. Note

that it is well known that the width of the peak in Fig. 10 is caused by the finite sampling

within a finite time.

22



-60

-40

-20

 0

 20

 40

 60

-5 -4 -3 -2 -1  0  1  2  3  4  5  6

U
p
 (

m
m

/s
)

Xp (mm)

(a)

-60

-40

-20

 0

 20

 40

 60

-6 -4 -2  0  2  4  6

U
p
 (

m
m

/s
)

Xp (mm)

(b)

-6 -4 -2  0  2  4  6-60-40-20 0 20 40 60
 14
 15
 16
 17
 18
 19
 20

∆T (K)

Xp (mm)
Up (mm/s)

∆T (K)

(c)

-1

 0

 1

 2

 3

 4

 5

 6

 10  12  14  16  18  20

X
p

m
ax

 (
m

m
)

∆T (K)

(d)

FIG. 12. Bifurcation structures in our dynamical systems. (a) “Flow field” of our dynamical

systems at ∆T = 0 K; (b) “Flow field” of our dynamical systems at ∆T = 20 K; (c) 3D bifurcation

diagram at Φ1 = 0.281 mm; (d) Schematic bifurcation diagram Φ1 = 0.281 mm. In (d), the solid

and broken lines show stable and unstable solutions, respectively, while the closed square shows

the Hopf-type bifurcation point.

D. About bifurcation structures

It is important to clarify bifurcation structures (changes in the qualitative nature of the

dynamics) in dynamical systems [23–25]. Figure 11 shows a phase diagram in our dynamical

systems. Specifically, Fig. 11(a) shows the transition from an amplitude death (AD) state

to a limit cycle (LC) state through two transient states (T1 and T2). Here, T1 is a transient

state that can be approximated by the linearized equation Eq. (8) while T2 is the other

transient state. Further, the calculation corresponds to Fig. 8(b), while AD is the term

introduced by Koseska et al, [23] to explain structurally different oscillation quenching types.

Although the situation is a little different, we consider that similar transition occurs in our
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dynamical systems. That is, by applying V0 at t = 0 s, ∆T becomes nonzero values and thus

the transition from a stable AD to T1 occurs; then, the transition from T1 to T2 occurs

(i.e., suppression of the oscillation starts) at t ≃ 2.5 s and reaches a stable limit cycle at

t ≥ 8 s, as shown in Fig. 11(a). In Fig. 11(a), broken lines show the envelop of the initial

linear solution that represents the T1 state, which corresponds to Eq. (8). Thus, we find

that the nature of dynamics changes at t ≃ 2.5 s in Fig. 11(a). Furthermore, Fig. 11(b)

shows a trajectory of (Xp, Up) at t = 0 to 40 s, which corresponds to Fig. 11(a). As shown

in Fig. 11(b), we find that a limit cycle is formed in our dynamical systems.

Figure 11(c) shows the two parameter (Φ1 vs ∆T ) phase diagram denoting the transition

between AD to LC for Model A, while Fig. 11(d) shows the two parameter (Φ1 vs q) phase

diagram denoting the transition between AD to LC for Model B. Here, Φ1 is defined as

Φ1 ≡
A

Av

L− 0.5Lw

L
ϕ1 (19)

and it describes the transition of our dynamical systems along with ∆T . That is, from

Eq. (9), we obtain the transition condition as follows:

Φ1(∆T ) =
24µuc

∆P (∆T )Rb(∆T )
. (20)

From Figs. 11(c) and 11(d), we find that larger ∆T and q values are required for the transition

from AD to LC, as Φ1 decreases. Note that physically Figs. 11(c) and 11(d) provide design

criteria for our device. For example, we obtain Φ1 = 0.281 mm for the conditions of Fig. 11(a)

and thus the ∆T and q values for the transition are approximately 15 K and 1.8 MW/m2,

respectively.

Figure 12 shows bifurcation structures in our dynamical systems. Specifically, Fig. 12(a)

shows the “flow field” of our dynamical systems at ∆T = 20 K, while Fig. 12(b) shows the

“flow field” of our dynamical systems at ∆T = 0 K. Here, the “flow field” is the specific

technical term in dynamical systems and it is defined as the vector field (Vx, Vy) = (Ẋp, U̇p).

As shown in Figs. 12(a) and 12(b), the stable equilibrium point O [= (Xp, Up) = (0, 0)]

becomes unstable by changing the parameter ∆T from 0 to 20 K. As a result, a stable LC

state is generated. Since the bifurcation that accompanies the destabilization of a stable

equilibrium point and the generation of LC is generally called Hopf bifurcation, the observed

phenomenon is regarded as Hopf bifurcation. Figure 12(c) shows a 3D bifurcation diagram

at Φ1 = 0.281 mm, whereas Fig. 12(d) shows a schematic bifurcation diagram Φ1 = 0.281
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mm. As shown in Figs. 12(a) and 12(b), we find that our dynamical systems have the

bifurcation structure similar to the well-known typical Hopf bifurcation structure. Note that

in Fig. 12(d), the solid and broken lines show stable and unstable solutions, respectively,

while the closed square shows the Hopf-type bifurcation point.

E. Originality of our device

Originality of our study is very high because (1) there has been no heat engine consisting

only of nichrome wires so far. Who thinks an engine can be made with just a nichrome

wire? Thus, our device is important as the seed of the new technology for the ultimate small

heat engine in the future. (2) Although there are many works on self-propulsion [26], there

is no work for the self-propulsion using the self increasing phenomenon of the temperature

difference between the forward and rear surfaces. In particular, no one consider that the

symmetrical heating element moves in a specific direction by itself faster and faster until

the driven force due to the bubble balances the viscous force. However, our experimental

and theoretical results tell us that such phenomenon will intrinsically occur in the transition

boiling region if the condition of Eq. (9) is satisfied. Thus, our device is innovative and it is

important as a micro-heat engine with strong rotational power that cannot be imitated by

other methods. (3) There is no miniaturizable device that runs at speed of 6 cm/s or more

[e.g., 14 cm/s in Fig. 9(b)] in water and can be used for the microfluidic applications. For

example, the velocity of the promising movable device using induced charge electro-osmosis

with a Janus structure is ∼ 1 mm/s at most [27]. Furthermore, although Linke et al.’s

device [1] can propel a droplet with ∼5 cm/s on a hot ratchet surface, application to the

movable devices that can be driven in water can not be expected; i.e., it will not work in a

microfluidic channel. Thus, our device is promising as an innovative high-speed microfluidic

device that can be driven in water, since our device can intrinsically be driven in water all of

the part, although we demonstrate our device with a pendulum immersed partially in water

as the first step. In the future, we will demonstrate such innovative microfluidic devices.
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VII. CONCLUSION

In conclusion, we have reported a strong self-propelled swing motion of pendulums having

a hot tip immersed in water. Further, we have proposed a model explaining that the strong

swing motion occurs due to the growing asymmetrical instability of heat transfer from the

hot tip to the water.

Appendix A: Detail explanations on Ra and Rb

1. Force acting on the surface of the heater in the numerate regime

The number of bubbles that generate on the heater of area A
2
during 1 s is written as

Na(∆T ∗) = Nn
A

2
fg, (A1)

where ∆T ∗ is the superheat for each surface, Nn(∆T ∗) is the number density of the active

nucleation site, and fg is the bubble generation frequency from the active sites [28]. Thus,

we can write the average force that the seed of the bubbles provides to the heater at the one

side as

fbs(∆T ∗) ≃ Na
πD2

d

4
∆P∆tc ≃

πD2
dfg∆tc
4

A∆P

2
Nn, (A2)

where Dd is the average departure diameter of the bubbles, ∆tc is the average effective

deforming time, and fg∆tc (≤ 1) is the effective bubble working ratio. As for Nn, several

models exist [28]. For instance, Yang and Kim [29] proposed that

Nn(∆T ∗) = N0e
− K

∆T∗ , (A3)

where N0 and K are constant values. Thus, from Eqs. (A6) and (A7), we obtain

fbs(∆T ∗) ≃ πD2
dN0fg∆tc

4
e−

K
∆T∗

A∆P

2
=

A∆P

2
R′

b. (A4)

Here,

R′
b(∆T ∗) ≡ πD2

dN0fg∆tc
4

e−
K

∆T∗ (A5)

is the effective surface bubble coverage rate for the specific nucleate-boiling model and it

consists of the effective bubble working ratio part (fg∆tc) and the surface bubble cover-

age rate part at the initial stage of the bubble generation (
πD2

dN0

4
e−

K
∆T∗ ). From the above
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argument, the net force acting on the heater is written as

fModel C
b = fbs(∆T ∗

r )− fbs(∆T ∗
f ), (A6)

where the subscript “f” and “r” denote the surfaces of the cylindrical heater at the front

and rear sides, respectively. Note that the seeds of the bubbles are generated with the

departure diameter instantaneously and leaving the heaters with the lift-off diameter. During

this process, the bubbles push water and the heater. Although those forces of bubbles

are intrinsically discontinuous in time and have different values depending on their size at

different positions in space, we can consider that bubbles continuously exert a force on the

heater by considering the average working area Ad =
πD2

d

4
in space and the effective bubble

working ratio rt = fg∆tc in time. In other words, by using Ad and rt within the framework

of ordinary statistical methods, we approximate a discontinuous force exerted on a heater

due to the many bubble generation events as the continuous average force due to bubbles

in Eq. (A2).

2. Model for the surface temperature of the heater

It is known that temperature T and heat transfer coefficient α around a cylinder vary

with the position in a flow [30]. In other words, there is a tendency that α at the front side

is larger than that at the rear side because the flow velocity at the rear side is slower than

that at the front side. Although detail information is not known, we can assume that

∆T ∗
f ≃ ∆T − δT (Up), (A7)

∆T ∗
r ≃ ∆T, (A8)

as the first step. Here, ∆T ∗
r − ∆T ∗

f = δT (Up) and δT approaches ∆T at Up = ∞, while

δT is mathematically proportional to Up at Up ≪ u′
c by the approximation using a Taylor

series expansion since δT is a function of Up for the constant ∆T . Here, u′
c is the represented

velocity. Thus, we assume that

δT ≃ (1− e
−Up

u′c )∆T = R′
a(Up)∆T, (A9)

where R′
a(Up) = 1− e

−Up

u′c . Therefore, by using Eqs. (A6) to (A9), we obtain fModel C
b princi-

pally. However, fModel C
b approaches fbs(∆T ) at Up = ∞, while fModel C

b is mathematically
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proportional to Up at Up ≪ uc by the approximation using a Taylor series expansion since

fModel C
b is a function of Up for the constant ∆T . Thus, by assuming separation of variables,

we can approximate that

fModel C
b ≃ (1− e−

Up
uc )fbs(∆T ) = Ra(Up)fbs(∆T ), (A10)

since Ra ≃ Up

uc
at Up ≪ uc and Ra ≃ 1 at Up ≪ ∞. Therefore, by substituting Eq. (A5) into

(A10), we obtain

fModel C
b ≃ Ra(Up)R

′
b(∆T )

A∆P (∆T )

2
. (A11)

Note that we propose that the expression Ra(Up) = 1 − e−
Up
uc as the continuous function

that combines the function Ra ≃ Up

uc
at Up ≪ uc with the function Ra ≃ 1 at Up ≪ ∞

under the assumption that the beginning and end of acceleration are more important than

the intermediate process for our self-swing motions. This is the origin of Ra. Furthermore,

the choice of ∆P (∆T ) in Eqs. (A2), (A4), and (A11) indicates that what sets the pendulum

in motion is fundamentally the vapor pressure difference in the initial superheat layer that

is the seed of the bubbles between the front and the rear, due to a temperature difference

δT = R′
a(Up)∆T .

3. Needs for the formulation that covers the nucleate- and film-boiling regimes

R′
b in Eq. (A5) is the origin of Rb and it shows a physical meaning of Rb in the nucleate-

boiling regime. Furthermore, we can calculate by providing appropriate parameters in

Eq. (A5); e.g., as the first step, we may use

Dd ∼ 0.0208θw

√
σ

g∆ρ
, (A12)

∆tc ∼
1

2fg
, (A13)

fg∆tc ∼
1

2
, (A14)

on the basis of the knowledge of the bubble dynamics [31], where θw is a contact angle of

water measured in degrees, σ is a surface tension of water, g is the gravitational acceleration,

and ∆ρ = ρl−ρv is a density difference between liquid and gas phases. Note that Eq. (A12) is

well known as Fritz equation and one can find more complex formulations for the parameters

in many papers; e.g., you can see the review by Dhir [32]. However, in the nucleate boiling
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region, the effect of individual surfaces is strong. Thus, there is no definitive model that

can be accepted by every researchers, although every models are valid to some extent.

Therefore, details of the formulation of R′
b might not be so important. In fact, by using

Kocamustafagullari and Ishii’s model [28, 33] instead of Yang and Kim’s model [29], we can

rewrite Eqs. (A3) and (A5) as

Nn(∆T ) ≃ N0∆T 4.4 (A15)

and

R′
b(∆T ) ≃ πD2

dN0fg∆tc
4

∆T 4.4. (A16)

In particular, for our self-swing problem, we consider that the most important fact is that

R′
b is proportional to the n′ power of ∆T , where n′ = 4.4 but it is replaced by the more

suitable value n = 8 for Rb. Moreover, although R′
b is useful in the nucleate-boiling region,

it is not useful in the film-boiling region in spite of the fact that our self-propelled swing

motions occur in the nucleate- to film-boiling regions (in particular, in the transition boiling

region). Therefore, we need the other formulation that covers the nucleate- and film-boiling

regions for the effective coverage rate.

4. Concepts of Rb

Our self-swing phenomenon occurs at q ∼ 1.5 to 6 MW/m2, which is corresponding to

the transition boiling region. In the transition- to film-boiling regions, the effects of surface

individuality are thought to be lost because of the overlap of the bubbles and the initiation

of the spontaneous nucleation [33]. Thus, the effective coverage rate Rb(∆T ) that considers

to be an effective utilization rate for the force A
2
∆P becomes more useful than R′

b(∆T )

that considers the details mechanism in particular for Nn. Furthermore, although one may

consider that Rb ∼ 1 in the transition- and film-boiling regions, it is not correct, since it is

generally accepted that the boiling liquid does contact the solid heat transfer surface during

transition boiling; e.g. Dhuga and Winterton [22] shows that the fraction of wetted area

starts to decrease at ∆T ∼ 20 K and drops rapidly at ∆T ∼ 60 K from the impedance

measurement of water. Thus, we need to consider which ∆T captures the characteristics

of Rb(∆T ) for A
2
∆P . Specifically, we consider the Leidenfrost temperature ∆Tc = 60 K

and the fact that the initial pressure of the superheat layer is ∼4.5 MPa at ∆T ∼ 170 K

[19], as mentioned in Sec. IV. In other words, we consider that Rb should increase rapidly
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at ∆Tc ∼ 60 K and Rb∆P ∼ 4.5 at ∆T ∼ 170 K. In addition, since R′
b ∝ ∆T n′

in

Eq. (A16), we consider that Rb ∝ ∆T n at ∆T ≪ ∆Tc. Therefore, we propose the expression

Rb = (1 − e−
∆T
∆Tc )8, since it satisfies the above conditions. These are the concepts of Rb.

Note that as explained in this session, Ra and Rb consist of very few simple concepts but

they depict our experiments clearly, since the effects of surface individuality disappear in

the transition boiling region of q ∼ 1.5 to 6 MW/m2.
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Physics 10, 1038 (2018).

[15] K. Nishikawa and Y. Fujita (Academic Press, Inc., 1990) p. 1.

30



[16] JSME, JSME Mechanical Engineers’ Handbook: Fundamentals: a4: Fluids Engineering (The

Japan Society of Mechanical Engineers, 2006).

[17] G. G. Stokes, Trans. Cambridge. Philos. Soc. 9, 8 (1851).

[18] H. Sugioka, S. Segawa, and M. Kubota, Journal of Applied Physics 125, 134502 (2019).

[19] A. Asai, T. Hara, and I. Endo, Japanese Journal of Applied Physics 26, 1794 (1987).

[20] J. M. den Toonder and P. R. Onck, Trends in Biotechnology 31, 85 (2013).

[21] S. Hanasoge, P. J. Hesketh, and A. Alexeev, Microsystems & Nanoengineering 4, 11 (2018).

[22] D. Dhuga and R. Winterton, International Journal of Heat and Mass Transfer 28, 1869 (1985).

[23] A. Koseska, E. Volkov, and J. Kurths, Phys. Rev. Lett. 111, 024103 (2013).

[24] R. Kapral and P. Mandel, Phys. Rev. A 32, 1076 (1985).

[25] L. Glass, M. R. Guevara, J. Belair, and A. Shrier, Phys. Rev. A 29, 1348 (1984).

[26] J. L. Moran and J. D. Posner, Annual Review of Fluid Mechanics 49, 511 (2017).

[27] S. Gangwal, O. J. Cayre, M. Z. Bazant, and O. Velev, Phys. Rev. Lett. 100, 058302 (2008).

[28] T. Hibiki and M. Ishii, International Journal of Heat and Mass Transfer 46, 2587 (2003).

[29] S. Yang and R. Kim, International Journal of Heat and Mass Transfer 31, 1127 (1988).

[30] J. Giddings, P. Shinude, and S. Semenov, J. Colloid and interface science 176, 454 (1995).

[31] C. Yang, Y. Wu, X. Yuan, and C. Ma, International Journal of Heat and Mass Transfer 43,

203 (2000).

[32] V. Dhir, International Journal of Heat and Fluid Flow 12, 290 (1991).

[33] G. Kocamustafaogullari and M. Ishii, International Journal of Heat and Mass Transfer 26,

1377 (1983).

31


