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Previously, we proposed a novel mechanism to produce nonlinear thermokinetic phe-
nomenon (NTKP) around a metal cylinder in an electrolyte on the basis of analytical
discussion. In this study, by using a nonsteady direct multi-physics simulation technique
based on the Stokes equation coupled with the electroosmotic equation that considers
normal diffusion, electrophoresis, and thermal diffusion, we directly verify the NTKP
and show that the original driving force is the excess ions pressed on the particle by
the thermokinetic force and the NTKP vortex flow around the particle is generated by
the interaction between the excess ion and the electric field that is made by the excess
ion itself and/or the Seebeck electric field due to the blocking boundary condition on
the wall. Namely, two types of NTKP exist and they are explained in a self-consistent
manner by our new theory. In addition, through the discussion on a dielectric particle, we
show that NTKP is a general phenomenon that can be found in both metal and dielectric
particles. We believe that our findings provide a new unified viewpoint to understand
complex thermokinetic phenomena near metal and dielectric particles.

Key words: nonliniear thermokinetic phenomena, induced charge electroosmosis, See-
beck effect, thermoelectric effect

1. Introduction

The nonequilibrium thermokinetic problem (in liquid) that includes electrokinetic
phenomena usually becomes an extremely challenging problem. What makes the problem
difficult? One main reason is the lack of the cross-sectional integrated physical concept,
except the fact that the nonequilibrium thermodynamics has not been completely estab-
lished yet, although many challenging work devoted for this purpose (Würger 2010). The
thermokinetic phenomena have been known as the Soret effect since 19th century and
they are recognized as important phenomena, which can be used for various biomedical
applications, such as an efficient separation technique for macro molecules (Giddings
1993) and a molecular trap for DNA (Duhr & Braun 2006a). That is, under the existence
of a temperature gradient ∇T , the thermal drift velocity is described as

u = −DT∇T (1.1)
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based on the Onsager’s reciprocal theorem with the definition of a Soret coefficient

ST ≡ DT /D, (1.2)

where D is the ordinary diffusion coefficient of Einstein and DT is the thermo diffusion
coefficient. Here, DT and ST are generally considered just as a phenomenological param-
eter determined by experiments in spite of many theoretical efforts; i.e., the generally
accepted complete theory that accounts for the puzzling behaviors of DT (or ST ) for all
situations does not exist and many unsolved problems remain in this field (Huang et al.
2010; Würger 2010, 2008, 2007; Eslamian & Saghir 2009). Note that the difficulty exists
in the remarkable sensitivity of ST (and DT ) to many factors (Huang et al. 2010); e.g.,
a size (Duhr & Braun 2006b) and temperature (Putnam et al. 2007). This is why this
field is challenging.

It is natural to consider the extended Nernst-Plank (NP) equations that consider the
thermokinetic term using a Eastman entropy of transfer Q∗/T (Eastman 1928, 1926)
as a fundamental equation at least for the colloidal particle that has an electric double
layer, where Q∗ is a ionic heat of transfer and it is studied extensively by Arger et
al. (Agar et al. 1989). Further, although researchers in the field of thermokinetic study
often neglect a electrokinetic term, some researchers pointed out the importance of the
electrokinetic term and the effect is specially recognized as the thermoelectric effect
from long ago (Gutherie et al. 1949; Putnam et al. 2007; Würger 2010). For example,
Guthrie et al. succeeded in explaining the anomalous difference between the thermal
diffusion coefficient of an ion in the presence and in the absence of other electrolyte
based on the equation that considers the molecular diffusion, thermal diffusion, and
electrophoretic terms in 1949 (Gutherie et al. 1949). Putnam and Cahill (Putnam &
Cahill 2005) showed thatDT of charged latex spheres in aqueous suspensions is controlled
by the Seebeck coefficient of the electrolyte (Se) in 2005. Würger (Würger 2008) showed
that DT of charged colloids is determined by the thermoelectric effect to the large extent
by using explicitly the extended NP equation that comprises a thermodiffusion term
described by the Eastman entropy as a fundamental equation for the system in 2008.
Furthermore, Majee and Wüger (Majee & Würger 2012) predicted charging phenomena
of heated colloidal particles based on the extended NP equation along with the electrolyte
or fluidic Seebeck effect. Thus, in this manuscript, we also use the extended NP equation
as the fundamental equation toward a step of a general design base that bridges both
electrokinetic and thermokinetic studies.

The study on the fluidic Seebeck effect is usually based on the extended NP equation
(Bonetti et al. 2011; Agar et al. 1989; Majee & Würger 2012); i.e., the fluidic Seebeck
effect is defined as a thermoelectric effect that occurs in liquid and it is often characterized
by the Seebeck coefficient Se derived by the zero current condition for the extended
NP equation (Bonetti et al. 2011; Würger 2008; Majee & Würger 2012). The fluidic
Seebeck effect has also attracted much attention because of the potentiality for an
innovative thermogalvanic cell. For example, Bonetti et al. showed a huge Seebeck effect in
nonaqueous electrolyte Bonetti et al. (2011). Hu et al. demonstrated a high-performance
thermogalvanic cell using a carbon-nanotube (Hu et al. 2010). However, the importance
of the boundary conditions and the distribution of ions have been just recently recognized
and investigated by Chikina et al. (Chikina et al. 2012, 2015), as a pioneering work. Thus,
extensive researches for the thermokinetic boundary conditions are highly required.

Just recently, a metal capped insulative particle called a Janus particle has attracted
much attention from the view point of self-propulsion mechanism and possible applica-
tions such as microswimmers and nanomachines. For example, Jiang et al. (Jiang et al.
2010) experimentally showed that the Janus particle irradiated by the laser can move in
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the direction of the dielectric end in water by thermophoresis due to the local temperature
gradient in a particle. Bickel et al. (Bickel et al. 2013) theoretically showed the flow around
the metal capped-Janus particle by assuming a thermophoretic surface-slip velocity
proportional to the temperature gradient. However, the polarizable characteristics of
the self-propelled Janus particle has not been considered yet in spite of its importance.
In particular, the experimental thermokinetic velocity of the self-propelled Janus particle
uJ (Jiang et al. 2010) does not proportional to ∇T globally in the sense that the line
of the dependence (uJ vs. ∇T ) does not go through zero point. Thus, the thermokinetic
phenomena in the vicinity of a polarizable material should be explored.

The electrokinetic phenomena in the vicinity of a polarizable material such as a
metal particle and an electrode have just recently been recognized (Ramos et al. 1999,
2003; Bazant & Squires 2004; Bazant et al. 2009) and the new knowledge forces us to
reconsider many fundamental issues on surface science in electrolyte with the expectation
for the tremendous microfluidic applications (Squires 2009; Sugioka 2015b), although
the study of electrokinetic phenomena often considered to be matured. Namely, an
electrokinetic vortex flow due to the interaction between a charge in an electric double
layer and a tangential electric fields near the surface of planar electrodes has first
recognized as ac electroosmosis (ACEO) in 1999 (Ramos et al. 1999). Promptly, the
phenomena are recognized as more general phenomena near a polarizable material and
termed as induced-charge electroosmosis (ICEO) in 2004 (Bazant & Squires 2004).
Here, ICEO includes ACEO and it results from the general interaction between the
electric field and charges in the electric double layer formed by the polarizing effect. In
particular, ICEO is typically observed as a quadrupolar vortex flow around the conductive
cylinder in electrolyte subject to an external electric field and it is characterized by
the flow velocity proportional to the square of the applied electric field; i.e., ICEO
is a nonlinear electrokinetic phenomenon. Various microfluidic applications such as
pumps, valves, mixers, self-propelled Janus particle (the particle containing metallic
and insulative surfaces), etc. (Bazant & Squires 2004; Sugioka 2010, 2015a) have been
proposed because of its large flow velocity (∼ 1 mm/s) at small voltages (∼ 1 V) and
examined experimentally (Urbanski et al. 2006; Gangwal et al. 2008; Pascall & Squires
2010) in this decade; and they have attracted much attention as the promising leading-
edge technologies in microfluidics. However, even now, the characteristics of ICEO have
not been clarified completely and the challenging study trying to establish a design
base for ICEO devices has been continued extensively (Bazant et al. 2009; Squires 2009;
Sugioka 2015b, 2016). In particular, ICEO under the existence of a temperature gradient
has not been discussed well except our previous study (Sugioka 2014b), although a large
temperature gradient often exists in an microfluidic systems because of the heat flow
from an electric integrated circuit of driver or the use of heating devices in a channel.
Thus, the study on ICEO under the large temperature gradient is important.

In the previous study (Sugioka 2014b), we proposed a novel mechanism to produce
nonlinear thermokinetic phenomena around a metal cylinder under a large temperature
gradient on the basis of analytical discussion. The most characteristic aspect of the
nonlinear thermokinetic phenomena is the generation of quadrupolar vortex flows, which
flow velocity is proportional to the square of the temperature gradient [i.e., |u| ∝
(∇T )2], and the Janus particle using this phenomenon can move to the both hotter
and colder regions in a temperature gradient by changing the direction of its dielectric
end (Sugioka 2014b). However, since the nonlinear thermokinetic phenomena are very
complex phenomena related to the fluidic Seebeck effect and ICEO, the details of the
nonlinear thermokinetic phenomenon (NTKP) has not been explored yet. In particular,
the nonsteady behavior of ions near metal under the large temperature gradient has not
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Figure 1. (Color online) Primitive mechanism and considered system of nonlinear themokinetic
phenomenon (NTKP) on our direct simulation. Here, (∇T )a (=1 K/µm) is an externally applied
temperature gradient, a = 0.1W is a radius of a metal cylinder, and W (= 50 µm) is the distance
between the hot and cold boundaries.

been explored yet, although the pioneering study on the linear thermokinetic phenomena
on metal exists (Giddings et al. 1995). On the other hand, by several groups (Gregersen
et al. 2009; Davidson et al. 2014; Sugioka 2014a, 2016), direct calculation methods that
calculate ICEO flows directly based on the governing equations without using a thin
double layer approximation are developed, although the direct calculation method that
can calculate both the fluidic Seebeck effect and ICEO has not been reported yet to the
best of my knowledge.

Therefore, in this paper, we focus on the nonsteady direct simulation around a metal
cylinder under the large temperature gradient and fundamentally clarify the nonlinear
thermokinetic phenomena due to the thermoelectric effect and ICEO. In particular, by
using the 2D nonsteady direct simulation technique that considers the modified Nernst–
Planck (NP) equation that comprises thermophoretic diffusion term with the Stokes and
Poisson equations, we will show that the quadrupolar vortex flows due to the nonlinear
thermokinetic phenomena are naturally generated and become the steady state.

This paper is presented in five sections. In Sec. II, we describe the theories for a
geometry model, a primitive mechanism, a numerical method, the dimensionless formu-
lations, the considered modes, and the simple analytical model. Based on these theories,
the results for the basic nonsteady analysis for various modes are presented in Sec. III.
Following a discussion in Sec. IV, our conclusions are summarized in Sec. V.
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2. Theory

2.1. Geometry model

In Fig. 1, we consider a system having a metal cylinder of radius a = 0.1W at
the center position (x, y) = (X/W,Y/W ) = (0.5, 0.75) in an electrolyte (typically
water) between hot and cold parallel plates, which distance and length are W (= 50
µm) and L (= 1.5W ), respectively. Since the thermal conductivity of a metal λm is
usually much larger than that of the surrounding electrolyte λe, we can assume that
λm = ∞. Furthermore, since the thermal diffusivity (of water) is also much larger than
the molecular diffusivity, the temperature distribution becomes a steady state much
faster than the ion distribution. Thus, a temperature around the metal cylinder can be
approximated analytically (Sugioka 2014b) as

T ≃ Ta + (1− a2

r2
)(∇T )0r cos θ, (2.1)

on the basis of the solution of the steady heat diffusion equation ∇2T = 0 for an
unbounded problem, where Ta (= 300 K) is the temperature of the cylinder, r is the
radial coordinate, and θ is the angular coordinate. Note that the effectiveness of Eq. (2.1)
is also examined through our simulations.

2.2. Primitive mechanism

At the temperature of Eq. (2.1), the positive and negative ions (e.g., H+ and Cl−) move
in the direction of a colder region along to the heat flux, as shown in Fig. 1(a). However,
because of the difference of the thermal diffusivity of the ions, net negative (positive)
charge is generated in the colder (hotter) region of the metal cylinder. Thus, the counter
charges are induced on the surface of the metal cylinder and form an electric double
layer. Note that although the induced charge cancels the electric field in the diffused ion
region, the tangential electric field remains. Thus, quadrupolar vortex flows are generated
around the metal cylinder as shown in Fig. 1(b). Here, we neglects the convection flow
due to the difference of the density as a first step since it is usually suppressed in a
thermophoretic measurement.

2.3. Governing equations

We consider the Poisson equation, the extended Nernst-Planck (NP) equation including
the thermokinetic diffusion term with the advection flow term, the diffusion-advection
equation for the temperature field, and the Stokes equation as follows:

ε∇2Φ+ ρ = 0, (2.2)

∂C±

∂t
= −∇ · [−D±(∇C± ± ze

kT
C±∇Φ+

Q±

kT
C±

∇T

T
) + C±u], (2.3)

∂T

∂t
= −∇ · (−aT∇T + Tu), (2.4)

−∇P + µ∇2u− ρ∇Φ = 0, ∇ · u = 0, (2.5)

where ε = 80ε0 is the dielectric permittivity of the solvent (typically water), ε0 is the
vacuum permittivity, t is time, ud [= (ux, uy)] is the flow velocity, Φ is the potential, µ
(∼1 mPa·s) is the viscosity, k is the Boltzmann constant, P is the pressure, ze is the ion
charge, and ρ [= ze(C+ −C−)] is the charge density. Furthermore, C±, D±, and Q± are
the ion concentration, the ion diffusivity, and the ionic heat of transport, respectively, of
the positive and negative ions; aT (= λ/ρmc) = 148×10−9 m2/s for water) is the thermal
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Mode B.C. T T dependence
1 passing steady no
2 passing nonsteady no
3 passing nonsteady yes
4 blocking steady no
5 blocking nonsteady no
6 blocking nonsteady yes

Table 1. List of modes.

diffusivity, λ is the thermal conductivity, c is the specific heat, and ρm is the density of
electrolyte.

2.4. Dimensionless formulations

It is useful to consider dimensionless formulations corresponding to Eqs. (2.2)–(2.5) as
follows:

2ϵ2∇2
nϕ+ ρn = 0, (2.6)

∂c±
∂τ

= −∇n · f±, (2.7)

f± = −D̃±(∇nc± ± c±
∇nϕ

T̃
+ 2

α±

T̃
c±

∇nT̃

T̃
) + c±un, (2.8)

∂T̃

∂τ
= −∇n · (− aT

D0
∇nT̃ + T̃u), (2.9)

−∇np+ µ̃∇2
nun − F0ρn∇nϕ = 0, ∇n · un = 0, (2.10)

where un(= u/uc), ϕ(= Φ/Φc), c±(= C±/C0), ρn(= ρ/ρc = c+ − c−), τ(= t/T0),
p(= P/Pc), T̃ (= T/Ta), µ̃(= µ/µ0), D̃±(= D±/D0), and (x, y)[= (x/W, Y/W )] are
the nondimensional values of a flow velocity, potential, concentration, charge density,
time, pressure, temperature, viscosity, diffusivity, and position, respectively. Further,
∇n = ∇/W , ϵ = λD/W , f+ (f−) is a nondimensional flux of a positive (negative) ion,
λD(≡

√
εkTa/2z2e2C0) denotes the Debye length, T0(= W 2/D0) (typically, 2.5 s) is a

diffusion time, F0 = kTaC0T0/µ0 is a nondimensional number related to the strength
of a Coulomb force; Ta (300K), µ0 (1 mPa s), D0 (10−9 m2/s), uc = W/T0 (typically,
20 µm/s), Pc = µ0/T0, Φc = kTa/ze, and ρc = zeC0 are the reference values of the
temperature, viscosity, diffusivity, flow velocity, pressure, potential, and charge density,
respectively. Furthermore, we define α± as follows:

α± =
Q±

2kTa
. (2.11)

2.5. Considered modes (Modes 1 to 6)

2.5.1. Boundary conditions

We summarize considered modes in Table. I. We assume a passing boundary condition
at the edges for Modes 1 to 3, whereas we assume a blocking boundary condition for
Modes 4 to 6; i.e., at x = 0 and 1,

f± ̸= 0 (for passing problems), (2.12)

f± = 0 (for blocking problems). (2.13)
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Here, the ion passing condition means that ions at the colder edge (i.e., x = 0) can diffuse
to the hotter edge (i.e., x = 1) promptly through an external electrical circuit; i.e., we use
a kind of periodic boundary condition for ion transportation and we assume an artificial
flux (Sugioka 2014a) to expel the ion near the edges as

f± = − ¯̃D±
c
x=∆x/2
± − c

1−∆x/2
±

xm
i, (2.14)

where i is a unit vector in the direction of x, ∆xm is a x width of the upper and
lower cells next to the upper and lower edges in the FVM for the NP equation, and
¯̃D± [= (Dx=0

± +Dx=1
± )/2] is the average ion diffusivity at the edges. Physically, the ion

passing condition has various means as discussed in the Appendix C of Ref. (Sugioka
2014a); e.g., it is corresponding to an experiment using an idealized thermogalvanic cell,
in which the chemical reactions are assumed to occur at the edges. However, we here
use it just as the better approximation for the unbounded problem, since the chemical
reactions due to thermophoresis is very complex phenomena and it is beyond the scope
of this manuscript.

Further, the ion blocking condition means that ions next to the assumed wall at
the edges can not pass them and physically it is corresponding to a thermophoretic
experiment using a glass chamber or the open electrodes that does not go through Faraday
current. Note that we do not consider a zero-electric-field boundary condition that is often
used at a wall in a glass chamber (Chikina et al. 2012, 2015; Majee & Würger 2012),
since it is more artificial than our method in which ions just can not go through the
wall at the edges. In addition, we also assume the ion blocking condition on the metal
cylinder for all the modes; i.e., f± = 0 at r̃ = 0.1. Further, we assume that the flow
velocity is zero at the left and right walls, the upper and lower plates, and the surface of
the metal cylinder; i.e., un = 0 at x = 0 and 1, y = 0 and 1.5, and r̃ = 0.1. Furthermore,
for simplicity, we assume that Φ = 0 on the surface of the metal cylinder.

2.5.2. Calculation method of a temperature

We assume Eq. (2.1) for Modes 1 and 4, whereas we consider the nonsteady temper-
ature obtained by Eq. (2.9) under the condition that T̃ (x, y) = 1 at τ = 0 for Modes 2,
3, 5, and 6. In Eq. (2.9), aT /D0 (typically, 148 for water) is the nondimensional number
related to thermal and ion diffusivities; since aT /D0 ≫ 1, we can assume Eq. (2.1) if we
are not interested in the nonsteady effect. Note that the nondimensional form of Eq. (2.1)
is

T̃ ≃ 1 + (1− ã2

r̃2
)(∇nT̃ )0r̃ cos θ, (2.15)

where ã = a
W , r̃ = r

W , and (∇nT̃ )0 = (∇nT )0
W
Ta

[ typically, (1K/1µm) × (50µm/300K)

= 0.167]. Since the initial temperature distribution [T̃ (x, y) = 1 or Eq. (2.15)] may affect
the result of a flow velocity in a steady state, we examine the effect in this manuscript.

2.5.3. Temperature dependence of the parameters

The temperature around the metal cylinder is Ta and our concerned phenomena can
be generated in the electric double layer of the thickness of λD (1 µm, through this
manuscript); i.e., the temperature difference of a concerned region is just about 2 K.
Thus, the effects of the temperature dependence is assumed to be small. Nevertheless,
one may criticize that the variation of the coefficients of viscosity µ, electrophoretic and
thermophoretic mobility, and ion diffusivity can not be negligible. Thus, we examine the
effects in this manuscript. However, it is not good idea to consider the complex temper-
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ature dependence of all parameters from the beginning since we cannot recognize the
main effects of our system because of the complexity. Thus, we assume the temperature
dependence only for Modes 3 and 6.

Specifically, for a dilute HCl solution, we assume as follows:

µ̃ = ãµ exp(
b̃µ

T̃
), (2.16)

D̃± = ã± exp(
−b̃±

T̃
), (2.17)

where Eq. (2.16) is known as the Andrade equation (E. N. da C. Andrade 1952) and the
parameters are determined by the well-known data for water (JSME 2009) as ãµ = 1.369

and b̃µ = 6.475; Eq. (2.17) is known as the Arrhenius equation and the parameters are

determined by the data in Ref. (Li & Gregory 1974) as ã+ = 2358 and b̃+ = 5.500 for a
H+ ion, and ã− = 4169 and b̃− = 7.580 for a Cl− ion. Further, electroosmotic mobilities
for positive and negative ions are described by the Einstein relation as

κe,± =
D±

kT
, (2.18)

and it is already considered in Eq. (2.3). Thus, by considering Eq. (2.17), the temperature
dependence of κe,± are considered completely. Furthermore, thermoosmotic mobilities for
positive and negative ions are described as

κT,± = κe,±S± =
D±

kT

Q±

T
, (2.19)

and it is already considered in Eq. (2.3). Here, S± = Q±
T is the Eastman entropy for

positive and negative ions. Thus, by considering Eqs. (2.16) and (2.17), the temperature
dependence of κT,± are considered almost completely. Note that the Eastman’s heat
of transfer is often measured under the condition of temperature difference of 20 K
(by Paul Delahay 1963) and thus the temperature dependence of Q± is usually considered
to be neglected.

2.6. Numerical method using a multi-physics simulation technique

We use the finite volume method (FVM) for the NP part and the heat conduction
part to assure the ion conserving condition, whereas we use the finite element method
(FEM) for the parts of the Poisson and Stokes equations to assure the accuracy of
the calculations; i.e., our calculations are performed in the framework of the FVM-FEM
coupling method described in (Sugioka 2014a). Specifically, we first generate unstructured
meshes around the metal cylinder and structured meshes in the far positions from the
cylinder; then, for the completely nonsteady calculations (Modes 2, 3, 5, and 6 in Table
1), we solve the heat conduction equation of Eq. (2.9) by the FVM, the extended NP
equation of Eq. (2.7) by the FVM, the Poisson equation of Eq. (2.6) by the FEM, and
the Stokes equation of Eq. (2.10) by the FEM, iteratively. Further, for the incompletely
nonsteady calculations (Modes 1 and 4 in Table 1), we use the solution of Eq. (2.15)
without solving Eq. (2.9). Note that the most of the algorism of our calculations is
the same as that described in Appendix A in Ref. (Sugioka 2014a) except it considers
thermophoretic motions of ions. Thus, here, we briefly describe the main different part;
i.e., since the difference of D̃+ and D̃− is intrinsic for the nonequilibrium thermokinetic
study, we consider the discretized matrix formulation of the PN part [Eqs. (2.7) and
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(2.8)] for the FVM as follows:

(1 +

j=4∑
j

D̃±,ijG
A
ij)c

i,n+1
± −

j=4∑
j

D̃±,ijG
A
ijc

j,n
± = ci,n± ∓

j=4∑
j

D̃±,ij

T̃ ij,n
GA

ijc
n+1
±,ijδϕ

ij,n

−
j=4∑
j

GB
ijc

n
±,iju

n
ij · nij −

j=4∑
j

2D̃±,ijα±

(T̃ ij,n)2
GA

ijc
n
±,ijδT̃

ij,n

(2.20)

where δϕij,n = ϕi,n −ϕj,n, δT̃ ij,n = T̃ i,n − T̃ j,n, T̃ ij,n = T̃ i,n+T̃ j,n

2 , GA
ij =

∆tSij

Vidij
(jij ·nij),

and GB
ij =

∆tSij

Vi
. Here, Vi is a volume of the i-th finite element at xi, Sij is the boundary

area, and nij is the outward unit vector normal to Sij . Further, u
n
ij is the velocity between

i’th and j’th cells, cn±,ij = (ci,n± +cj,n± )/2, dij is a distance between the i’th and j’th center

points, ϕi,n+1(= 1
4

∑4
β=1 ϕβ) is a center value of ϕ at i’th cell, jij = (xj −xi)/|xj −xi|,

and the suffixes n and n+ 1 show the value at t = tn an tn+1, respectively.

2.7. Simple analytical theory

We consider a simple analytical theory based on Ref. (Sugioka 2014b) as follows:

umax = funtkp, (2.21)

untkp =
εa

µ
E2

ntkp, (2.22)

Entkp = Se(∇T )0 (2.23)

Se =
D+α+ −D−α−

D+ +D−

2k

eZ
(2.24)

where Se is a Seebeck coefficient (e.g., Se = 374 µV/K for a HCl solution); untkp

and Entkp are the theoretical maximum flow velocity and electric field predicted for
the unbounded problem (Sugioka 2014b) of the nonlinear thermokinetic phenomena;
e.g., untkp = 0.495 µm/s and Entkp = 374 V/m at (∇T )0 = 1 K/µm; f is the
relative magnification factor for the maximum flow velocity and it is determined by the
numerical value of umax at (∇T )0 = 1 K/µm. Note that although analytical expression

for the NTKP velocity is described as uslip
ntkp = 2untkp (Sugioka 2014b), untkp provides

the maximum peak value observed in numerical calculations because of the boundary
condition that u = 0.

3. Results

3.1. NTKP vortex flows in Mode 1

Figure 2 shows the NTKP vortex flows in Mode 1. Here, (∇T )0 = 1 K/µm, f ′ is the
relative magnification factor for the flow vector, T0 = W 2/D0 (= 2.5 s) is a diffusion
time, a/W = 0.1, W = 50 µm, D0 = 10−9 m2/s, uc = W/T0 (=20 µm/s) is the reference
flow velocity, D− = 2.03D0, α+ = 2.666, α− = 0.106, D+ = 9.31D0, Q− = 0.53 kJ/mol,
Q+ = 13.3 kJ/mol, C0 = 10−7 mol/l, λD = 1 µm, and F0 = 623.6. Note that the same
parameters are used through this manuscript except (∇T )0. At t/T0 = 2 × 10−5 [in
Fig. 2(a)], we initially observe a anomalous vortex flow (AVF) around a metal cylinder;
then, at t/T0 = 1 × 10−4 [in Fig. 2(b)], we observe a standard vortex flow (SVF) at
x > 0.3 and the AVF at x < 0.3, where the flow direction of the AVF is opposite to that
of the SVF (at a steady state). Gradually, the AVF fading out until t/T0 ≃ 2× 10−4; the
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(a) AVF at t/T0 = 2× 10−5 (f ′ = 200)
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(b) AVF and SVF at t/T0 = 1×10−4 (f ′ =
30)
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Figure 2. NTKP vortex flows in Mode 1.

SVF is growing until t/T0 ≃ 1.5×10−3 [in Fig. 2(c)]; then, the SVF is gradually decaying
and it reaches a quasi-steady state at t/T0 ≃ 1× 10−2 [in Fig. 2(d)]. Thus, our previous
prediction (Sugioka 2014b) for the NTKP is correct as a whole. Moreover, Fig. 2(e) shows
the dependence of umax on t, where umax is the maximum value of |u|. In Fig. 2(e), umax

has the peak value (umax,peak ≃ 0.007uc = 0.14 µm/s) at t/T0 = 1.5×10−3. Further, the
flow velocity of the SVF in a steady state is almost symmetrical to the plane of x = 0.5,
as shown in Fig. 2(f).
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Figure 3. NTKP vortex flow in Mode 3.

3.2. NTKP vortex flows in Mode 3

Figure 3 shows the NTKP vortex flows in Mode 3. At t/T0 = 2 × 10−5 [in Fig. 3(a)],
different from the result of Mode 1, we initially observe a moderately-strong SVF around
a metal cylinder; then, the velocity of the SVF is growing rapidly until t/T0 < 2× 10−4

[in Fig. 3(b)]; then, it is decaying with a time constant τdecay,mode3 ≃ 0.002 and reaches a
quasi-steady state at t/T0 = 0.002 [in Fig. 3(c)]. Further, Fig. 3(d) shows the dependence
of umax on t. In Fig. 3(d), umax has the peak values (umax,peak ≃ 0.019uc = 0.38 µm/s)
at t/T0 = 2.0 × 10−4. Further, from Fig. 3(e), we find that the velocity of the SVF in
a peak state is approximately symmetrical to the plane of x = 0.5 similar to Mode 1.
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In addition, since umax of Mode 3 at x > 0.002 is almost the same as that of Mode 1,
Modes 1 and 3 show a similar characteristic as a whole except the transient period of
the temperature at t/T0 < 10−4. Figure 3(f) shows the dependence of temperature on x
at y = 0.75 at t/T0 = 2.0× 10−5, 1.0× 10−4, and 4.0× 10−4. In Fig. 3(f), the numerical
results of the temperature distribution at t/T0 ⩾ 0.4 × 10−3 is in good agreement with
the analytical results. However, the temperature gradient at t/T0 = 2.0 × 10−5 is very
steep; thus, it leads a large thermophoretic velocity at the edges.

3.3. NTKP vortex flows in Mode 6

Figure 4 shows the NTKP vortex flows in Mode 4. Surprisingly, different from the
result in Mode 3, we just observe a very weak SVF at t/T0 = 2 × 10−5 in Fig. 4(a);
then, observe a 8-pole vortex flow at t/T0 = 2 × 10−4 and 2 × 10−3 in Figs. 4(b) and
4(c). Figure 4(d) shows the dependence of umax on t. In Fig. 4(d), the response time
of Mode 6 is ∼ 0.001T0 (i.e., τMode6 ≃ 0.001T0) and umax at x < 0.5 is slightly larger
than that at x > 0.5, although ux is almost symmetrical to the plain of x = 0.5 in
Fig. 4(e). Further, in Fig. 4(e), we observe the complex change of the flow direction
corresponding to the 8-pole vortex flow. Figure 4(f) shows the dependence of ϕ on x for
Modes 3 and 6. From Fig. 4(f), we can recognize that the blocking boundary condition
forms much larger potential difference than the passing boundary condition. Here, owing
to the blocking boundary condition, the electric field in the x direction due to the Seebeck
effect not only suppresses the nonlinear thermokinetic phenomena but also induces the
different-type NTKP vortex, which will be discussed later.

3.4. NTKP characteristics

Figures. 5(a) and 5(b) show the dependence of umax on (∇T )0 for the passing and
blocking boundary conditions, respectively. In Fig. 5(a), solid lines denote the analytical
results described by Eq. (2.21) with f = 0.19; i.e., we find that umax ∝ (∇T )20 for the
passing boundary condition. Further, since the results of a steady state for Modes 1 and
2 agree with each other, we can recognize that the difference of the initial stage does
not affect the steady state under the passing boundary condition. In Fig. 5(b), solid and
broken lines denote the theoretical curves described by Eq. (2.21) with f = 0.12 and 0.18
for Modes 4 and 5, respectively in the region x > 0.5; i.e., we also find that umax ∝ (∇T )20
under the blocking boundary condition. Further, from Figs. 5(a) and 5(b), we find that
the difference of the initial behavior affects the flow velocities in Modes 4 and 5.
Figure 5(c) shows the NTKP at the peak and the broken line denotes the analytical

result described by Eq. (2.21) with f = 0.76. Here, since we theoretically expect f = 1
for an unbounded problem (Sugioka 2014b), the values of f (= 0.76) are acceptable as
the first attempt. Figure 5(d) shows the NTKP of Mode 3 and the solid and broken lines
denote the analytical results described by Eq. (2.21) with f = 0.096 and 0.62, respectively.
i.e., we also find that approximately umax ∝ (∇T )20 for Mode 3. However, in detail, the
numerical results of Mode 3 are slightly different from the relation [umax ∝ (∇T )20]
because of the consideration of the temperature dependences of the parameters.

3.5. Two kinds of NTKP relevant to the passing and blocking boundary conditions

Figures 6(a) and 6(b) show the dependence of ρ on x at y = 0.75 for the passing and
blocking boundary conditions, respectively. From Fig. 6, we find that the sign of the
charge around the metal cylinder for the blocking boundary condition is the opposite
to that for the passing boundary condition. In other words, Fig. 6 clearly shows that
there exist two kinds of NTKP corresponding to the passing and blocking boundary
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Figure 4. NTKP vortex flow in Mode 6.

conditions; i.e., Seebeck effect (SE) type NTKP and image effect (IE) type NTKP. Here,
the image (charge) effect is a kind of induced charge phenomena of metal and IE-NTKP
is approximately explained by the primitive model in Fig. 1. Further, SE-NTKP is the
NTKP that is generated by the electric field in the x direction due to the Seebeck effect
(ESeebeck); thus, because of the polarization of the metal cylinder, the sign of the net
ion charge at x ≃ 0.4 and 0.6 becomes positive and negative, as shown in Fig. 6(b). Note
that in IE-NTKP, the charge on the metal is induced through the image effect by the
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Figure 6. Dependence of ρn on x at y = 0.75 at t/T0 = 0.01. (a) and (b) show the different
origin of the NTKP due to the boundary conditions.

existence of the charge around the metal cylinder, whereas it is induced by the electric
field due to the charge near the wall in SE-NTKP.

Figure 7 shows the outside and inside electric fields in Mode 3 and 6. In Figs. 7(b) and
7(d), the direction of the inside electric field in Mode 3 (i.e., IE-NTKP) is opposite to
that in Mode 6 (i.e., SE-NTKP). On the one hand, in IE-NTKP (Mode 3), the charge
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Figure 7. Outside and inside electric fields in Modes 3 and 6.

around the metal cylinder dominates the phenomena. Thus, the electric field in |r| > 1.5a
is much smaller than that in |r| < 1.5a in Figs. 7(a) and 7(b). Further, by considering a
positive and negative charge at x ≃ 0.6 and 0.4, we can understand that the direction of
the electric fields is reasonable; e.g., the circular electric fields from x ≃ 0.6 to x ≃ 0.4 is
explained in Figs. 7(a) and 7(b). On the other hand, in SE-NTKP (Mode 6), the charge
near the wall dominates the phenomena. Thus, the electric field in |r| > 1.5a is similar
to that in |r| < 1.5a in Figs. 7(c) and 7(d). Further, the direction of the outside and
inside electric are simply explained by considering the existence of positive and negative
charges at x ≃ 0 and 1.

3.6. Memory and nonsteady effects

Figure 8 shows the time dependence of umax. In Fig. 8(a), we find a large peak
of umax,peak ≃ 0.02 due to the nonsteady effect of Mode 2. Further, we find that
the nonsteady temperature effect disappears approximately at t/T0 > 0.002 and umax

becomes almost the same between Modes 1 and 2. Further, because of the effect of the
temperature dependence of µ and D±, u

max,peak in Mode 3 becomes 11 to 17% smaller
than that in Mode 2, as shown in Fig. 8(b), although the time dependent behaviors are
almost the same qualitatively. Further, in Fig. 8(c), we find the significant memory effect
between Modes 4 and 5; i.e., the difference of umax during the transient state affects the
flow velocity of the steady state under the blocking boundary condition [in Fig. 8(c)],
whereas the difference of the transient state does not affect the flow velocity of the steady
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Figure 8. Time dependence of umax (memory and nonsteady effects).

state under the passing ion condition [in Fig. 8(a)]. In addition, in Fig. 8(d), the time
dependent behaviors are almost the same between Modes 5 and 6; i.e., the effect using
the temperature dependence of the parameter is rather small for the blocking boundary
condition.

Figures 9(a) and 9(b) show the time evolution the maximum value of ρ (i.e., ρmax)
at x > 0.5. We find that the memory effect on ρmax exists for the blocking boundary
condition, whereas it does not exit for the passing boundary condition. Further, Figs. 9(c)
and 9(d) show the dependence of ρ on x at y = 0.6 at t/T0 = 0.01. In Fig. 9(d), we find
that a significant difference of ρ exists between Modes 4 and 5, whereas the difference of
ρ is rather small between Modes 1 and 2 in Fig. 9(c). Note that the dependence of ρ on
x at y = 0.75 (i.e., at the mid position) for Mode 5 is the same as that for mode 4 at
t/T = 0.01, as shown in Fig. 6(b); thus, we consider that the hysteresis of ρ [in Figs. 9(b)
and 9(d)] causes the memory effect of Modes 4 to 6.

3.7. Time evolution of the ion distributions in Modes 3 and 6

Figures 10 shows the dependence of C+, C−, ρ, and ϕ on x at y = 0.75 at t/T0 = 0.0002,
0.002, and 0.01 in Mode 3. Since the thermal mobility factor of H+ (2α+D+ = 49.6D0)
is much larger than that of Cl− (2α−D− = 0.431D0) (Majee & Würger 2012; Agar et al.
1989), the positive ion (H+) moves from a hotter region to a colder region with a much
faster velocity than the negative ion (Cl−). Thus, in Figs. 10(a) and 10(b), C+ becomes
much larger than C− at x ≃ 0.6 whereas C− becomes much larger than C+ at x ≃ 0.4.
Consequently, in Fig. 10(c), we can observe a positive charge region at the hotter side of
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Figure 9. The time evolution of ρmax at x > 0.5 and the dependence of ρ on x at t/T0 = 0.01.

the metal cylinder, whereas we can observe a negative charge region at the colder side.
In detail, the time evolution of C− around the metal cylinder [in Fig. 10(b)] is complex
and it should be explained by the image charge effect of the positive ion (H+). Further,
we find that the arrival of the fast ion in the initial stage (at t/T0 = 0.0002) induces a
large transient charge density around metal through the image charge effect and a large
electric field in the −x direction, whereas the arrival of the slow ion in the final stage
(at t/T0 = 0.01) suppresses the charge and the electric field around the metal. This is
the reason why umax in Modes 2 and 3 is large in the initial stage and suppressed in the
final stage [in Fig. 8(b)]. Note that in Mode 3, the concentrations of ions at the edges
are almost the same as the bulk concentration [in Figs. 10(a) and 10(b)] and the charges
at edges are almost zero [in Fig. 10(c)].

Figures 11 shows the dependences of C+, C−, ρ, and ϕ on x at y = 0.75 at t/T0 =
0.0002, 0.002, and 0.01 in Mode 6. Since ions can not go through the edges in Mode
6, the concentration of ions at the colder (hotter) edge is larger (smaller) than the
bulk concentration [in Figs. 11(a) and 11(b)] and the charge at the colder (hotter) edge
becomes positive (negative) in Mode 6 [in Fig. 11(c)]. As a result, the potential difference
between the edges becomes large in Mode 6 [in Fig. 11(d)]. Thus, the large electric field
in the x direction is generated through the Seebeck effect and it drives ICEO phenomena
around the metal.
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Figure 10. Time evolution of the ion distributions in Mode 3 (IE-NTKP).

4. Discussion

4.1. The gradient of ion concentration for the blocking boundary condition at the wall

If we can neglect the effect of the charge of ions, we can estimate the gradient of ion
concentrations due to thermokinetic phenomena for the blocking boundary condition by
using Eqs. (2.8) and (2.13) as follows:

∇nc+ = −2
α+

T̃
c+

∇nT̃

T̃
≃ −2α+(∇nT̃ )0 (4.1)

∇nc− = −2
α−

T̃
c−

∇nT̃

T̃
≃ −2α−(∇nT̃ )0 (4.2)

where α+ ≃ 2.7 (for H+), α− ≃ 0.1 (for Cl−), ∇nT̃ ≃ (∇nT̃ )0 [=(1K/1µm) ×
(50µm/300K) = 0.167], T̃ ≃ 1, and c± ≃ 1. That is, ∇nc+ ≫ ∇nc− in the first stage and
the tendency to become ∇nc+ ≃ −2× 2.7× 0.167 ≃ −0.9 and ∇nc− − 2× 0.1× 0.167 ≃
−0.03 is a basic driving force of the phenomena. However, since the difference of ∇nc±
produces a net space charge, we need to consider the effect of electric field on the ion
distributions. Namely, by using the numerical result (∇nϕ)c ≃ −0.6 in Fig. 11(d), we
can estimate as follows:

∇nc+ = −2
α+

T̃
c+

∇nT̃

T̃
− c±

∇nϕ

T̃
≃ −2α+(∇nT̃ )0 − (∇nϕ)c (4.3)

Since the numerical value of ∇nc+ is approximately −0.35(≃ −0.07/0.2) in Fig. 11(a),
the estimation (∇nc+ ≃ −2× 2.7× 0.167 + 0.6 ≃ −0.3) of Eq. (4.3) is reasonable. Note
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Figure 11. Time evolution of the ion distributions in Mode 6 (SE-NTKP).

that the generation of the electric field due to the thermophoresis also affects ∇nc− and
it increases the gradient of c−. Thus, ∇nc− becomes the value similar to ∇nc+ in the
bulk region and the existence of charge is limited in the wall region which thickness
is approximately λD, as shown in Figs. 11(a) to 11(c). Usually, this process is simply
explained by the Seebeck effect described by Eq. (2.24), which is derived from Eqs. (2.8)
under the zero current condition and the assumption c+ ≃ c− in the bulk region. Thus,
∇nϕ can be estimated by Eq. (2.24). For instance, since Se = 374 µV/K for a HCl
solution, the potential difference∆ϕ = −374×50 ≃ −18.7 mV (−0.72Φc) forW = 50 µm;
thus, we obtain ∇nϕ ≃ −0.72 and it approximately agrees with the result of Fig. 11(d)
(i.e., ∇nϕ ≃ −0.6 and ∆ϕ ≃ 0.6 ), where Φc = kTa/ze = 25.9 mV.

4.2. The influence of the electrolyte concentration near the wall

Since λD ≡
√
εkTa/2z2e2C0, λD decreases as C0 increases. As discussed in Sec. 4.1, for

the blocking boundary condition, c± (and ∇nc±) becomes the same value except the wall
region of thickness λD because of the interaction between the positive and negative ions
with the screening effect of the electric field. Moreover, in our understanding, ∇nc+ and
∇nc− near the wall region are approximated by the maximum gradient of c+ of Eq. (4.1)
and zero, respectively; i.e., ∇nc

wall
+ ≃ −0.9 and ∇nc

wall
− ≃ 0. Thus, we estimate the

maximum charge density near the wall as

ρwall/ρc ≃ |∇nc
wall
+ |λD

W
≃ |2α+(∇nT̃ )0|

λD

W
(4.4)
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where |2α+(∇nT̃ )0| ≃ 0.9, λD = 1 µm, and W = 50 µm; i.e., ρwall/ρc ≃ 0.02. Since the
numerical result of ρwall/ρc at x = 0 for the steady state in Fig. 11(c) is also ≃ 0.02,
our simple argument of Eq. (4.4) explains the thermokinetic phenomena near the wall.
to some extent.

Further, the charge per unit area near the wall is written as σwall = ρwallλD. Thus,
the electric field produced by the charge near the wall in SE-NTKP is described as

Ese(1) ≃
ρwallλD

ε
≃ 2α+(∇nT̃ )0

λ2
D

Wε
ρc (4.5)

Namely, for the current condition, we obtain Ese(1) = 245.7 V/m and find that the
potential difference across the chamber is ∆Φ = Ese(1)W = 12.3 mV (∼ 0.5Φc). Since it
approximately agrees with the numerical result of ∆Φ ≃ 0.6Φc in Fig. 11(d), Eq. (4.5)
is reasonable. Consequently, according to our argument, we can understand that Ese(1)

and σwall does not change even if C0 changes, although ρwall is proportional to
√
C0.

4.3. The gradient of ion concentration around the metal cylinder in IE-NTKP

From Eq. (2.1), we obtain

∂T

∂r
≃ (1 +

a2

r2
)(∇T )0 cos θ. (4.6)

Thus, we can approximate that ∇nT̃ ≃ 2(∇nT̃ )0 = 0.334 at x = 0.4 and 0.6. Therefore,
by using a similar argument in Sec. 4.1, if we can neglect the charge of particles and
the image effect of the metal, we can estimate the gradient of ions around the metal as
follows:

∇nc
metal
+ ≃ −4α+(∇nT̃ )0 (4.7)

∇nc
metal
− ≃ −4α−(∇nT̃ )0 (4.8)

That is, the tendency to become ∇nc
metal
+ ≃ −1.8 and ∇nc

metal
− ≃ −0.06 is a basic

driving force of the phenomena around the metal cylinder. Different from the argument
of Sec. 4.1, we can neglect the second term of Eq. (4.3) because of the existence of the
image charge of the metal cylinder, as a first step. Further, since ∇nc+ ≃ −0.2/0.1 ≃ −2
at x ≃ 0.4 and 0.6 in Fig. 10(a), the estimation of Eq. (4.7) is reasonable. Further, similar
to the discussion in Sec. 4.1 and 4.2, c± (and ∇nc±) becomes the same value except
the surrounding region of the metal cylinder of thickness λD because of the interaction
between the positive and negative ions with the screening effect of the electric field.
However, because of the existence of the image charge of the metal cylinder, the maximum
charge density near the metal cylinder becomes two times of that near the unpolarizable
wall;

ρie.m(1)/ρc ≃ 8α+(∇nT̃ )0
λD

W
(4.9)

In fact, different from c− at x ≃ 0.6 in Fig. 11(b), c− at x ≃ 0.6 in Fig. 10(b) decreases
as the position approaches to the surface of the metal because of the image effect and
thus the charge increases rapidly near the metal. In addition, because of the polarization
effect of the metal due to the existence of the excess counter ions at the other side, the
charge density of Eq. (4.9) becomes two times again; i.e.,

ρie.m(2)/ρc ≃ 16α+(∇nT̃ )0
λD

W
. (4.10)
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Since ρie.m(2)/ρc ≃ 0.014, the numerical result of ρ/ρc ∼ 0.2 at x ≃ 0.6 in Fig. 10(c)
is approximately explained by our simple argument. Further, since ρie.m(2)λD represents
the charge per unit area at the hotter side of the metal, we can estimate the zeta potential
at x ≃ 0.6 in IE-NTKP as

ζ ′ie ≃
λ2
D

ε
ρie.m(2) ≃ 16α+(∇nT̃ )0

λ3
Dρc
εW

. (4.11)

Here, ζ ′ie corresponds to the peak value of ϕ (≃ 0.07) at x ≃ 0.6 in Fig. 10(d); thus,
ζ ′ie ≃ 2.0 mV ( 0.076Φc) in Eq. (4.11) explains it to some extent.

4.4. Theory on IE-NTKP

Based on the Smoluchowski formula, we can describe the IE-NTKP flow velocity as

uslip
ie =

εζ ′′ie
µ

Eie, (4.12)

where Eie denotes an apparent external electric field in IE-NTKP, which acts on the
charge in the electric double layer around the metal cylinder, and ζ ′′ie is a zeta potential
around the metal at the θ = 45◦ in IE-NTKP. Since ζ ∝ cos θ at around the metal
cylinder, we can approximate

ζ ′′ie ≃
ζ ′ie√
2
≃ 8

√
2α+(∇nT̃ )0

λ3
Dρc
εW

(4.13)

Further, the electric field in Fig. 7(a) shows that Eie in IE-NTKP should be described
as

Eie ≃ − 2ζ ′ie
π(a+ λD)

≃ −32α+(∇nT̃ )0
λ3
Dρc
εW

(4.14)

By substituting Eqs. (4.13) and (4.14) into Eq. (4.12), we obtain

uslip
ie ≃ −

√
2εζ ′2

π(a+ λD)µ
(4.15)

Thus, the numerically observable maximum velocity is provided as

uie ≃
1

2
uslip
ie ≃ −

ε[16α+(∇nT̃ )0
λ3
Dρc

εW ]2
√
2π(a+ λD)µ

(4.16)

In Eqs. (4.15) and (4.16), a negative value shows the flow in the −x direction near x ≃ 0.6.
From Eqs. (4.13), (4.14), and (4.16), we obtain that ζ ′′ie ≃ 0.054Φc ≃ 1.4 mV, Eie ≃ −209
V/m, and uie ≃ −0.051uc ≃ −0.10 µm/s, under the current conditions. Numerical
calculation shows that umax ≃ 0.19untkp ≃ 0.094 µm/s for IE-NTKP in Fig. 5(a). Thus,
Eq. (4.16) explains the flow velocity of IE-NTKP reasonably. Consequently, our new
theory on IE-NTKP is justified to some extent.

4.5. Theory on SE-NTKP

By the Smoluchowski formula, the SE-NTKP flow velocity is described as

uslip
se =

εζ ′′se
µ

Ese, (4.17)

where Ese denotes an apparent external electric field in SE-NTKP, which acts on the
charge in the electric double layer around the metal cylinder, and ζ ′′se is a zeta potential
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around the metal at the θ = 45◦ (x ≃ 0.576) in SE-NTKP. Further, SE-NTKP is mainly
driven by the charge near the wall and thus, on the basis of ICEO theory, the zeta
potential due to Ese(1) [provided by Eq. (4.5)] at the hotter side of the metal is described
as

ζ ′se.m(1) ≃ −2aEse(1). (4.18)

Furthermore, since σ = ε
λD

ζ ′se.m(1), the charge density due to Ese(1) is described as

ρse.m(1) ≃ −
2aEse(1)ε

λ2
D

. (4.19)

However, there exists an intrinsic charge density ρse.m(2) due to the thermophoretic force
at the hotter side of the metal in SE-NTKP. That is, similar to the discussion of Eqs. (4.6)
and (4.7), it is described as

ρse.m(2) ≃ 8α+(∇nT̃ )0ρc
λD

W
. (4.20)

Note that there is no counter ions at the other side in SE-NTKP. Thus, ρse.m(2) =
0.5ρie.m(2). Therefore, by considering the principle of superposition, we obtain a net
charge density at the hotter side of the metal in SE-NTKP as

ρse.m ≃ ρse.m(1) + ρse.m(2). (4.21)

Thus, the corresponding zeta potential is

ζ ′se ≃
λ2
Dρse.m
ε

. (4.22)

As discussed before, we can approximate

ζ ′′se ≃
ζ ′se√
2
≃ 2

√
2α+(∇nT̃ )0

λ2
Dρc
ε

(− a

W
+ 2

λD

W
). (4.23)

In addition, by using Eq. (4.20), the intrinsic zeta potential around the metal due to
ρse.m(2) is described as

ζ ′se(2) ≃
λ2
Dρse.m(2)

ε
. (4.24)

Thus, the intrinsic electric field Ese(2) due to ζ ′se.m(2) in SE-NTKP is described as

Ese(2) ≃ −
2ζ ′se(2)

π(a+ λD)
(=

1

2
Eie). (4.25)

Since the electric field outside the electric double layer around the metal at θ is described
as E = 2E0 sin θ using the external average electric field E0 in standard ICEO theory
(Squires & Bazant 2004; Sugioka 2011), we obtain

Ese ≃ 2(Ese(1) + Ese(2)) sin
π

4
= 2

√
2α+(∇nT̃ )0

λ2
Dρc
Wε

[1− 8λD

π(a+ λD)
]. (4.26)

Therefore, by substituting Eqs. (4.23) and (4.26) into Eq. (4.17), we obtain

uslip
se ≃ 4

ε

µ
[α+(∇nT̃ )0]

2(
λ2
Dρc
Wε

)2W (− a

W
+ 2

λD

W
)[1− 8λD

π(a+ λD)
]. (4.27)

Further, the observable maximum velocity is provided as

use ≃
1

2
uslip
se . (4.28)
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Figure 12. (Color online) Physical pictures on IE- and SE-NTKP.

Thus, from Eqs. (4.23), (4.26), and (4.28), we obtain ζ ′′se ≃ 0.040Φc = −1.0 mV, Ese ≃
200 V/m, and use ≃ −0.0037uc ≃ −0.074 µm/s. Numerical calculation shows that
umax = f4untkp ≃ 0.12untkp for Mode 4 and umax = f5untkp ≃ 0.18untkp for Mode
5 for SE-NTKP [in Fig. 5(b)]. That is, the average relative magnification factor f̄e5 =
(f4 + f5)/2 = 0.15. Since 0.15untkp ≃ 0.074 µm/s, Eq. (4.28) explains the flow velocity
of SE-NTKP reasonably. Consequently, our new theory on SE-NTKP is justified to some
extent.

4.6. Summary of physical pictures on IE- and SE-NTKP

Figure 12 shows physical pictures on IE- and SE-NTKP. Namely, on the one hand,
as shown in Fig. 12(a), IE-NTKP is driven by the excess positive ion that is pushed on
the hotter side of the metal by the thermophoretic force. Namely, by the existence of the
positive charge due to the excess charge on the hotter side of the metal, a negative charge
is induced at the inside of the metal in the hotter region due to the image effect, whereas
a positive charge is induced at the inside of the metal in the colder region because of the
electric neutral condition. Then, the positive charge at the inside of the metal attracts
negative ion on the colder side of the metal. Consequently, two kinds of electric double
layers are formed at the hotter and colder sides of the metal. Then, the electric field
(Eie) from the positive charge at the hotter side to the negative charge at the colder
side is generated and it produces a quadrupolar vortex flow similar to ICEO, as shown
in Fig. 12(a).

On the other hand, as shown in Fig. 12(b), SE-NTKP is driven by the excess positive
ion that is pushed on the colder wall by the thermophoretic force. Namely, by the
existence of the positive charge due to the excess charge on the colder wall, an electric
field (Ese(2)) in the hotter direction is generated and it induces positive and negative
charges at the inside of the metal in the hotter and colder regions. Then, similar to the
ordinary ICEO, the positive and negative ions attract counter ions and form two kinds
of electric double layers at the hotter and colder regions. However, different from the
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ordinary ICEO, the excess positive and negative ions that exist intrinsically near the
hotter and colder sides due to the thermophoretic force weakens the zeta potential due
to Ese(1) around the metal. Further, at the same time, the latent excess ions generate
an electric field (Ese(2) = 0.5Eie) and suppress the a tangential electric field outside of
the double layer to the level of Ese(1) −Ese(2). Furthermore, the intrinsic positive ion is
pushed out to the left and right sides in the hotter region, whereas the intrinsic negative
ion is pushed out to the left and right sides in the colder region, as partially shown in
Fig. 9(d). Consequently, a 8-pole vortex flow is generated for Modes 5 and 6, as shown in
Fig. 12(b). Note that we observe an ordinary quadrupolar vortex flow for Mode 4 because
of the difference of the early state and it results in the difference of the memory effect,
as will be discussed later.

4.7. AVF at the early stage

The weak AVF is generated at the early stage for Mode 1 as shown in Fig. 2(a),
whereas AVF is not generated for Mode 3 as shown in Fig. 3(a). This is because in Mode
1, positive and negative space charges are generated at x ∼ 0.3 and 0.7, respectively, by
the concentration polarization due to the charging current to the electric double layer
of the metal. Similarly, by the thermophoretic flow near the wall, excess negative and
positive space charges are generated at x ∼ 0.1 and 0.9, respectively and thus the electric
field in the −x direction is generated. Consequently, AVF is generated at the early stage.
Further, the motion of the excess positive ion that forms positive charge region at the
colder region is accelerated by the thermokinetic force, whereas the motion of the excess
negative ion that forms negative charge region at the hotter region is suppressed by the
thermokinetic force. Thus, AVF at the colder region is stronger than the hotter region.

However, in Mode 3, a strong electric field in the −x direction is generated as shown
in Fig. 10(d) because of the large temperature gradient near the wall at the early stage
[in Fig. 3(f)], whereas the space charge cannot be generated around the particle because
of the low temperature gradient near the particle at the early stage [in Fig. 3(f)]. Thus,
AVF is not generated in Mode 3. Further, similar to the discussion of Mode 3, AVF is not
generated in Mode 6 because of the lack of the space charge region around the particle
as shown in Fig. 4(a).

4.8. Response time and the strong peak in Modes 2 and 3

Similar to the charging time of the electric double layer, we can define the characteristic
time for the thermokinetic motion of the positive and negative ions as

t± =
λ2
D

2D±α±
.

That is, t+/T0 ≃ 0.8 × 10−5 and t+/T0 ≃ 1.0 × 10−4 for the HCl solution. Here, t+
corresponds to the peak time of umax for Modes 2 and 3 in Figs. 3(d) and 8(a) and it
is the time during which H+ ion moves the distance of λD. Namely, since Cl− almost
cannot move during t+, the strong electric field Ecp in the −x direction [in Fig. 10(d)]
occurs due to the concentration polarization owing to the strong flow of H+ near walls
resulting from a large temperature gradient in the early stage, whereas there is no space
charge around the metal. Thus, we consider that Ecp produces the strong vortex flow of
f = 0.76 based on the ordinary ICEO mechanism at t ≃ t+ ≃ 10−5T0 in Mode 2 and 3 in
Figs. 3(d) and 8(a) and it decays as Ecp becomes small because of the passing boundary
condition. Further, Cl− moves the distance of λD during t− and thus the relaxation
process is completed for Mode 1 at t ≃ t− ≃ 0.001T0.
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Figure 13. Mechanism of the memory effect.

4.9. Mechanism of the memory effect

In Fig. 8(c), umax of Mode 4 has a small peak at t/T0 = 10−4, whereas umax of
Mode 5 continues to glow and it reaches a quasi steady state at t/T0 ≃ t− ≃ 10−3. We
consider that this branching is the origin of the memory effect. Namely, similar to the
discussion in Secs. 4.7 and 4.8, the positive ion is much transported to the hotter side
of the metal cylinder in Mode 4 than Mode 5 at the early stage (t/T0 = 2 × 10−4), as
shown in Fig. 13(a). At the same time, the current causes negative charge regions around
(x, y) ≃ (0.7, 0.6) and (0.7, 0.9) owing to the concentration polarization in Mode 4, as
shown in Fig. 13(b). Thus, in Mode 4, the positive charge around (x, y) ≃ (0.7, 0.75)
moves to the x direction and the negative charge around (x, y) ≃ (0.7, 0.6) and (0.7, 0.9)
moves to the metal. Consequently, AVF is observed at t/T0 = 2 × 10−4 for Mode 4 in
Fig. 13(c). In this mode, the positive charge is transported to negative charge region,
whereas the negative charge is transport to the positive region. Thus, the maximum
positive charge at x > 0.5 decreases rapidly in Mode 4, as shown in Fig. 9(b) and AVF
changes to SVF as the sign of the charge density around (x, y) ≃ (0.6, 0.75) changes from
positive to negative value.

Further, in Mode 5, since the positive charge around (x, y) ≃ (0.7, 0.55) and (0.7, 0.95)
is much larger than the positive charge around (x, y) ≃ (0.7, 0.75), SVF of the 8 pole
type is observed at t/T0 = 2 × 10−4, as shown in Fig. 13(d). In this mode, the positive
charge is transported to the positive charge region. Thus, the maximum positive charge
ρmax at x > 0.5 does not decrease rapidly in Mode 5, as shown in Fig. 9(b). We consider
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that the difference of the preserved maximum positive charge density at x > 0.5 (the
preserved maximum negative charge density at x < 0.5) in the laminate vortex flow in
low Reynolds number is the main reason of the memory effect of NTKP. In addition, we
consider that once the excess positive charge is pressed on the metal in the early stage
[as shown in Fig. 13(a)], the effect is remained under the specific flows of Modes 4 and
5 because of the electrostatic attraction force between the image charge and the excess
ion even if the other induced charge is generated by the Seebeck effect; i.e., we consider
that the electrostatic attraction force due to the image effect is the other main reason of
the memory effect of NTKP.

4.10. Summary of the 1D thermokinetic theory near the wall

By the discussion of Sec. 4.1 and 4.2 with the Poisson equation we can write

ρ = ρwalle
− X

λD = −ε
d2Φ

dX2
(4.29)

near the wall for the 1D thermokinetic problem under the blocking boundary condition.
Thus, by integrating Eq. (4.29) from X = X to X = ∞ under the condition that
(−ε dΦ

dX )X=∞ = Se(∇T )0, we obtain an electric field near the wall as

E(X) (= − dΦ

dX
) = Se(∇T )0 −

ρwallλD

ε
e
− X

λD . (4.30)

Therefor, by using σ = ρwallλD = εSe(∇t)0, we obtain

E(0) = Se(∇T )0 −
ρwallλD

ε
= 0. (4.31)

That is, we can understand that the ion blocking boundary condition corresponds to the
zero electric field condition, which is often used in this field; e.g., please see Refs. (Majee
& Würger 2012; Chikina et al. 2012, 2015). In fact, we find that ∂ϕ

∂x = 0 at x = 0 and 1
at t/T0 = 0.004 in Fig. 11(d).

Further, by the discussion of Sec. 4.1 and 4.2, we can write

C+ ≃ C+0e
− X

la + C0, (4.32)

C− ≃ C+ − ρ

ez
≃ C+ − ρ0

ez
e
− X

λD , (4.33)

dC+

dX
≃ −C+0

la
e−

X
la ≃ −2α+(∇T )0C0, (4.34)

where la is an apparent thermal characteristic length and C+0 = C+ − C0 at X = 0.
Although we obtain

la ≃ C+0

2α+(∇T )0
, (4.35)

la is not universal value. Instead, it is defined as the distance, at which ∇C+ = ∇C− = 0
and thus E(X) = const. Namely, since e−4 ≃ 0.02, we can estimate

la ∼ 4λD. (4.36)

In other words, although the universal characteristic length of the system is λD, the
apparent characteristic length exists. In fact, (C+ − C0)/C0 decays to 1/e times of C+0

at X ∼ 0.08W = 4λD = 4 µm in Fig. 11(a).
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Figure 14. (Color online) NTKP for a dielectric particle. (a) Dielectric-passing type NTKP
(DP-NTKP). (b) Dielectric-blocking type NTKP (DB-NTKP).

4.11. The effect of conductance of the particle on NTKP

Interestingly, even when the particle (or cylinder) is made of dielectric material, we
can predict that a similar kind of vortex flow is generated under the existence of the large
temperature gradient, as shown in Fig. 14. That is, dielectric-passing type NTKP (DP-
NTKP) and dielectric-blocking type NTKP (DB-NTKP) exist for the dielectric particle.
That is, similar to IE-NTKP, the swifter positive ion is pressed on the hotter side of the
particle under the passing ion boundary condition and thus C+ increases at the hotter
side due to the thermophoretic force, whereas C+ decreases at the colder side of the
particle. Thus, a vortex flow similar to IE-NTKP is generated for DP-NTKP, as shown
in Fig. 14(a). However, different from the particle of the metal, we cannot expect the
focusing effect of temperature described by Eq. (4.6) and the image effect of the metal.
Thus, the zeta potential of the dielectric particle ζ ′′ie.d and the driving electric field of
the dielectric particle Eie.d become 1/8 times of those of metal; i.e., ζ ′′ie.d = 1

8ζ
′′
ie and the

driving electric field of the dielectric particle Eie.d = 1
8Eie. Therefore, the maximum flow

velocity udielectric
passing ≃ 1

64uie. That is, we obtain the observable maximum flow velocity
around the dielectric particle for the passing ion boundary condition as

udp ≃ εζ ′′ie.d
2µ

Eie.d, (4.37)

ζ ′′ie.d ≃
√
2α+(∇nT̃ )0

λ3
Dρc
εW

, (4.38)

Eie.d ≃ −
4α+(∇nT̃ )0

λ3
Dρc

εW

π(a+ λD)
. (4.39)

Further, similar to SE-NTKP, the swifter positive ion is pressed on the colder side of
the wall under the blocking ion boundary condition and thus C+ increases at the colder
wall due to the thermophoretic force, whereas C+ decreases at the hotter wall. However,
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Figure 15. (Color online) Relevant experiments on NTKP.

different from the particle of the metal, the excess swifter positive ion still exists on
the hotter side of the particle and the shortage of the swifter positive ion exists at the
colder side, since the image (or induced charge) effect of a dielectric particle is almost
negligible compare to metal. Thus, the positive and negative charges on the hotter and
colder sides of the particle move by the Seebeck electric field due to the charge near
the wall. Therefore, a quadrupolar but asymmetrical vortex flow is generated around
the dielectric particle for DB-NTKP under the blocking boundary condition, as shown
in Fig. 14(b). Further, similar to the discussion of Eqs. (4.11) and (4.5), we obtain the
observable maximum flow velocity around the dielectric particle for the blocking ion
boundary condition as

udb ≃
εζ ′′db
2µ

Edb, (4.40)

ζ ′′db ≃
√
2α+(∇nT̃ )0

λ3
Dρc
εW

, (4.41)

Edb ≃ 2Ese(1) sin
π

4
≃ 2

√
2α+(∇nT̃ )0

λ2
Dρc
εW

, (4.42)

where we assume that the effect of Eie.d is negligible for the dielectric particle.

Note that we consider that the charge of the hotter side is negligible in DP- and
DB-NTKP because of the continuous instant supply of the positive ion from the hotter
region and thus the vortex flow at the colder side is negligible, as expressed by the
broken lines in Fig. 13. Further, by using Eqs. (4.37) to (4.42), we obtain Edb ≃ 350
V/m, ζ ′′db ≃ 0.17 mV, and udb ≃ 0.021 µm/s in DB-NTKP; Edp ≃ 26 V/m, ζ ′′dp ≃ 0.17
mV, and udp ≃ 0.0016 µm/s in DP-NTKP. Thus, we might have a chance to observe
DB-NTKP, although DP-NTKP might be difficult to observe.
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4.12. Relevant experiments

Discussion of DB-NTKP provides a simple theory for the thermophoresis (or Soret
effect) of the electrically neutral dielectric particle, although a thermophoretic theory for
the charged colloids was provided by Würger (Würger 2008). Namely, the thermophoretic
velocity U of the dielectric particle is provided as

Uth.d ∼ udb ∼
ελD

2µ
[2α+(∇nT̃ )0]

2(
λ2
Dρc
εW

)2 ∼ ελD

2µ
[Se(∇T )0]

2 (4.43)

where
λ2
Dρc

εW = 1
2Φc ≃ 12.9 mV. The surprising aspect of Eq. (4.43) is that the Soret

effect due to the ion that is thermokinetically pressed on the particle is considered to
be a kind of NTKP since uth.d ∝ (∇T )20; thus, DT and ST are proportional to ∇T . In
addition, our theory predicts that the dielectric particle moves toward the colder region
when the thermokinetically swifter ion is a positive ion (e.g., H+) in the electrolyte as
shown in Fig. 14(b), whereas the dielectric particle moves toward the hotter region when
the thermokinetically swifter ion is a negative ion (e.g., OH−) in the electrolyte as shown
in Fig. 15(a); this prediction agrees with the experimental results of Vigolo et al. (Vigolo
et al. 2010). Further, our theory predicts that uth.d decreases as C0 increases through
λD and this prediction also agrees with the experimental results of Vigolo et al. (Vigolo
et al. 2010).

Further, we consider that the self-propulsion motion of the Janus particle irradiated by
the laser (Jiang et al. 2010) can be explained by NTKP theory, since the experimental
thermokinetic velocity of the self-propelled Janus particle uJ (Jiang et al. 2010) does
not proportional to ∇T globally in the sense that the line of the dependence (uJ vs.

∇T ) does not go through zero point, as mentioned before. Namely, since αH+

+ = 2.7 and

αOH−

− = 3.4 in water, the swifter negative ion is pressed on the colder dielectric surface,
whereas the slower positive ion remains on the colder dielectric surface, as illustrated
in Fig. 15(b). Then, negative induced charge is generated on the metal surface, whereas
positive induced charge is generated at the interface between metal and dielectric material
and it attracts negative ion toward the metal region. Consequently, the strong surface
flow toward the metal region causes on the dielectric surface. Thus, the Janus particle
moves toward the dielectric end in water. Further, by the similar mechanism, the Janus
particle moves toward the metal end in a Triton X-solution because of the decreasing
of pH due to the effect of the hydroxy group of the Triton X-solution. This explanation
agrees with the experimental results (Jiang et al. 2010) and thus our theory justified to
some extent.

4.13. 3D model and the general picture on NTKP

Through the discussion of the previous sections, we recognized that NTKP is a general
phenomenon that can be found in both metal and dielectric particle. That is, the original
driving force of NTKP is the excess ions pressed on the particle by the thermokinetic
force due to the thermal gradient and the flow around the particle is generated by the
interaction between the excess ion and the electric field that is made by the excess ion
itself and/or the Seebeck electric fields due to the blocking boundary condition on the wall
of the liquid chamber; thus, the flow velocity is intrinsically proportional to the square
of the temperature gradient. The difference between the metal NTKP and the dielectric
NTKP is the strength of the polarization of the particle resulting from the permittivity
ε and the strength of the local temperature gradient of the particle resulting from the
thermal conductivity λ. Namely, by the difference of ε and λ, the flow velocity of the
metal NTKP is approximately 8 times of that of the dielectric NTKP.
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Here, we consider a 3D model using Debye-Hükel approximation for the thick electric
double layer (i.e., λD ≫ a). That is, for the 3D dielectric particle, we can approximate
that (πa2εSe∇T )Einteract ≃ 6µUa for the blocking boundary condition, where q ≃
εSe∇T is a charge of the swifter excess ion on the hotter side, U is the velocity of
the particle, and Einteract is an electric field that interacts with the charge around the
particle;i.e., we obtain that

UλD≫a
dielectric ∼

εa

6µ
(Se∇T )Einteract. (4.44)

Further, by multiplying 3
2 factor to Eq. (4.44), we obtain U for the thin electric double

layer (i.e., λD ≪ a); i.e.,

UλD≪a
dielectric ∼

εa

4µ
(Se∇T )Einteract. (4.45)

Although U is generally depend on the difference of the velocities of the vortex flows on
the hotter and colder sides of the particle, umax is generally described as

umax
general ∼ fpfκ

εa

4µ
(Se∇T )Einteract, (4.46)

where fp is the figure of merit due to ε and λ and fκ is the factor due to κ = a/λD. Note
that fp ≃ 8 for the metal and fp ≃ 1 for the dielectric particle; fκ ≃ 1 at κ = ∞ and
fκ ≃ 2

3 at κ = 0; Einteract ∼ Se∇T .

4.14. The influence of the electrolyte concentration on IE- and SE-NTKP

From Eqs. (4.16) and (4.28), the maximum flow velocities of IE- and SE-NTKP depend
on the concentration since λD ∝ 1/

√
C0 and ρc = ezC0. In detail, uie ∝ 1/C0 and thus

uie → 0 at C0 → ∞ in IE-NTKP. Further, use increases as C0 increase in SE-NTKP. This
is because Ese increases as C0 increases, since Ese(2) ∝ 1/

√
C0 and Ese(1) is constant.

In addition, |ζ ′′se| increases as C0 increases, since ρse.m(2)
λ2
D

ε ∝ 1/
√
C0 and ρse.m(1)

λ2
D

ε is
constant. Thus, at C0 → ∞, we obtain

use → −εa

µ
[2α+(∇nT̃ )0]

2(
λ2
Dρc
εW

)2 (4.47)

and it is consistent with Eq. (4.46). Namely, as a whole, our new theories on IE-, SE-, DP-,
and DB-NTKP are consistent with each other and they explain various numerical results
under the various conditions reasonably, as discussed in the previous sections. Thus, our
new theories are useful. Nevertheless, we may need to develop more precise theory in
the future, since Eq. (4.46) suggest that uie = const. for various C0. In addition, we
may need to reconsider ′′Se′′ relating to NTKP in the future since Einteract may change
continuously from zero to Se defined by Eq. (2.24) for the passing boundary condition;
e.g., Einteract on a vertical plate between the hotter and colder electrodes is provably
small since there is no pressed excess ion on the wall, whereas Einteract on a horizontal
plate between the hotter and colder electrodes is provably near to Se of Eq. (2.24).

4.15. Convection flow

We neglect the convection flow for our calculation. This is because at least theoretically,
it is prevented when the hotter wall is placed at the higher place horizontally. Moreover,

Rayleigh number Ra ≡ gβ∆TW 3

νaT
≃ 2.29 × 10−14 ≪ 1, Marangoni number |Ma| ≡

∂σ
∂T ∆TW

µaT
≃ 0.42 × 10−3 ≪ 1, and Ra/|Ma| = g ∂ρ

∂T W 2

∂σ
∂T

≃ 5.5 × 10−11 ≪ 1, where σ is
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a surface tension, µ = 0.668 m2/s is a kinematic viscosity, β = − 1
ρ

∂ρ
∂T = 0.38 × 10−3

is a coefficient of thermal expansion, ∆T = 50 K, W = 50 µm, ∆σ = 8.26 mN/m,
µ = 0.653 mPa s, aT = 1.52 m2/s, and g = 9.8 m/s2. Thus, in our system, Marangoni
convection (due to the difference of the surface tension) and Rayleigh convection (due
to the difference of the density) are suppressed because of the viscous force. In fact,
the convection flow is usually suppressed in the experiment in this field (Bonetti et al.
2011; by Paul Delahay 1963). For example, Bonetti et al. (Bonetti et al. 2011) prevent
a convection flow and reported huge Seebeck coefficients in nonaqueous electrolytes by
using a Teflon hollow cylinder (15 mm high) sealed by 5 mm thick sapphire window
plates and setting the hotter sapphire plate (T = 28 to 75 ◦C) at the higher position
and the colder sapphire plate (T = 24 ◦C) at the lower position; i.e., experimentally a
convection flow can be suppressed significantly under the condition of the temperature
difference of 4 to 51 K over the gap distance of 15 mm. Thus, to neglect a convection
flow in our simulation is justified. Note that the vertically sandwiched configuration that
places the hotter plate at the higher position is useful to minimize a natural convection
flow since convection flow occurs by the upward motion of the lower density solution at
the lower position. Further, the sapphire plates of the large thermal conductivity were
used to establish a uniform heating of the sample cross section and a stable temperature
gradient.

4.16. The effect of the temperature dependence of D± and µ

In Fig. 5, the effect of the temperature dependence of D± and µ is rather small. This
is because Eq. (2.3) already includes the main temperature dependence of parameters
even if we assume that D± and µ are constant. Further, the NTKP characteristic is
mainly governed in the region of an electric double layer of the thickness λD (≃ 1 µm)
and the surface temperature of the metal cylinder is assumed to be constant; i.e., the
dominant temperature difference is considered as ∆T dominant,ntkp ≃ 2λD(∇T )0 = 2 K
and thus the effect of the temperature dependence of the parameters is small. Note that
the dominant temperature difference for the ordinary linear thermokinetic phenomenon
(LTKP) is usually considered as ∆T dominant,ltkp ≃ 2a(∇T )0 = 10 K since the thermal
conductivity of a nonpolarizable particle is assumed to be compatible with that of the
surrounding solution. Thus, the effect of the temperature dependence of the parameters
of the NTKP is much smaller than that of the ordinary thermokinetic phenomena.

4.17. Physical meaning of the comparative study of the various modes

By comparing the numerical results for the passing and blocking boundary conditions,
we first recognized the precise physical picture of NTKP. Thus, those boundary conditions
are needed for our analysis. Specifically only blocking boundary condition (or only zero
electric field condition) is usually considered at the wall in the field of thermokinetics,
although the researchers for a thermogalvanic cell might be interested in the passing
boundary condition. However, since SE-NTKP includes the effect of IE-NTKP, the
blocking boundary condition is required to clarify IE-NTKP. Further, the passing and
blocking boundary conditions are known as major boundary conditions to understand
the phenomena in the field of electrokinetics. Thus, even in the field of the thermokinetic
phenomena, we consider that the passing boundary condition will be important in the
future.

Further, by comparing the numerical results for the different initial conditions on
the temperature distribution, we find that the memory effect (or hysteresis effect of
the temperature) exists in SE-NTKP. Specifically, we consider Eq. (2.1) as the limit of
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aT → ∞ for Modes 1 and 4 and the suddenly applied hot and cold temperature at the
walls for Modes 2 and 5. Here, the suddenly applied hot and cold temperature is an
idealized condition as the limit of the instant heating and cooling of walls. However,
at least the instant heating can be realized to some extent experimentally by using a
thin film heater in the water and thus the situation similar to Modes 2 and 5 occurs
experimentally. Thus, the initial conditions for temperature are useful to understand
nonsteady phenomena, as a first step.

In addition, since we consider the temperature difference ∆T is 50 K across the
chamber, the variation of the coefficients of viscosity, mobility, and diffusion is not
negligible as the general (but too strict) argument. However, the consideration of the
temperature dependences of those parameter complicates the intrinsic phenomena in
NTKP. Thus, as a challenging study, we calculates both situations. Through this time-
consuming calculations, we first succeed in clarifying NTKP and answering to the general
criticism, although the effect of the temperature dependence is reasonably small as a
result, as discussed in Sec. 4.16.

5. Conclusion

In conclusion, we clarified the general physical picture on NTKP. That is, by performing
a nonsteady multi-physics direct simulation, we have shown that (1) the maximum flow
velocity around the metal is generally proportional to the square of the temperature
gradient. (2) NTKP is classified two types by their mechanism; i.e., IE-NTKP for the
passing boundary condition and SE-NTKP for the blocking boundary condition. (3)
The memory effect appears in SE-NTKP by the difference of the temperature gradient
at the early stage. (4) The strong peak of umax appears at the early stage for the
passing boundary condition. (5) The temperature dependence effect of the parameters
is rather small but detectable. Further, through the discussion, (6) new theories on IE-
NTKP and SE-NTKP are provided and they explain the numerical results in a self-
consistent manner. (7) AVF is explained by the concentration polarization due to the
rapid transportation of the swifter ion in the early stage. (8) Response time is explained
by the thermokinetic diffusion time; i.e., t± = λ2

D/2D±α±. (9) The memory effect in
SE-NTKP (in particular Mode 5) is qualitatively explained by the attractive force due
to the image effect and the preserving effect of the initial charge due to the 8 pole
vortex flow. (10) A simple 1D thermokinetic theory is provided and it shows that the
blocking boundary condition leads the zero electric field condition and λD is the only true
characteristic length for our system, although the apparent thermal characteristic length
(la ∼ 4λD) exists. (11) A theory on NTKP for the dielectric particle is provided and it
seems to explain the Soret effect of a neutral dielectric particle to some extent. (12) Self
propelled motion of the Janus particle irradiated by a laser is successfully explained as the
framework of NTKP theory. (13) A simple 3D model on NTKP is provided and it clarifies
NTKP for the general particle. We believe that our findings give a new insight on the
better understanding of the general thermokinetic phenomena ranging from a metallic
particle to a dielectric particle. In particular, the most surprising aspect of our findings is
that there is possibility that NTKP exists universally. Further, similar to ICEO, the 3D
NTKP effects of the 3D particles or structures (e.g., the transportation effect due to the
broken symmetry, the rotation effect of an ellipsoid particle, the connecting effect due
to the hydrodynamic interaction between particles, etc.) will be explored with promising
applications in the future.
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