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Abstract

The ion distribution of an open parallel electrode system is not known even though it is often used

to measure the electrical characteristics of an electrolyte. Thus, for an open electrode system, we

perform a non-steady direct multiphysics simulation based on the coupled Poisson–Nernst–Planck

and Stokes equations and find that inhomogeneous ion concentrations at edges cause vortex flows

and suppress the anomalous increase in the ion concentration near the electrodes. A surpris-

ing aspect of our findings is that the large vortex flows at the edges approximately maintain the

ion-conserving condition, and thus the ion distribution of an open electrode system can be approx-

imated by the solution of a closed electrode system that considers the ion-conserving condition

rather than the Gouy–Chapman solution, which neglects the ion-conserving condition. We believe

that our findings make a significant contribution to the understanding of surface science.
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Introduction: The Poisson–Nernst–Planck (PNP) equation is well known as a fundamen-

tal equation in the field of electrokinetic phenomena and it reveals various ion diffusion

phenomena in an electrolyte [1]. In our previous study, we found the exact solution of the

one-dimensional (1D) steady PNP equation by using the ion-conserving Poisson–Boltzmann

(ICPB) theory, which considers an ion-conserving condition with the Poisson–Boltzmann

(PB) equation [2]. However, in practice, a pair of finite-length parallel open electrodes in a

microfluidic channel filled with an electrolyte are often used to measure the electrical char-

acteristics of the electrolyte. For this open electrode configuration, some researchers may

consider that the widely used classical Gouy-Chapman (GC) solution [3, 4], which neglects

the ion-conserving condition, is more valid than the ICPB solution because ions can be

introduced through the open configuration. Thus, it is important to clarify the physics of

the ion diffusion phenomena of this finite electrode system. In particular, it is important to

understand the ion concentration near finite-length electrodes in an open configuration to

interpret the results of an electric measurement.

However, to the best of our knowledge, the phenomena of a finite electrode system have

not been yet in depth. Therefore, in this paper, we focus on the two-dimensional (2D) time

evolution simulation of the ion diffusion phenomena of a finite parallel electrode system in

the presence of a dc electric field as a first step. In particular, we will show that the inho-

mogeneous ion concentration at the edges of the electrodes causes large vortex flows around

the edges and that these flows suppress the anomalous increase in the ion concentration

according to the GC solution, and thus substantially maintain the ion-conserving condition.

Theory: Figure 1 shows the 2D model system used in our direct simulation [5, 6] and

the mechanism of the generation of edge vortex flows. As shown in Fig. 1, we analyze ion

diffusion phenomena between finite-length parallel blocking electrodes separated by distance

w (e.g., 20 µm) under a dc applied voltage V0 in a microfluidic channel (or chamber) filled

with an electrolyte. Here, L (= 2w) is the length of the channel (chamber) and L0 (= w)

is the length of each electrode. As shown in the figure, the large ion concentration near the

electrodes causes a flow from the inside region to the outside region, and thus macroscopic

vortex flows are generated at the edges. Furthermore, the method of the 2D direct simulation

is the same as that in our previous study [5, 6] and one can find detailed explanations in

Refs. [5, 6]; however, we briefly explain the method here for the convenience of readers.

Namely, by using the finite element method (FEM) with the finite volume method (FVM),
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FIG. 1. (Color online) 2D model system used in our direct simulation and mechanism of the

generation of large vortex flows at the edges. As shown in the figure, the large ion concentration

near the electrodes causes a flow from the inside region to the outside region and thus macroscopic

vortex flows are generated at the edges. Here, V0 is the applied voltage, w (e.g., 20 µm) is the

distance between the blocking electrodes, L (= 2w) is the length of the channel (chamber), and L0

(= w) is the length of each electrode.

we perform the 2D direct simulation using the Poisson equation (ε∇2Φ + ρe = 0), Nernst-

Planck equation (∂C±
∂t

+ ∇ · [−D(∇C± ± ze
kT
C±∇Φ) + C±u] = 0), and Stokes equation (

−∇p + µ∇2u − ρe∇Φ = 0, ∇ · u = 0). Here, ε (= 80ε0) is the dielectric permittivity,

ε0 is the vacuum permittivity, ρe is the charge density, C+ (C−) is the positive (negative)

ion concentration, Φ is the potential, t is time, D (∼ 10−9 m2/s) is the ion diffusivity, k is

the Boltzmann constant, T is the temperature, ze is the ion charge, u is the flow velocity,

p is pressure, and µ (∼1 mPa·s) is the viscosity. Note that we use the nondimensional

formulations in Ref. [2] in our calculations. Thus, all results are a function of κ = w/λD,

v0 = V0/Vc, τ = t/T0, and F0 =
ϵ

2µD
(kT
ez
)2κ2, where λD (e.g., 1 µm for water at pH = 7; see

Sec. VIII-F in Ref. [2] for detail) is the Debye screening length, Vc = kT/ez = 25 mV is the

reference voltage, and T0 = w2/D is the reference time. Also, the reference flow velocity

is denoted as Uc = D/w. Namely, the specific dimensional values are just an example, for
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(a) Steady strong edge flow: Flow field at

t/T0 = 0.499 with f = 0.2.
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(b) Steady edge vortex flow: Flow field at

t/T0 = 0.499 with f = 1.0.
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(d) Dependence of uy on x/w at y/w = 0.5

(t/T0 = 0.499).

FIG. 2. Steady edge vortex flow and related characteristics. Here, v0 = 7, κ = w/λD = 20, and

F0 = 99.77, for example, when w = 20 µm and D = 10−9 m2/s, Uc = D/w = 50 µm/s and

T0 = w2/D = 0.4 s.

example, when w = 20 µm, λD = 1 µm, and D = 10−9 m2/s, κ = 20, T0 = 0.4 s, and

Uc = 50 µm/s. Furthermore, as boundary conditions we consider that Φ = ±0.5 at x/w = 0

and 1, and u = 0 at the walls and the electrodes with the blocking condition; i.e., the ions

cannot pass through the electrode-electrolyte boundary.

Results: Figure 2 shows the steady edge vortex flow and related characteristics for v0 =

V0/Vc = 7, κ = W/λD = 20, and F0 = 99.77. As shown in Fig. 2(a), we can observe

strong edge flows mainly from the inside region to the outside region above the edges at

t/T0 = 0.499 with f = 1.0, where f is the magnification factor of the vector length used in the

visualization. In Fig. 2(b), we can also observe four vortex flows at the edges at t/T0 = 0.499

with f = 0.2. Note that we increased the magnification factor f from 0.2 to 1.0 to observe

the flow field in detail. Figure 2(c) shows the dependence of cn,e = Cn,e/C0 on t, where C0
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is the bulk ion concentration and Cn,e, is the negative ion concentration of the calculation

cell adjacent to the center of the top positive electrode. Since cn,e becomes constant at

t/T0 = 0.499 in Fig. 2(c), we can recognize that the edge vortex flow at t/T0 = 0.499 is

in the steady state. In Fig. 2(c), symbols show the numerical results, whereas dotted and

broken lines show the ICPB and GC solutions of the steady state, respectively. Namely,

we find that the ion concentration adjacent to the electrode in the steady state is (at least)

approximately described by the ICPB solution rather than the GC solution. In Fig. 2(c)

[and also, Figs. 2(d) and 4(c)], circles, crosses, and triangles show the numerical results at

(∆t/T0,∆y/w) = (0.00010, 0.10), (0.00005, 0.10), and (0.00010, 0.05), respectively, where ∆t

is the time interval and ∆y is the space interval in the y direction. Thus, from Fig. 2(c), we

find that the value of cn,e converges at (∆t/T0,∆y/w) = (0.00010, 0.10) because it does not

change for a change in (∆t/T0,∆y/w). Therefore, our numerical results concerning cn,e are

reliable. Note that we use an inhomogeneous mesh that is symmetrical about the x = 0.5

plane in the x direction and the ith space interval is described as ∆xi/w = ∆x0r
i−1, where

∆x0 = 0.1λD is the initial space interval and r = 1.3 is the ratio of the increase. Here, the

inhomogeneous mesh with ∆x0 = 0.1λD and r = 1.3 is suitable for the ion diffusion problem,

since the calculation using the mesh was verified by detailed examination by comparing the

numerical results with the exact solutions in Ref. [2]; thus, our calculations concerning cn,e

are reliable.

However, Fig. 2(d) shows that the dependence of uy = Uy/Uc on x/w (at y/w = 0.5 and

t/T0 = 0.499), where Uy is the flow velocity in the y direction, does not converge under the

condition; and thus we may need to use a more refined mesh in the future to improve our

numerical calculations. Nevertheless, Fig. 2(d) clearly shows the characteristics of outward

and inward flows due to the vortex flow above the edge position of the electrodes; i.e., it

clearly indicates that the ions of the electric double layer near the electrode in the electrode

region are drained by an outward flow on the order of 0.1Uc = 5 µm/s, whereas the ions

of the outside region are introduced into the electrode region by an inward flow on the

order of 0.05Uc = 2.5 µm/s in the bulk area. Note that since the ion concentration near

the electrode is much higher than that in the bulk region, the drained and introduced ions

are balanced even though the area of the curves below the line uy = 0 is smaller than

that above the line uy = 0 in Fig. 2(d). Furthermore, although the convergence of uy in

Fig. 2(d) is unsatisfactory, the drained and introduced ions are balanced, probably because
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FIG. 3. Steady ion concentration near electrodes of the open blocking electrode system showing

dependence of cn,e on v0 at t/T0 = 0.499. Here, v0 = 7, κ = w/λD = 20, and F0 = 99.77, for

example, when w = 20 µm and D = 10−9 m2/s, Uc = D/w = 50 µm/s and T0 = w2/D = 0.4

s. Circles show the numerical results of the open blocking electrode system, whereas dotted and

broken lines show the ICPB and GC solutions, respectively, in the steady state.

of the continuous characteristics of the vortex flow for the incompressible fluid. Thus, our

calculations using the condition (∆t/T0,∆y/w) = (0.00010, 0.10) can be used to discuss the

ion concentrations of the open electrode system, although the condition should be further

improved in the future.

Figure 3 shows the dependence of cn,e on v0 at t/T0 = 0.499. As shown in Fig. 3, the steady

ion concentration near the electrodes of the open blocking system is roughly approximated

by the ICPB solution rather than the GC solution. Specifically, the ICPB solution very

accurately predicts cn,e for the open electrode system for v0 ≤ 9; then, the accuracy of

the prediction gradually decreases as v0 increases; and the prediction of the ICPB is half

the numerical value at v0 = 18. Although the ICPB solution cannot predict the behavior

of cn,e completely, from Fig. 3, we can recognize that the ICPB solution is a much better

approximation of the ion concentration of the open electrode system than the GC solution

at v0 > 10 (i.e., V0 > 250 mV).

Figure 4 shows the reverse vortex flow in a non-steady state. As shown in Fig. 4(a),

we can observe four transient reverse vortex flows at the edges at t/T0 = 0.01. This is

partially because the crowding of the high ion concentration occurs transiently near the

edges, as shown in Fig 4(b), and thus the flows in the ±y directions at the edges are

disturbed. Another reason for the reverse flow is that it is probably much easier to take

ions from the outside region near the edge than from the bulk area of the electrode region
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(a) Reverse vortex flow (f = 1.0)
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FIG. 4. Reverse vortex flow in a non-steady state at t/T0 = 0.010. Here, v0 = 7, κ = w/λD = 20,

and F0 = 99.77, for example, when w = 20 µm and D = 10−9 m2/s, Uc = D/w = 50 µm/s and

T0 = w2/D = 0.4 s. In (c), symbols show the numerical results.

(i.e., 0.5 ≤ y/w ≤ 1.5); in other words, the electrodes strongly attract ions from the nearest

surrounding area, particularly when the ions have not yet been attracted. Figure 4(c) shows

the dependence of uy = Uy/Uc on x/w at y/w = 0.5 and t/T0 = 0.010. In contrast to uy

in Fig. 2(c), uy in Fig. 4(c) almost converges at t/T0 = 0.010 under the conditions, and

thus our calculations for uy are reliable at t/T0 = 0.010. Furthermore, from Fig. 4(c), we
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(a) Flow field at t/T0 = 0.499 with f = 1.0

(λs/w = 0.01).
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FIG. 5. Steady edge vortex flow and related characteristics considering a Stern layer. Here,

∆t/T0 = 10−4 and ∆y/w = 0.1; v0 = 7, κ = w/λD = 20, and F0 = 99.77, for example, when

w = 20 µm and D = 10−9 m2/s, Uc = D/w = 50 µm/s and T0 = w2/D = 0.4 s.

find that an inward flow of approximately 0.25Uc (12.5 µm/s) is generated near the edge,

whereas an outward flow of approximately 0.18Uc (9 µm/s) is generated in the bulk area.

For simplicity, we neglect the existence of a Stern layer in the calculations shown in

Figs. 2–4. However, a Stern layer always exists on electrodes in a real system. Thus, in Fig. 5,

we perform calculations considering a Stern layer. Namely, Fig. 5 shows the steady edge

vortex flow and related characteristics considering a Stern layer with the Robin boundary

condition on the electrodes [1] for v0 = V0/Vc = 7, κ = W/λD = 20, and F0 = 99.77. From

Fig. 5, we can recognize that edge vortex flows can be generated in real ion systems, not

only in an ideal system that neglects a Stern layer. Specifically, as shown in Fig. 5(a), we

can also observe edge flows at t/T0 = 0.499 with f = 1.0, although the flow velocity is

slightly lower than that in Fig. 2(b) because of the existence of the Stern layer. In fact,
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as shown in Fig. 5(b), uy decreases as λs increases, where λs is the thickness of the Stern

layer. This is also because cn,e = Cn,e/C0 decreases as λs increases, as shown in Fig. 5(c).

In other words, the Stern layer simply reduces the substantial applied voltages (i.e., |ϕ| at

x/w = ±1) slightly as shown in Fig. 5(d).

Discussion: (1) Inplications of our findings: Our direct simulations clarified that the

open parallel electrode configuration causes a large edge vortex flow at the edges due to the

inhomogeneous ion concentration. The predicted flow velocities of 0.5 to 12.5 µm/s at v0 = 7

(i.e., V0 = 175 mV) are relatively small; however, they can still be detected by a careful

experiment. Thus, the prediction of edge vortex flows should be verified experimentally

in the future. Furthermore, although the GC solutions may be valid for ordinary classical

experiments for v0 < 10, we clarified that the ion concentration near the open blocking

electrodes for v0 > 10 can be much more accurately estimated by the ICPB solution, which

considers the ion-conserving condition, than the GC solution, which allows the unlimited

introduction of ions. Namely, because of the existence of the steady vortex flow, the infinite

introduction of the ions, which is considered to occur are believed by many researchers, is

naturally suppressed. Instead, since the introduced ions are expected to be pushed out by

the edge vortex flow of the incompressible fluid, the ion-conserving conditions are almost

maintained and thus the ICPB (i.e., PNP) solution is approximately justified, even for the

open electrode system.

(2) Source of energy sustaining the vortex flow in the steady state: Although this is

obvious, the source of energy sustaining the vortex flow in the steady state is the dc power

supply (in Fig. 1) connected to the blocking electrodes. However, some researchers may

argue that without using Faradaic reactions and ac voltages, it is not clear how the energy is

supplied and how the viscous dissipation is compensated. Here, for the half region of x ≤ 0.5,

we consider a simple CR electric circuit model consisting of an electric-double-layer capacitor

CD ≃ ϵS/λD and a bulk resistor Rb [1], where S is the area of the electrode. In the case

of a closed electrode system, it should be universally agreed that by connecting a dc power

supply of voltage V ′
0 = V0/2 to the electrode, the capacitor is charged and the accumulated

energy of the capacitor is described by UD = CDV
′2
0 /2 = Q2

D/2CD, where QD = CDV
′
0 is the

accumulated charge. Of course, the electric energy is supplied from the power supply and

the transfer of the electric energy is usually considered to stop when the potential difference

of the capacitor VD becomes equal to V ′
0 under the implicit assumption that there is no
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dissipation in the system. However, if there is a dissipation in the real system, UD, VD, and

QD decrease but are rapidly recovered by the energy transferred from the power supply.

This is the meaning of the boundary condition of Φ = V ′
0 at x/w = 0 in the numerical

calculation. Specifically, there is dissipation due to the outward flow of the double-layer

charge in our open electrode system but it is rapidly compensated by the energy transferred

from the power supply. In other words, because of the dissipation of the real system, we

may consider that a vortex current exists at the electrodes in the real system; however, the

ideal limit of such phenomena is numerically described by the boundary condition of Φ = V ′
0

at x/w = 0, and we need not consider the vortex current in our calculations. This answers

the question of how the energy is supplied and how the viscous dissipation is compensated

without using Faradaic reactions and ac voltages.

(3) Reason for ignoring the finite-size effect of ions: The edge vortex flow tends to take

place more easily as the ion concentration near the electrodes increases. Thus, if we examine

an edge vortex flow with a low concentration of ions near the electrodes, we can also expect

that the observed phenomena can occur even with a high concentration of ions. Thus, in this

study, we consider water of pH=7 (i.e., C0 = 10−7 mol/l) with a suitable separation distance

w (= 20) as the ideal low-concentration limit in a typical microfluidic configuration. As a

result, we need not consider the finite-size effect of ions because the ion concentration near

the electrodes is approximately 200C0 for v0 = 20 as shown in Fig. 3. In other words, since

the concentration of water molecules is approximately 55.6 mol/l, we need not consider the

finite-size effect of ions provided C0 < 55.6/200 ≃ 0.278 mol/l. Namely, our calculations

that predict an edge vortex flow are justified for a wide range of ion concentrations (i.e.,

10−7 ≤ C0 < 55.6/200 ≃ 0.278 mol/l), although the finite-size effect of ions becomes

important as w becomes large [7]. This is the main reason why we ignore the finite-size

effect of ions with a low concentration near electrodes as a first step.

Conclusion: By performing a 2D direct simulation, we have shown that a pair of finite-

length parallel electrodes in a channel causes a steady vortex flow near the edge owing to an

inhomogeneous large ion concentration under dc applied voltages and that the vortex flow

significantly suppresses the increase in the steady ion concentration near the electrodes and

thus approximately maintains the ion-conserving condition. Therefore, even for the open

electrode configuration, the ICPB solution is much more accurate than the GC solution for

estimating the ion distribution between electrodes.
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