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Abstract

The modified Poisson–Nernst–Planck (MPNP) and modified Poisson–Boltzmann (MPB) equa-

tions are well known as fundamental equations that consider a steric effect, which prevents un-

physical ion concentrations. However, it is unclear whether they are equivalent or not. To clarify

this problem, we propose an improved free energy formulation that considers a steric limit with an

ion-conserving condition and successfully derive the ion-conserving modified Poisson–Boltzmann

(IC-MPB) equations that are equivalent to the MPNP equations. Furthermore, we numerically ex-

amine the equivalence by comparing between the IC-PB solutions obtained by the Newton method

and the steady MPNP solutions obtained by the finite-element finite-volume method. A surprising

aspect of our finding is that the MPB solutions are much different from the MPNP (IC-MPB)

solutions in a confined space. We consider that our findings will significantly contribute to under-

standing the surface science between solids and liquids.
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I. INTRODUCTION

The steric effect of ions in an electrolyte is important because it prevents the unphysical

concentration of ions when we consider the behaviors of ions in a crowding state; e.g., it can

reasonably correct the unphysical solutions [1–5] of the well-known Gouy–Chapman (GC)

model of the diffused layer near electrodes at high applied voltages (> 25 mV) [6, 7]. Note

that the GC solution provides a 1040 times higher concentration than the initial bulk ion

concentration near the electrode of 1 V; it is of course unphysical, as pointed out by many

researchers [1–5], although Grahame [8] successfully explained the experimental results of

the differential capacity by using the GC model along with the Stern layer model. In ad-

dition, the ion crowding state can be found near general polarizable objects not only in a

dense electrolyte but also in a very dilute electrolyte at high applied voltages, and it may

cause a significant decrease in the device performance using electrokinetic phenomena [5].

Hence, many studies have been devoted to this problem [1–5]. In particular, Borukhov et al.

proposed the modified Poisson–Boltzmann (MPB) equation based on a free energy formu-

lation considering a steric effect [1]. Kilic et al. proposed the modified Poisson–Boltzmann

(MPB) equation based on the free energy formulation with chemical potential arguments [3].

Obviously, the MPNP and MPB equations are important milestones that provide an inte-

grated viewpoint from low to high voltage phenomena and from dilute to dense phenomena

in electrolyte dynamics. However, it is unclear whether they provide the same solution or

not, although we consider that they should provide the same solution for the same physical

problem if they are true fundamental equations. To overcome the difficulty, we propose an

improved free energy formulation considering a steric effect with an ion-conserving condi-

tion because we already showed that the classical PB equation becomes equivalent to the

the classical PNP equations by adding an ion-conserving condition [9]. In addition, this

kind of fundamental theory is also required to improve promising microfluidic devices using

electroosmosis, as discussed in Ref. [10]. Thus, on the basis of the new thermodynamic

formulation, we derive a new MPB equation, i.e., the ion-conserving Poisson-Boltzmann

(IC-MPB) equations, which are equivalent to the steady MPNP equations that consider a

steric effect. Namely, in this study, we focus on deriving the IC-MPB equation equivalent

to the steady MPNP equations and numerically examine the consistency. Note that for

readers’ convenience, in Table I, we show a list of the symbols and abbreviations used.
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TABLE I: List of symbols and abbreviations.

Symbol Property

GC Gouy–Chapman

PB Poisson–Boltzmann

MPB Modified PB

ICPB Ion-Conserving PB

IC-MPB Ion-Conserving MPB

PNP Poisson–Nernst–Planck

MPNP Modified MPNP

Fh modified total Helmholtz free energy

Φ (ϕ) dimensional (nondimensional) electrostatic potential

λ Lagrange multiplier

V0 (v0) dimensional (nondimensional) applied voltage

C± positive and negative ion concentrations

C0 initial bulk ion concentration

Cb bulk ion concentration at V0

u internal energy per unit volume

s entropy per unit volume

I0 initial ion number

a ion size (approximately, ion diameter)

ze ion charge

λD Debye screening length

ε permittivity of an electrolyte

k Boltzmann constant

ν 2C0a
3 (nondimensional value)

κ W0/λD (nondimensional value)
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FIG. 1: (Color online) Electrolyte-electrode system used in our 1D examination. Note that we

examine our theory in this 1D system, although our IC-MPB theory is considered for 3D systems.

Here, 2V0 is an applied voltage and 2W0 (typically, W0 = 100 µm) is the distance between the

electrodes.

II. THEORY

A. Improved total free energy formulation considering a steric effect with an ion-

conserving condition

The fundamental assumption of the improved total free energy for the MPNP and IC-

MPB theories is almost the same as that of the conventional MPB and MPNP theories

[1–5] except that it includes an ion-conserving condition. However, since the difference

is essential, we explain it from the beginning. That is, within the framework of mean-field

approximation, the modified total Helmholtz free energy Fh that considers steric effects with

the ion-conserving condition can be written as the functional of the electrostatic potential

4



Φ(r), the derivative ∇Φ(r), the positive and negative ion concentrations (i.e., cation and

anion concentrations) C±(r), and the Lagrange multiplier λ for the ion-conserving condition.

Namely, by considering the ion-conserving condition along with the treatment of Borukohov

et al. [1], we can write Fh as

Fh = Fh(Φ,∇Φ, C+, C−, λ) =

∫
(u− Ts)dr + λ[

∫
(C+ + C−)dr − I0], (1)

where u, s, and f (≡ u − Ts) are the internal energy, entropy, and Helmholtz free energy,

respectively, for a unit volume, T is the absolute temperature, and I0 is the initial ion

number. Note that the second term of Eq. (1) is the constraint due to the ion-conserving

condition and the assumption is very natural as a fundamental assumption because the

mass conservation is the most fundamental law of nature. Furthermore, the specific internal

energy due to the self-energy of the electric field (− ε
2
|∇Ψ|2) and the electrostatic energies

of ions is denoted as

u = −ε

2
|∇Φ|2 + zeC+Φ− zeC−Φ, (2)

the entropic contribution is denoted as

−Ts =
kT

a3
[ln(C+a

3)(C+a3) + ln(C−a
3)(C−a3) + ln(1− C+a

3 − C−a
3)(1−C+a3−C−a3)], (3)

and the initial ion number I0 is denoted as

I0 =

∫
(C0 + C0)dr, (4)

where C0 is the initial bulk ion concentration in the absence of electric fields and k is the

Boltzmann constant. Similar to the treatment of Refs. [1–5], we assume that the concerned

ion system is a symmetrical z:z electrolyte system of the ion charge ze; for simplicity, the

concerned positive and negative ions and the solvent ions are considered to have the same

size a. Here, a is approximately the diameter of ions as the first approximation, although it

is rigorously defined as a ≡ ( Vc

Nc
)
1
3 , where Vc is the volume of a condensed state and Nc is the

total number of ions (of the state) including positive and negative ions. Furthermore, the

last term of Eq. (3) is the most important term for steric effects and it shows a significant

increase in entropy when (C+ + C−)a
3 approaches one.
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B. Derivation of ion-conserving modified Poisson–Boltzmann (IC-MPB) equa-

tions

On the basis of the improved total free energy formulation of Eq. (1), we can develop the

IC-MPB theory that is a natural extension from the conventional MPB theory [1, 3] and

the ion-conserving Poisson–Boltzmann (IC-PB) theory [9]. Namely, by considering Eular’s

equation for the functional derivatives, the functional derivatives of Fh in Eq. (1) concerning

Ψ, C±, and λ are described as

δFh

δΦ
≡ ∂f

∂Φ
−∇(

∂f

∂(∇Φ)
) = ez(C+ − C−) + ε∇2Φ (5)

δFh

δC±
≡ ∂f

∂C±
= ±ezΦ + kT ln

C±a
3

(1− C+a3 − C−a3)
. (6)

δFh

δλ
≡ ∂Fh

∂λ
=

∫
(C+ + C− − 2C0)dr (7)

Thus, by requiring δFh

δΦ
= 0, we obtain the following Poisson equation as the equation that

provides the stational point for F : i.e.,

−ε∇2Φ = ez(C+ − C−). (8)

Similarly, by requiring µ = δFh

δC±
= const. (a constant chemical potential condition for a

steady state) and δFh

δλ
= 0 (the ion-conserving condition), we obtain the IC-MPB equations

as

∇2Φ =
2zeCb

ε

sinh ezΦ
kT

1 + 2Cba3 cosh
ezΦ
kT

, (9)∫
(C+ + C− − 2C0)dr = 0, (10)

where Cb is determined by the ion-conserving condition of Eq. (10), and the physical meaning

of Cb is the bulk concentration of the steady state under the existence of the applied voltage

V0. Note that, in the conventional MPB theory, the value of Cb is usually selected as

Cb = C0 without special arguments despite the arbitrariness. However, in microfluidic

configurations, the selection becomes unphysical from the viewpoint of the ion-conserving

condition of Eq. (10), as will be explained later. Namely, the solution of Eq. (9) at Cb/C0 = 1

is the solution of the conventional MPB method, whereas the solution of Eq. (9) at the value

of Cb/C0 that satisfies Eq. (10) is the solution of the IC-MPB method. Furthermore, note

that the condition µ = δFh

δC±
= const. provides Eq. (9) with the arbitrary parameter of Cb
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and Eq. (9) provides a group of solutions (i.e., the solutions of the general PB equation) by

setting the value of Cb arbitrarily.

Although the process of deriving Eqs. (9) and (10) is almost the same as that of the con-

ventional MPB and MPNP equations, we explain the process briefly to clarify the difference

among them. Namely, δFh

δC±
corresponds to the chemical potential (µsteric) that considers

steric effects. However, physically, we can choose the standard point for measuring µsteric

and only the difference in µsteric has a physical meaning. Thus, we can define the chemical

potential as

µsteric,α ≡ δFh

δC±
+ α, (11)

where α is an arbitrary constant and the value is selected conveniently. For example, by

setting α = −kT ln a3, we can remove the constant term (kT ln a3) in Eq. (6) and we obtain

the usual form of µsteric as µsteric,usual = ±ezΦ + kT ln C±
(1−C+a3−C−a3)

. Note that Kilic et

al. derived their MPNP equations using the formulation with the continuous equation. By

using the other arbitrary constant β, we can also write the chemical potential as

µsteric,β = ±ezΦ + kT ln
C±(

1
β
)

(1− C+a3 − C−a3)
. (12)

This argument is important for the IC-MPB theory since the breaking of the ion-conserving

condition of the conventional MPB theory results from the arbitrariness of the α or β

value in the chemical potential. In fact, in the conventional MPB theory, by setting that

β = C0 and requiring µsteric,β = 0, one usually obtains the ion concentration Cconv.
± =

C0(1 − C+a
3 − C−a

3)e∓
ezΦ
kT , where C0 is the ion concentration of the bulk in the absence

of an electric field. However, this solution does not ensure the ion-conserving condition.

Therefore, in our IC-MPB theory, by setting β = Cb and requiring µsteric,β = 0, we obtain

the ion concentration for the IC-MPB theory as

C± = Cb[1− (C+ + C−)a
3]e∓

ezΦ
kT , (13)

where Cb is the modified bulk concentration that satisfies the ion-conserving condition∫
(C+ + C−)dr =

∫
2C0dr. (14)

Furthermore, by using Eq. (13), we obtain C+ + C+ = 2Cb[1 − (C+ + C−)a
3] cosh ezΦ

kT
, and

thus

C+ + C− =
2Cb cosh

ezΦ
kT

1 + 2Cba3 cosh
ezΦ
kT

. (15)
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Therefore, the ion-conserving condition is converted into∫
2Cb cosh

ezΦ
kT

1 + 2Cba3 cosh
ezΦ
kT

dr =

∫
2C0dr. (16)

Furthermore, by using Eq. (13), we obtain C+ −C+ = −2Cb[1− (C+ +C−)a
3] sinh ezΦ

kT
, and

thus C+ − C− = −2Cb[1−
2Cb cosh

ezΦ
kT

1+2Cba3 cosh
ezΦ
kT

] sinh ezΦ
kT

; i.e., we obtain

C+ − C− =
−2Cb sinh

ezΦ
kT

1 + 2Cba3 cosh
ezΦ
kT

. (17)

By substituting Eq. (13) into the Poisson equation [Eq. (8)], we obtain one of the IC-MPB

equations as

∇2Φ =
2zeCb

ε

sinh ezΦ
kT

1 + 2Cba3 cosh
ezΦ
kT

(18)

with the ion-conserving condition of Eq. (16). Furthermore, from Eqs. (15) and (17), we

obtain

C± =
Cbe

∓ ezΦ
kT

1 + 2Cba3 cosh
ezΦ
kT

. (19)

For readers’ convenience, we only summarize the nondimensional form of the IC-MPB equa-

tions as

∇2ϕ =
cbκ

2 sinhϕ

1 + cbν coshϕ
(20)∫

2cb coshϕ

1 + cb coshϕ
drn =

∫
2drn, (21)

c± =
cbe

∓ϕ

1 + cbν coshϕ
, (22)

where 2C0a
3 = ν, cb = Cb/C0, c± = C±/C0, ϕ = ezΦ

kT
= Φ/Φc, Φc = kT

ez
, κ = W/λD,

rn = r/W , W is a characteristic length, and λD is the Debye screening length.

C. Derivation of the steady MPNP equations from the IC-MPB equations

Kilic et al. derived the MPNP equations by using the phenomenological argument with

the chemical potential µsteric,usual [4]. Thus, it is unclear whether the steady MPNP equation

is equivalent to the IC-MPB equations or not. Therefore, to clarify the problem, we here

consider the spatial derivative of C± in Eq. (13) as

∇C± = ∓ ez

kT
Cb[1− (C+ + C−)a

3]e∓
ezΦ
kT ∇Φ− a3Cb[∇(C+ + C−)]e

∓ ezΦ
kT . (23)
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Thus, by using Eq. (13) and its converted formulation Cbe
∓ ezΦ

kT = C±/[1− (C+ +C−)a
3], we

obtain

∇C± = ∓ ez

kT
C±∇Φ− a3C±

[1− (C+ + C−)a3]
∇(C+ + C−). (24)

Note that the parameter of Cb does not appear in Fig. (24) and the ion-conserving condition

of the MPNP equation is ensured by using the continuous equations with the initial condi-

tions. Thus, we find that the IC-MPB equations proposed by us and the MPNP equations

proposed by Kilic et al. [4] are theoretically equivalent to each other for the steady state, and

that both equations are justified as fundamental equations, whereas the conventional MPB

equation might not be suitable at high applied voltages because it lacks the ion-conserving

condition. Note that the non-dimensional form of Eq. (24) is

∇c± = ∓c±∇nϕ− νc±
[2− ν(c+ + c−)]

∇n(c+ + c−), (25)

where ∇n is a nondimensional operator corresponding to ∇.

D. Electrolyte-electrode system used in our 1D examination

Figure 1 shows an electrolyte-electrode system used in our 1D examination; i.e., we

examine our theory in this 1D system, although our IC-MPB theory can be used in 2D and

3D systems. In Fig. 1, 2V0 is an applied voltage and 2W0 (typically, 100 µm) is the distance

between the electrodes. As shown in Fig. 1, by applying voltages between electrodes, negative

and positive ions move to the positive and negative electrodes, respectively. In particular,

at high applied voltages (> 25 mV), an ion crowding state can be seen, and owing to the

steric effect, the condensation layer can be formed near electrodes, as pointed out by many

researchers [1–5]. However, in a confined space, the ion-conserving condition also becomes

important along with the steric effect, and the complex phenomena often should be described

for the innovative microfluidic device designs. Thus, our IC-MPB theory becomes important

particularly in the microfluidic systems.

E. Newton method for solving the IC-MPB equations

Different from the IC-PB (i.e., steady PNP) equation, the IC-MPB equation cannot be

solved analytically because of its strong nonlinearity. However, many kinds of numerical

9



methods, which mainly belong to the relaxation method [11], are well known to solve this

kind of nonlinear equation. Here, we use the simple Newton method only to examine that the

IC-MPB equations provide the same solutions obtained by the MPNP equations. Namely,

from Eq. (20), we define the residual function of the descretized potential ϕi (0 ≤ ϕi ≤ v0,

i = 0, 1, . . . , n) for a fixed cb value at the position xi (0 ≤ xi ≤ 1, i = 0, 1, . . . , n) as

Rcb(ϕi) =
ϕi−1 + ϕi+1 − 2ϕi

∆x2
− cbκ

2 sinhϕi

1 + cbν coshϕi

, (26)

where ∆x = 1/n, n being the element number, and we use the approximation ∇2ϕi ≃
ϕi−1+ϕi+1−2ϕi

∆x2 . The derivative is

R′
cb
(ϕi) = − 2

∆x2
− cbκ

2(ν2 + coshϕi)

(1 + cbν coshϕi)2
. (27)

Thus, by the Newton method, we obtain the fixed solution of the s+ 1 step as

ϕ
(s+1)
i = ϕ

(s)
i − ωRcb(ϕ

(s)
i )/R′

cb
(ϕ

(s)
i ), (28)

where ω = 0.5 is the relaxation parameter. By using the boundary conditions ϕn = v0 and

ϕ0 = 0 at xn = 1 and x0 = 0, respectively, we obtain the solution of Eq. (20) for a fixed

cb value. Note that we judge the convergence by the condition RcB(ϕi) < 10−2 for all i

values. Furthermore, from Eq. (21), we define the residual function of cb concerning the

ion-conserving condition as

IR(cb) =

∫ 1

0

cb coshϕ

1 + cb coshϕ
dx− 1. (29)

Fortunately, since IR(cb) is a monotonically increasing function of cb, we obtain the solution

that satisfies IR(cb) = 0 (i.e., the solution of the IC-MPB equations) by the bisection method.

Note that we judge the convergence by the condition IR(cB) < 10−3 as a first step.

F. Finite-element finite-volume (FE-FV) method for solving the MPNP equations

To examine the equivalence between the IC-MPB and MPNP equations numerically, we

perform numerical calculations of the nonsteady MPNP equations [4] by the finite-element

finite-volume (FE-FV) method because the ion-conserving condition is ensured by the con-

tinuous equation in the nonsteady formulation, as mentioned previously. The FE-FV method

calculates the modified Nernst–Planck (MNP) equation part by the FV method, which con-

serves the ion numbers effectively, and calculates the Poison equation part by FEM, which
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can calculate the potential effectively (see e.g., Appendix A in Ref. [12]). That is, we calcu-

late the nonsteady MPNP equations

∂c±
∂τ

= ∇n[∇nc± ± c±∇nϕ+
νc±

[2− ν(c+ + c−)]
∇n(c+ + c−)]. (30)

2∇2
nϕ = −κ2ρn, (31)

where τ = t/T0, T0 = W 2
0 /D, κ = W0/λD, ρn = c+ − c−, D (typically 10−9 m2/s for water)

is the ion diffusivity, λD is the Debye screening length, and t is time.

III. RESULTS

To clarify the meaning of the IC-MPB theory, we firstly show the results of the solution

group of Eq. (9); i.e., Fig. 2 shows the calculation results of Eq. (9) at Cb/C0 = 1, 10−10,

and 10−15 under the condition that κ = 10, ν = 0.01, and v0 = V0/Φc = 40. Here, we

confirmed that the solutions of Cb/C0 = 1 and 10−10 do not satisfy Eq. (10), whereas the

solution of Cb/C0 = 10−15 satisfies Eq. (10). Thus, by considering the argument of Sec. II-F,

the solutions of Eq. (9) at Cb/C0 = 1 and 10−15 correspond to the solutions of the MPB and

IC-MPB solutions, respectively; thus, we denote “(mpb)” and “(icmpb)” for Cb/C0 = 1 and

10−15 in Fig. 2, although they are calculated from Eq. (9) by the same method using the

Newton method, which is the same method of Sec. II-E except that it provides the value

of Cb as a parameter. As shown in Fig. 2(a), the thickness of the condensation layer due

to the steric effect decreases as Cb/C0 decreases; the physical picture of the MPB theory is

much different from that of the IC-MPB theory because the value of Cb/C0 is completely

different by the order of 15. Moreover, as shown in Fig. 2(b), the potential distribution of

the IC-MPB theory is also very different from that of the MPB theory; i.e., the bulk electric

field is screened at Cb/C0 = 1, whereas it is not screened at Cb/C0 = 10−15. Obviously,

the screened phenomenon is an artificial one in a confined space owing to the unphysical

assumption of the MPB equation.

Figure 3 shows the comparison between the IC-MPB (lines) and MPNP (symbols) solu-

tions for the dependences of C− and ϕ on X at κ = 10. As shown in Fig. 3, they are in

good agreement. In particular, the dependences of C− on X at v0 = V0/Φc = 80 and 40 for

various ν values are in good agreement between the IC-MPB and MPNP solutions, as shown

in Figs. 3(a) and 3(c), although the dependences of ϕ on X are slightly different, as shown
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FIG. 2: Solution group of the general PB equation due to the difference in Cb/C0. Here, κ = 10,

ν = 0.01, and v0 = V0/Φc = 40.

in Figs. 3(b) and 3(d). This is because the numerical calculation of the nonsteady MPNP

equations is slightly more difficult than that of the IC-MPB equations and thus the accuracy

of the nonsteady MPNP calculations is slightly lower than that of the IC-MPB calculations.

For example, for the MPNP and IC-MPB equations, the non-dimensional bulk concentra-

tion Cb/C0 often becomes smaller than 10−15 (≪ 1) at high applied voltages, whereas the

non-dimensional surface concentration reaches 2/ν (≫ 1); in this case, the accuracy of the

numerical calculations for the nonsteady MPNP equations decreases.

IV. DISCUSSION

We have clarified that the MPB solutions are surprisingly much different from the MPNP

solutions in a confined space at high voltages (> 25 mV); however, by adding an ion-

conserving condition, the equations become equivalent to the MPNP equations. Thus, the

argument using the MPB equation should be replaced by the more precise argument using

the IC-MPB equations. Although the IC-MPB equations are equivalent to the steady MPNP

equations, it is more useful for the argument of the steady phenomena because the calculation

cost is intrinsically much lower than that of the nonsteady MPNP equations. Moreover, the

relaxation method for the IC-MPB equation can be easily extended to the 2D and 3D

problems. Furthermore, although there has been no way of examining the accuracy of the

MPNP calculations at high applied voltages so far, our study provides the examination
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FIG. 3: Comparison between the IC-MPB (lines) and MPNP (symbols) solutions. Here, κ = 10.

method. Thus, our finding is useful for better understanding of the surface science between

a fluid and a solid. In addition, our finding provides new insight into the design principle

of various microfluidic devices using electro-osmosis phenomena in a confined space [10, 13];

e.g., although the experimental data (including flow reversal phenomena) of an ac electro-

osmotic (ACEO) pump [14] is analyzed using the results of the MPB equations [15], it should

be reconsidered using the knowledge of the IC-MPB equations more precisely in the future.

Furthermore, the experimental flow velocity of ACEO [or more generally induced charge

electro-osmosis (ICEO)] is often much lower than the prediction of the standard theory and

it is usually explained by ion crowding phenomena [5] suggested from the MPB theory.

However, the IC-MPB theory [especially Fig. 2(a)] shows that ion crowding phenomena

are much more unlikely to occur than the prediction of the MPB theory. Thus, we may

need to reconsider this problem from the viewpoint of the IC-MPB theory. Moreover, as

pointed out by Zhao [2], the conventional PNP model cannot explain the low-frequency
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dispersion amplitude and the characteristic frequency of particles quantitatively [16, 17].

Thus, our finding should be considered to correct the discrepancy between the theory and

the experiment in the future.

V. CONCLUSIONS

On the basis of an improved free energy formulation considering a steric effect with an

ion-conserving condition, we have successfully derived the ion-conserving modified Poisson–

Boltzmann (IC-MPB) equations that are equivalent to the steady modified Poisson–Nernst–

Planck (MPNP) equations that consider a steric effect of ions. Furthermore, we numerically

examined the equivalence between the IC-MPB and MPNP equations at high applied volt-

ages by comparing the IC-MPB solutions obtained by the Newton method with the MPNP

solutions obtained by the finite-element finite-volume method. Surprisingly, the MPB so-

lutions are much different from the MPNP (IC-MPB) solutions, which provide a correct

answer, in a confined space, and thus we need to use the MPNP (i.e., IC-MPB) solutions.

We believe that our findings contribute greatly to the surface science.
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