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Abstract: The nuclear receptor superfamily includes ligand-inducible transcription factors that play
diverse roles in cell metabolism and are associated with pathologies such as cardiovascular diseases.
Lysophosphatidic acid (LPA) belongs to a family of lipid mediators. LPA and its naturally occurring
analogues interact with G protein-coupled receptors on the cell surface and an intracellular nuclear
hormone receptor. In addition, several enzymes that utilize LPA as a substrate or generate
it as a product are under its regulatory control. Recent studies have demonstrated that the
endogenously produced peroxisome proliferator-activated receptor gamma (PPARγ) antagonist
cyclic phosphatidic acid (cPA), which is structurally similar to LPA, inhibits cancer cell invasion
and metastasis in vitro and in vivo. We recently observed that cPA negatively regulates PPARγ
function by stabilizing the binding of the co-repressor protein, a silencing mediator of retinoic
acid, and the thyroid hormone receptor. We also showed that cPA prevents neointima formation,
adipocyte differentiation, lipid accumulation, and upregulation of PPARγ target gene transcription.
The present review discusses the arbitrary aspects of the physiological and pathophysiological actions
of lysophospholipids in vascular and nervous system biology.
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1. PPARγ and Lysophospholipids

Phospholipids are hydrolyzed by phospholipase A2 (PLA2) to produce lysophospholipids and
free fatty acids. One of the most attractive targets of PLA2 is lysophosphatidic acid (LPA), a naturally
occurring phospholipid that functions as a bioactive lipid mediator and a second messenger [1].
It consists of a glycerol backbone with a hydroxyl group, a phosphate group, and a long-chain
saturated or unsaturated fatty acid. LPA has been detected in biological fluids, and it performs
a wide range of biological functions in cell proliferation, migration, and survival [2,3]. LPA is
produced by platelet activation after activation of multiple biochemical pathways [4,5]. The plasma
contains nanomolar quantities of LPA, whereas LPA concentration can reach physiological levels
in the serum during blood clotting [6,7]. LPA has attracted considerable interest because of its
multiple roles in physiological and pathological conditions. Recent studies suggest that LPA receptor
(LPAR) antagonists abolish platelet aggregation elicited by mildly oxidized low-density lipoprotein
(LDL) (mox-LDL), indicating that an LPA-like lipid plays an essential role in the thrombogenic
effects of mox-LDL [8]. LDL oxidation generates peroxisome proliferator-activated receptor (PPAR)γ
agonists [9], including alkyl glycerophosphate (AGP) [10]. AGP is also formed enzymatically from
alkyl dihydroxyacetone phosphate [11]. AGP concentration in the brain is 0.44 nmol/g, which is
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15% that of acyl-LPA [12]. Here, we provide evidence that AGP is a PPARγ ligand, with potency
similar to that of the thiazolidinedione rosiglitazone, but with only 40% efficacy. Computational and
mutational analysis of the AGP-PPARγ complex indicates differential interaction with key residues in
the ligand binding and activation domains that explains the partial activation elicited by AGP. Several
reports have identified putative intracellular agonists of PPARγ. For example, selected forms of LPA,
which accumulate as oxidatively modified LDL, also activate PPARγ [13]. LPA exerts growth-like
effects in almost every mammalian cell type. Although LPA is the known ligand for G-coupled cell
surface LPARs, some of the effects of LPA are also mediated by PPARγ activation [8]. PPARγ plays
key roles in regulating lipid and glucose homeostasis, cell proliferation, apoptosis, and inflammation.
In contrast, cPA, which is structurally similar to LPA, is generated by phospholipase D2 (PLD2)
and negatively regulate PPARγ functions [14]. cPA shows several unique functions compared to
LPA [15]. Unlike LPA, cPA inhibits cell proliferation [16]. Reports show that cPA attenuates neointima
formation, which is an early step in the development of atherosclerotic plaques [17]. cPA is a second
messenger and a physiological inhibitor of PPARγ, revealing that PPARγ is regulated by both agonists
and antagonists.

2. Lysophospholipid and Vascular Pathologies

LPA has been identified as a platelet-activating lipid of mox-LDL in human atherosclerotic
lesions [8]. Relatively few intracellular binding partners for LPA are known. Previous studies have
identified some candidate proteins, including C-terminal-binding protein/brefeldin A-dependent
ADP ribosylated substrate [18], liver fatty-acid-binding protein [19], and gelsolin [20]. Recently,
we reported that the isolation and purification of heart-type fatty-acid-binding protein (FABP3)
from human coronary artery endothelial cells (HCAECs) were coupled to their identification by
proteomics techniques [21]. FABP3, a small cytoplasmic protein with a molecular mass of about
15 kDa, transports fatty acids and other lipophilic substances from the cytoplasm to the nucleus,
where these lipids are released to a group of nuclear receptors such as PPARs [21]. FABP3 did
not bind LPC or activate PPARγ in HCAEC, showing that FABP3 distributes from the cytosol to
the nucleus in response to LPA-mediated PPARγ activation. Recent reports showed that AGP
plays an important role in the vascular system [22]. Our group reported that AGP activates
PPARγ-mediated transcription more than LPA [10]. Activation of biochemical pathways linked
to platelet activation induces AGP production in the serum [8]. Binding studies using the PPARγ
ligand-binding domain (LBD) showed that the binding affinity of AGP to PPARγ was similar to
that of the synthetic agonist, rosiglitazone [10]. AGP has been detected in several biological fluids
and tissues, including the human brain, ascitic fluid, and saliva [23–25]. Recently, we identified
that AGP and rosiglitazone induce neointima formation when applied topically within the carotid
artery [14]. Neointimal lesions are characterized by the accumulation of cells within the arterial wall
and are a prelude to atherosclerotic disease [8]. Recent reports showed that the knockdown of the
gene encoding 1-acyl-sn-glycerol-3-phosphate acyltransferase β (AGPAT2) increased cPA levels [26].
AGPAT2 is located the endoplasmic reticulum membrane and converts LPA to phosphatidic acid (PA).
Mutations in AGPAT2 have been associated with congenital generalized lipodystrophy (CGL) [26,27].
Lipodystrophies, including CGL, are heterogeneous acquired or inherited disorders characterized by
the selective loss of adipose tissue and development of severe insulin resistance. Histone deacetylases
(HDACs), which have been shown to activate PPARγ and enhance the expression of its target
genes, regulate chromatin structure and gene transcription via interactions with nuclear receptor
corepressors, such as SMRT and nuclear receptor corepressor (NCoR) [28]. HDAC3 inhibits PPARγ
and nuclear transcription factor-κB (NF-κB) [29], and HDAC3 inhibition restores PPARγ function in
obesity [30]. Additionally, HDAC2-containing complexes are involved in the regulation of nuclear
receptor-dependent gene transcription [31]. A previous study demonstrated that topical application of
AGP onto uninjured carotid arteries of rats induces arterial wall remodeling in a PPARγ-dependent
manner [14]. Our current study also identified increased AGP levels in the carotid artery of apoE−/−
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mice [32]. These results suggest that AGP in the circulatory system may be a risk factor for development
of diabetes-mediated atherosclerosis.

3. Lysophospholipids and Vascular Dementia

The brain is a lipid-rich organ, the structure and function of which are influenced by diet and
nutrients [33]. Bioactive lipids within the brain are shown to be pivotal for central nervous system
homeostasis by modulating neurotransmission, synaptic plasticity, enzyme function, ion channel
activities, gene expression, and inflammation [34]. Lysophospholipids are also involved in a variety of
important processes, including vascular dementia. Vascular dementia is a progressive disease caused
by reduced blood flow to the brain, and it affects cognitive abilities especially executive function [35,36].
Vascular dementia is poorly understood, and the dearth of suitable animal models limits the
understanding of the molecular basis of the disease and development of suitable therapies [36].
On the basis of their chemical structures, different bioactive lysophospholipids can be assigned
either to the group of lysophospholipids, LPA, and lysophosphatidylcholine (LPC), or the group of
lysosphingolipids, lysosphingomyelin (SPC), and sphingosine 1-phosphate (S1P). LPA is present in
the embryonic brain, neural tube, spinal cord, and cerebrospinal fluid at nanomolar to micromolar
concentrations and plays several significant roles in the nervous system during development and
injury [34]. In the adult brain, LPA receptors are differentially expressed in various neural cell types;
for example, the LPA1 receptor affects cerebral cortical neuron growth, growth cone and process
retraction, survival, migration, adhesion, and proliferation [37]. Our recent study suggested that
LPA treatment profoundly induced the expression of Kruppel-like factor 9 (KLF9) in human induced
pluripotent stem cell-derived neurons [38]. Furthermore, we observed that the effects of LPA on neurite
outgrowth and proliferation were also mediated through the PPARγ pathway [38]. Studies show that
KLF9, a member of the KLF family of evolutionarily conserved zinc finger transcription factors [39],
has been implicated in mediating a diverse range of biological processes including neural stem
cell maintenance [40]. KLF9 expression is induced by neuronal activity as dentate granule neurons
functionally integrate in the developing and adult dentate gyrus (DG). During brain development,
dentate granule neurons lacking KLF9 show delayed maturation as reflected by the altered expression
of early-phase markers and dendritic spine formation [41,42]. Adult KLF9-null mice exhibit normal
stem cell proliferation and cell fate specification in the DG but show impaired differentiation of
adult-born neurons and decreased neurogenesis-dependent synaptic plasticity [41]. Although further
investigations will be needed to ascertain the underlying mechanism, these reports highlight that the
KLF9-LPC axis is essential for neuronal development. The presence of PPARs has been extensively
studied in nervous tissue [43]; PPARs are present in astrocytes, oligodendrocytes, microglia, and
neural stem cells (NSCs) [44–47], where it inhibits proinflammatory gene and protein expression.
For example, PPARγ inhibits proinflammatory transcription factors, nuclear factor-κB (NF-κB) [48],
and activator protein 1 (AP-1) [49]. Owing to the anti-inflammatory and potentially neuroprotective
effects of PPARγ, PPARγ agonists are increasingly being used for the treatment of neurodegenerative
diseases [50]. Since PPARγ does not colocalize significantly within microglia, several studies indicated
a reduction in microglial activity after PPARγ agonist administration [51]. A recent study suggested
that LPC, a precursor of LPA, exerts direct biological effects, especially on vascular dementia [52,53].
Plasma LPC is produced by lecithin-cholesterol acyltransferase, hepatic secretion, or by the action
of phospholipase A2 (PLA2) [54]. PLA2 are enzymes that catalyze the cleavage of fatty acids from
the sn-2 position of phospholipids, producing free fatty acids and LPC. However, abundant evidence
exists regarding the capacity of free LPC to increase cytosolic Ca2+ and activate inflammatory signaling
pathways [55]. In a study of the plasma metabolic profile of Alzheimer’s disease (AD), a decrease in
LPC 16:0 and 18:2 was reported [56]. Furthermore, previous studies have suggested that oxidative
stress is related to AD [57]. These stimulations can activate PC metabolism and downregulate LPC [58].
Therefore, it is important to further evaluate the significance of targeting these bioactive lipids.
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4. Lysophospholipids and Spinal Cord Injury (SCI)

A recent estimate shows that the annual incidence of spinal cord injury (SCI) is approximately
54 cases per one million people in the United States, or about 17,500 new SCI cases per year [59].
SCI results in serious damage at the site of injury in the initial stages of neurotrauma, and is complicated
by the inflammatory response, which prevents neuronal regeneration and recovery by the central
nervous system (CNS) [60]. In addition, a considerable extent of the post-traumatic degeneration of the
spinal cord is due to a multifactorial secondary injury [61]. Currently, therapeutic research is focused
on two main areas—neuroprotection and neuroregeneration. Several therapeutic strategies have
been developed to potentially intervene in these progressive neurodegenerative events and minimize
secondary damage to the spinal cord. A variety of promising drugs have been tested in animal models,
but few can be applied on human patients with SCI. Neuroprotective drugs target secondary injury
effects, including inflammation, oxidative stress-mediated damage, glutamate excitotoxicity, and
programmed cell death. Several potentially neuroprotective agents that target the above pathways
are under investigation in human clinical trials [62]. Reports show that blocking of LPA signaling is
a useful and novel therapeutic strategy for SCI [63]. In the murine SCI model, the use of a specific
anti-LPA monoclonal antibody indicated that LPA produced endogenously after neurotrauma inhibits
SCI regeneration [63]. In the normal spinal cord, six different LPA receptors (LPA1-LPA6) were
expressed constitutively, and LPA1 was the most highly expressed [64]. LPA leads to demyelination
via activation of microglia LPA1. Moreover, we demonstrate that selective blockade of LPA1 after
SCI reduces functional deficits and demyelination, altogether revealing important contributions of
LPA–LPA1 signaling in secondary damage after SCI [64]. In addition, FTY720, an orally available
sphingosine-1-phosphate (S1P) receptor modulator known clinically as fingolimod [65], protects an
animal model of ischemia-reperfusion after cerebral ischemia and improves functional outcomes in a
rat model of SCI. FTY720 is a first-in-class S1P receptor modulator that was highly effective in phase
II clinical trials for multiple sclerosis. S1P is a bioactive lysophospholipid mediator that produces
a variety of cellular responses, including proliferation, survival, and motility via association of the
receptor with G protein-coupled receptor (GPCR) [66]. The efficacy of FTY720 in SCI is possibly
because of its role in immune modulation. These studies suggest that lysophospholipids are key
modulators of nervous system disorders, including SCI. Furthermore, PPARγ can potentially minimize
or prevent dysfunction after SCI [67]. Increased intracellular calcium levels, mitochondrial dysfunction,
arachidonic acid breakdown, and activation of nitric oxide synthase (NOS) immediately after SCI
results in the formation of reactive oxygen (ROS) and nitrogen species (RNS) [67]. Treatment with
the PPARγ agonist pioglitazone increased the number of motor neurons after SCI, which might
partially reduce post-SCI oxidative damage [67]. However, none of the agents tested until now
have demonstrated strong clinical beneficial outcomes in patients with SCI. Thus, the search for
pharmacological drugs capable of improving neurological function is still on. Strategies targeted at
modulating lysophospholipid levels in the injured CNS may lead to new therapeutic approaches
toward repairing various CNS disorders.

5. Conclusions

In this review, we have focused on recent developments that elucidate the role of
lysophospholipids in vascular and nervous system biology. Our proposed mechanism of action
for lysophospholipid-related diseases is summarized in Figure 1. Lysophospholipids act as mediators
via the activation of cell surface GPCRs, and as intracellular second messengers through PPARγ
activation and inhibition in diseases such as atherosclerosis, dementia, and spinal cord injury. However,
the physiological role of lysophospholipids in PPARγ signaling is still unclear; further understanding
would promote the synthesis of novel medicines that modulate lysophospholipid-mediated
PPARγ regulation.
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Figure 1. Schematic diagram of lysophospholipid-mediated PPARγ signaling. 
Lysophosphatidylcholine (LPC) is a bioactive phospholipid generated primarily by the action of 
phospholipase A2 (PLA2) enzymes on the plasma membrane. After cellular uptake, free LPC is 
reacylated yielding PC or deacylated yielding FA and choline. LPA and AGP are generated 
intracellularly in a stimulus-coupled manner by the ATX or PLA2 enzyme. cPA is generated 
intracellularly in a stimulus-coupled manner by the PLD2 enzyme. LPA and AGP induced neointima 
formation through the activation of PPARγ, whereas cPA inhibited PPARγ-mediated arterial wall 
remodeling in a noninjury infusion model. However, the physiological context of cPA in PPARγ 
signaling in brain is still unclear. Imbalance of the PPARγ agonist-antagonist equilibrium is involved 
in changes in cellular functions, including ROS generation, NOS and cytokine expression. These 
endogenous lysophospholipids regulate PPARγ function required for vascular wall pathologies, and 
metabolic-related diseases. PPRE (PPAR response element); RXR (retinoid X receptor); ATX 
(autotaxin). 
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Figure 1. Schematic diagram of lysophospholipid-mediated PPARγ signaling. Lysophosphatidylcholine
(LPC) is a bioactive phospholipid generated primarily by the action of phospholipase A2 (PLA2)
enzymes on the plasma membrane. After cellular uptake, free LPC is reacylated yielding PC or
deacylated yielding FA and choline. LPA and AGP are generated intracellularly in a stimulus-coupled
manner by the ATX or PLA2 enzyme. cPA is generated intracellularly in a stimulus-coupled manner
by the PLD2 enzyme. LPA and AGP induced neointima formation through the activation of PPARγ,
whereas cPA inhibited PPARγ-mediated arterial wall remodeling in a noninjury infusion model.
However, the physiological context of cPA in PPARγ signaling in brain is still unclear. Imbalance
of the PPARγ agonist-antagonist equilibrium is involved in changes in cellular functions, including
ROS generation, NOS and cytokine expression. These endogenous lysophospholipids regulate PPARγ
function required for vascular wall pathologies, and metabolic-related diseases. PPRE (PPAR response
element); RXR (retinoid X receptor); ATX (autotaxin).
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