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Abstract

We construct a simple immersed boundary–lattice Boltzmann method for moving-

boundary flows with heat transfer. On the basis of the immersed boundary–

lattice Boltzmann method for calculating the fluid velocity and the pressure

fields presented in the previous work by Suzuki and Inamuro [Comput. Fluids,

vol. 49, 2011, 173–187], the present method incorporates a lattice Boltzmann

method for the temperature field combined with immersed boundary methods

for satisfying thermal boundary conditions, i.e., the Dirichlet (iso-thermal) and

Neumann (iso-heat-flux) conditions. We validate the present method through

many benchmark problems including stationary and moving boundaries with

iso-thermal and iso-heat-flux conditions, and we find that the present results

have good agreement with other numerical results. Also, we investigate the

internal heat effect through simulations of moving-boundary flows with heat

transfer by using the present method. In addition, we apply the method to an

interesting example of a moving-boundary flow with heat transfer, i.e., a two-
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dimensional thermal flow in a heated channel with moving cold particles, which

is a simplified model of ice slurry flow.

Keywords: Immersed boundary method, Lattice Boltzmann method,

Moving-boundary flow, Heat transfer, Dirichlet condition, Neumann condition

1. Introduction

One of the important issues in computational fluid dynamics is to simulate

moving-boundary flows efficiently and accurately. The simplest way is to ap-

proximate the boundary by staircase-like steps in a fixed Cartesian grid. In

applying the approximation to moving-boundary flows, however, it is required5

to construct new staircase-like steps in each time step, and the procedure is

complicated and time-consuming in spite of its low accuracy. Other ways are

body-fitted or unstructured-grid methods in which the grid conforms to the

boundary. These methods can express arbitrary boundaries accurately and have

traditionally been used for moving-boundary flows. However, due to re-meshing10

procedures, the algorithms of the methods are generally complicated, and also

the computation costs are expensive. Recently, the immersed boundary method

(IBM), which was proposed by Peskin [1, 2] in 1970s in order to simulate blood

flows in the heart, has been reconsidered as an efficient method for simulating

moving-boundary flows on a fixed Cartesian grid. In the IBM, it is assumed15

that a fluid is filled in the inside of a boundary as well as in the outside of

the boundary, and then appropriate body force is applied near the boundary in

order to enforce the no-slip condition on the boundary. The IBM is a simple

approach to moving-boundary flows, although certain techniques are necessary

to determine the body force applied near the boundary. Various approaches and20

applications using the IBM were reviewed by Mittal and Iaccarino [3].

The idea of the IBM has been applied to moving-boundary flows with heat

transfer. In the IBMs for heat transfer (referred to as thermal IBMs), an ap-

propriate heat source/sink term is applied near the boundary in order to en-

force the thermal boundary conditions, which are classified into two types, i.e.,25
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the Dirichlet (iso-thermal) condition and the Neumann (iso-heat-flux) condi-

tion. Several thermal IBMs for the two types of boundary conditions have been

proposed. Kim and Choi [4] proposed a thermal IBM for both Dirichlet and

Neumann conditions by introducing a heat source/sink term on the body sur-

face or inside the body based on the finite volume approach on a staggered grid30

together with a fractional step method, and applied the thermal IBM to con-

vection phenomena around stationary circular cylinders. Pacheco et al. [5] also

proposed a thermal IBM for both Dirichlet and Neumann conditions based on

the finite volume approach on a non-staggered grid, and validated it extensively

through many heat-transfer problems with two-dimensional stationary bound-35

aries which do not coincide with the grid. Pan [6] proposed a thermal IBM for

the Dirichlet condition using volume-of-body function on multigrid Cartesian

meshes, and validated it through force-convection and natural-convection prob-

lems around a stationary circular cylinder. Zhang et al. [7] presented a thermal

IBM for both Dirichlet and Neumann conditions with a simple algorithm based40

on a direct-forcing approach, and applied it to heat-transfer problems with flows

over not only a stationary cylinder but also an oscillating cylinder. Feng and

Michaelides [8] developed a simple numerical method to solve the thermal inter-

action between particles and fluid in particulate flows. This method utilizes a

thermal IBM for the Dirichlet condition. They validated it extensively through45

many heat-transfer problems with both stationary and moving boundaries, and

applied it to the sedimentation of 56 heated circular particles. Wang et al. [9]

proposed a thermal IBM (referred to as the multi-direct heat source scheme) in

which the heat source/sink term is iteratively determined to enforce the Dirichlet

condition on the boundary more accurately, and validated it through simulations50

of natural convection between concentric cylinders and of flow past a stationary

circular cylinder. In addition, it was applied to flow past a staggered tube bank

with heat transfer. Ren et al. [10] presented an efficient thermal IBM (referred

to as the heat flux correction scheme) for the Neumann condition, in which the

heat source/sink term is determined by the difference between the desired heat55

flux and the one calculated from the temporary temperature field without re-
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gard to the boundary. Numerical experiments for heat-transfer problems with

stationary cylinders were conducted to validate the capability and efficiency of

this method.

On the other hand, the lattice Boltzmann method (LBM) has been devel-60

oped into an alternative and promising numerical scheme for simulating viscous

fluid flows in the Cartesian grid without solving the Poisson equation for pres-

sure fields [11]. Since both of the LBM and the IBM are based on the Cartesian

grid, the LBM combined with the IBM (so-called IB-LBM) is well-suited to

simulations of moving-boundary flows. Recently, several IB-LBMs which incor-65

porate a thermal IBM (referred to as thermal IB-LBMs) have been proposed

for solving heat-transfer problems with flows around complex geometries and/or

moving boundaries. Jeong et al. [12] proposed a thermal IB-LBM using an equi-

librium internal energy density approach to simulate natural convections in a

cavity with stationary circular and square cylinders. Kang and Hassan [13]70

combined the direct-forcing thermal IBM formulas with two types of LBMs,

i.e., a hybrid model and a simplified double-population method, and validated

them through two-dimensional convective heat-transfer problems with not only

stationary but also moving boundaries. Zhang et al. [14] combined a thermal

IB-LBM with the discrete element method to simulate particulate flows with75

heat transfer. Eshghinejadfard and Thévenin [15] extended a thermal IB-LBM

to three-dimensional particulate flows with heat transfer. Wu et al. [16] pro-

posed a thermal IB-LBM in which the heat source/sink term at the next time

step is taken as unknowns and iteratively corrected, and not only validated it

through some two-dimensional heat-transfer problems but also applied it to a80

three-dimensional sedimentation of a single particle. While the above ther-

mal IB-LBMs are for only the Dirichlet conditions, Hu et al. [17] proposed a

thermal IB-LBM for Dirichlet, Neumann, and Robin (weighted combination of

iso-thermal and iso-heat-flux) conditions, and tested it by some natural and

forced convective problems including moving-boundary flows. Wang et al. [18]85

proposed a thermal IB-LBM for thermal flows with the Neumann conditions on

the basis of the lattice Boltzmann flux solver, and applied it to several bench-
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marks of natural, forced, and mixed convection problems around a stationary

circular cylinder.

As shown in the above-mentioned researches on the development of the ther-90

mal IB-LBM and its applications, there is growing concern about the thermal

IB-LBM to solve heat-transfer problems with flows around complex geometries

and/or moving boundaries efficiently. However, more work is needed to prove

its effectiveness in simulations of moving-boundary flows with heat transfer. Es-

pecially, there is little to validate the thermal IB-LBM for iso-heat-flux moving-95

boundary flows and to apply it to such problems.

The purposes of this study are to construct a simple thermal IB-LBM for

solving heat-transfer problems with flows around moving boundaries efficiently,

to validate it through many benchmark problems including stationary- and

moving-boundary flows with the Dirichlet and Neumann conditions, and to100

apply it to an interesting example of a moving-boundary problem with heat

transfer. In the present study, on the basis of the IB-LBM proposed by Suzuki

and Inamuro [19] for calculating the fluid velocity and pressure fields, we con-

struct a new thermal IB-LBM by combining a simple thermal LBM proposed

by Inamuro et al. [20] and Yoshino and Inamuro [21] with two types of thermal105

IBMs, i.e., the multi-direct heat source scheme [9] and the heat flux correction

scheme [10] for calculating the temperature field with the Dirichlet and Neu-

mann conditions, respectively. It should be noted that the above two thermal

IBMs have not been implemented in the framework of the LBM. The IB-LBM

proposed by Suzuki and Inamuro [19] is a combination of the LBM and the110

multi-direct forcing scheme [22], which can enforce the no-slip condition accu-

rately by determining the body force iteratively from the difference between

the desired velocity and the flow velocity without regard to the boundary. The

method has been extensively validated through many benchmark problems of

moving-boundary flows in their work [19]. In addition, the method has been115

used for investigating the internal mass effect for the force and torque acting on

the boundary, and it was revealed that the internal mass effect is very important

in moving-boundary flows at high Reynolds numbers [19]. However, no one has
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investigated the importance of the internal mass effect for the rate of total heat

transferred from the boundary to the surrounding fluid (referred to as the in-120

ternal heat effect) in moving-boundary flows with heat transfer. In the present

study, we investigate the internal heat effect in a similar way to the work by

Suzuki and Inamuro [19] concerning the internal mass effect for the force and

torque acting on the boundary.

The paper is organized as follows. In Section 2, we explain the formula-125

tion of the problem in the framework of the IBM. In Section 3, we describe

the present numerical method. In Section 4, we validate the present numeri-

cal method through thermal flows around a circular cylinder with the Dirichlet

and Neumann conditions, Taylor–Couette flows with heat transfer, the sedi-

mentation of a cold circular cylinder in a long channel, natural convection in an130

annulus, and the heat convection with flow over an oscillating circular cylinder

with the iso-heat-flux condition. In addition, we investigate the internal heat

effect through simulations of a heated circular cylinder which oscillates transla-

tionally in a closed small box at a low temperature. In Section 5, we apply the

present method to an interesting example of a moving-boundary flow with heat135

transfer, i.e., a two-dimensional thermal flow in a heated channel with moving

cold particles, which is a simplified model of ice slurry flow [23]. We finally

conclude in Section 6.

2. Formulation of the problem

We consider the system where a rigid body moves in an incompressible vis-140

cous fluid with heat transfer.

2.1. Thermal fluid flow with a moving body represented by the IBM

Let Ωall be the entire domain of the system, Ω(t) be the closed domain inside

the rigid body, and ∂Ω(t) be the surface of the body at time t (see Fig. 1). We

assume that an incompressible viscous fluid with the density ρf, the viscosity145

µ, the specific heat at constant pressure cpf , and the thermal conductivity λf is
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filled in the entire domain Ωall. We call the fluid inside Ω(t) the internal fluid and

the fluid outside Ω(t) the external fluid. We assume that the no-slip condition

on ∂Ω(t) is satisfied by body force g(x, t) applied only on the neighborhood of

∂Ω(t) defined by Lϵ(t) as shown in Fig. 1. In addition, the thermal boundary150

conditions on ∂Ω(t) are satisfied by a heat source/sink term q(x, t) applied on

Lϵ(t), which represents the rate of heat transferred to the surrounding fluid per

unit volume. The body force g and the heat source/sink term q are determined

by the IBM as explained in Section 3.

Figure 1: The system of a moving body in a fluid represented by the IBM.

In this study, we assume as follows:155

• The density and the viscosity of the fluid are constant and uniform inde-

pendently of the temperature.

• The viscous heat dissipation is negligibly small.

These assumptions have been adapted in most studies concerning the thermal

IBM, and can be considered to be valid for the problems in this study. In160

addition, we consider only prescribed thermal boundary conditions which are

determined independently of the thermal conduction inside the body. Therefore,

the temperature field inside the body is completely imaginary, although we

calculate it in both the inside and the outside of the body.

Under the above assumptions, the fluid flow is governed by the continuity
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equation and the Navier–Stokes equations for incompressible fluid as follows:

∇ · u = 0, (1)

ρf

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ µ∇2u+ g, (2)

where u(x, t) and p(x, t) are the fluid velocity and the pressure at the point x

at time t, respectively. It should be noted that g(x, t) = 0 if x /∈ Lϵ(t). The

temperature of the fluid is considered as a passive-scalar and governed by the

following convection–diffusion equation:

ρfcpf

[
∂T

∂t
+ u · ∇T

]
= λf∇2T + q, (3)

where T (x, t) is the temperature at the point x at time t. It should be noted165

that q(x, t) = 0 if x /∈ Lϵ(t).

2.2. Force and torque acting on the body and its motion

The force F (t) applied by the external fluid to the body can be calculated

by the negative of the sum of the body forces g(x, t) and the internal mass effect

[19] as below:

F (t) = Ftot(t) + Fin(t), (4)

Ftot(t) = −
∫
x∈Lϵ(t)

g(x, t) dx, (5)

Fin(t) = ρf
d

dt

∫
x∈Ω(t)

u(x, t)dx. (6)

Similarly, the torque T (t) acting on the body around a point Xc(t) is calculated

by

T (t) = Ttot(t) + Tin(t), (7)

Ttot(t) = −
∫
x∈Lϵ(t)

[x−Xc(t)]× g(x, t) dx, (8)

Tin(t) = ρf
d

dt

∫
x∈Ω(t)

[x−Xc(t)]× u(x, t)dx. (9)

In the case where the body freely moves, its motion is governed by the

Newton–Euler equations with the force (4) and the torque (7) applied by the

external fluid. The detailed description of the equations of the body motion is170

given by Suzuki and Inamuro [19].
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2.3. Rate of total heat transferred from the body to the surrounding fluid

In a similar consideration to the force and torque acting on the body, the

rate of total heat transferred from the body to the surrounding fluid can be

calculated as bellow:

Q(t) = Qtot(t) +Qin(t), (10)

Qtot(t) =

∫
x∈Lϵ(t)

q(x, t) dx, (11)

Qin(t) = −ρfcpf
d

dt

∫
x∈Ω(t)

T (x, t)dx. (12)

We call Qin the internal heat effect. It should be noted that the internal heat

effect Qin is not zero when the temperature field is unsteady, e.g., moving-

boundary flows with heat transfer. The internal heat effect Qin in the simulation175

of moving-boundary flows with heat transfer by the thermal IBM is investigated

in Section 4.3.

3. Numerical method

We use a thermal IB-LBM for solving Eqs. (1)–(3). The equations of the

body motion are computed by the second-order Adams–Bashforth method. At180

each time step the force and the torque acting on the body are computed by

Eqs. (4) and (7).

The present method is a combination of a simple thermal LBM with the

multi-direct forcing scheme [22] to enforce the no-slip condition for the velocity

and pressure fields, the multi-direct heat source scheme [9] to enforce the Dirich-185

let condition for the temperature field, and the heat flux correction scheme [10]

to satisfy the Neumann condition for the temperature field. The no-slip condi-

tion for the velocity and pressure fields is enforced accurately by determining the

body force iteratively from the difference between the desired velocity and the

flow velocity without regard to the boundary. The Dirichlet condition for the190

temperature field is enforced accurately by determining the heat source/sink

term iteratively in an analogous way to that for the no-slip condition. The
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Neumann condition for the temperature field is satisfied by determining the

heat source/sink term from the difference between the desired heat flux and

the one calculated from the temporary temperature field without regard to the195

boundary.

We use nondimensional variables defined in Appendix A. Note that the same

notations as in Section 2 are used for the nondimensional variables. Although

we only describe and implement two-dimensional examples in this paper, the

present method can be extended to three-dimensions in a straightforward way.200

3.1. Thermal lattice Boltzmann method

In the LBM, a modeled gas, which is composed of identical particles whose

velocities are restricted to a finite set of vectors, is considered [11]. Two-

dimensional lattice with nine velocity vectors (D2Q9 model) is used in the

present study. The D2Q9 model has the velocity vectors ci =(0, 0), (0,±1),

(±1, 0), (±1,±1) for i = 1, 2, · · · , 9. The evolution of the particle distribution

functions fi(x, t) and gi(x, t) for the fluid motion and for the heat transfer,

respectively, with the velocity ci at the point x and time t is computed by the

following equations:

fi(x+ ci∆x, t+∆t) =fi(x, t)−
1

τf
[fi(x, t)− f eq

i (ρ(x, t),u(x, t))] , (13)

gi(x+ ci∆x, t+∆t) =gi(x, t)−
1

τg
[gi(x, t)− geqi (T (x, t),u(x, t))] , (14)

where ∆x is a lattice spacing, ∆t is the time step during which the particles

travel one lattice spacing, f eq
i and geqi are equilibrium distribution functions

given below, and τf and τg are single relaxation times of O(1). In Eqs. (13) and

(14), x is a nondimensional position normalized by a characteristic length Ĥ0, t

is a nondimensional time normalized by a diffusive time scale t̂0 = Ĥ0/Û0 where

Û0 is a characteristic flow speed, and ci is a nondimensional particle velocity

normalized by a characteristic particle speed ĉ. In the system where a rigid body

moves in fluid, Ĥ0 is the scale of the body, and Û0 is the speed of the body. In

addition, we assume that Û0/ĉ is of O(∆x). Note that ∆t = Sh∆x where Sh =

Ĥ0/(t̂0ĉ) = Û0/ĉ = O(∆x) (see Appendix A). The equilibrium distribution
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functions f eq
i for the fluid motion [24] and geqi for the heat transfer [20, 21] are

given by

f eq
i (ρ,u) =Eiρ

[
1 + 3ci · u+

9

2
(ci · u)2 −

3

2
u · u

]
, (15)

geqi (T,u) =EiT [1 + 3ci · u] , (16)

where E1 = 4/9, E2 = · · · = E5 = 1/9, and E6 = · · · = E9 = 1/36 for the D2Q9

model. The above equilibrium distribution function geqi is the simplest one

which can recover the convection–diffusion equation (3). The density ρ(x, t),

the pressure p(x, t), the fluid velocity u(x, t), and the temperature T (u, t) are

calculated by

ρ =
9∑

i=1

fi, (17)

p =
ρ

3
, (18)

u =
1

ρ

9∑
i=1

fici, (19)

T =
9∑

i=1

gi. (20)

In addition, the heat-flux vector, i.e., the temperature gradient can be calculated

as follows [21]:

h = −λf∇T =
9∑

i=1

gi(ci − u), (21)

where the thermal conductivity λf is given by

λf =
1

3
τg∆x. (22)

The kinematic viscosity ν and the thermal diffusivity α are given by

ν =
1

3

(
τf − 1

2

)
∆x, (23)

α =
1

3

(
τg −

1

2

)
∆x. (24)
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When external body force g(x, t) and an external heat source/sink term

q(x, t) are applied, the evolution equations (13) and (14) of the particle distri-

bution functions fi(x, t) and gi(x, t) can be calculated in a stepwise fashion as

follows:205

1. fi(x, t) and gi(x, t) are evolved without the body force and the heat

source/sink term as follows:

f∗
i (x+ ci∆x, t+∆t) = fi(x, t)−

1

τf
[fi(x, t)− f eq

i (ρ(x, t),u(x, t))] ,

(25)

g∗i (x+ ci∆x, t+∆t) = gi(x, t)−
1

τg
[gi(x, t)− geqi (T (x, t),u(x, t))] .

(26)

2. f∗
i and g∗i are corrected by the body force and the heat source/sink term

as follows:

fi(x, t+∆t) = f∗
i (x, t+∆t) + 3∆xEiρ

∗(x, t+∆t)ci · g(x, t+∆t),

(27)

gi(x, t+∆t) = g∗i (x, t+∆t) +
∆x

ρfcpf
Eiq(x, t+∆t), (28)

where ρ∗(x, t+∆t) is the temporary density calculated from Eq. (17) by using

f∗
i . Since in the thermal LBM α and λf are given by Eqs. (24) and (22),

respectively, the value of ρfcpf in the right-hand side of Eq. (28) can be calculated

as ρfcpf = λf/α.

As described in Ref. [25], it is found that the asymptotic expansions of p,210

u, and T with respect to ∆x can be expressed by p = ρf/3 + (∆x)2p(2) +

(∆x)3p(3) + (∆x)4p(4) + · · · , u = (∆x)u(1) + (∆x)2u(2) + (∆x)3u(3) + · · · , and

T = T (0) + (∆x)T (1) + (∆x)2T (2) + · · · , and p(2), u(1), and T (0) satisfy the

continuity equation (1), the Navier–Stokes equations (2), and the convection–

diffusion equation (3) for incompressible viscous fluid, while p(3), u(2), and T (1)
215

are zero with appropriate initial and boundary conditions [26]. Therefore, the

solutions of Eqs. (25)–(28) and (15)–(20) give the pressure, the fluid velocity,
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Figure 2: Illustration of an arrangement of boundary points Xk and lattice points x.

and the temperature for incompressible viscous fluid flows and heat transfer

with relative errors of O[(∆x)2] (see Refs. [20, 27]).

3.2. Immersed boundary method for fluid motion220

In the IBM for fluid motion, the body force is applied on lattice points near

the boundary in order to enforce the no-slip condition on the boundary. In this

paper, we use the multi-direct forcing scheme proposed by Wang et al. [22].

Although the IBM for fluid motion is the same method as presented in the

previous work [19], we describe it again for preparing some formulations used in225

the thermal IBM explained bellow and for clearly describing the whole algorithm

for fluid motion and heat transfer together.

Supposing that fi(x, t), ρ(x, t), and u(x, t) are known, the temporary f∗
i (x, t+

∆t), ρ∗(x, t+∆t), and u∗
i (x, t+∆t) can be calculated by Eqs. (25), (17), and

(19), respectively. Let Xk(t + ∆t) and Uk(t + ∆t) (k = 1, 2, · · · , N) be the

position of the Lagrangian points of the moving boundary and the boundary

velocity at the points, respectively. Note that the moving boundary is repre-

sented by N points, and the boundary Lagrangian points Xk generally differ

from the background lattice points x (see Fig. 2). Then, the temporary veloci-

ties u∗(Xk, t+∆t) at the boundary Lagrangian points Xk are interpolated by

13



u∗(Xk, t+∆t) =
∑
x

u∗(x, t+∆t) W (x−Xk) (∆x)2, (29)

where
∑
x

describes the summation over all lattice points x, and W is a weight-

ing function proposed by Peskin [28] given by

W (x, y) =
1

∆x
w
( x

∆x

)
· 1

∆x
w
( y

∆x

)
, (30)

w(r) =


1

8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
, |r| ≤ 1,

1

8

(
5− 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2,

0, otherwise.

(31)

The body force g(x, t +∆t) is determined by the following iterative proce-

dure.230

Step 0. Compute the initial value of the body force at the boundary La-

grangian points by

g0(Xk, t+∆t) = ρf Sh
Uk − u∗(Xk, t+∆t)

∆t
. (32)

Step 1. Compute the body force at the lattice points of the ℓth iteration by

gℓ(x, t+∆t) =
N∑

k=1

gℓ(Xk, t+∆t) W (x−Xk) ∆V, (33)

where the body force is not added to one boundary Lagrangian point but

a small volume element whose volume is described as ∆V . In this method,

∆V is taken as S/N × ∆x where S is the total length of the boundary,

and S/N is taken to be approximately equal to ∆x. It should be noted

that while Peskin [28] imposed S/N < 0.5(∆x) in order to avoid leaks, we235

found in our preliminary calculations that results with S/N in the range

of 0.5(∆x) to 1.0(∆x) almost coincide with each other.

Step 2. Correct the velocity at the lattice points by

uℓ(x, t+∆t) = u∗(x, t+∆t) +
1

ρf

∆t

Sh
gℓ(x, t+∆t). (34)
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Step 3. Interpolate the velocity at the boundary Lagrangian points with

uℓ(Xk, t+∆t) =
∑
x

uℓ(x, t+∆t) W (x−Xk) (∆x)2. (35)

Step 4. Correct the body force with

gℓ+1(Xk, t+∆t) = gℓ(Xk, t+∆t) + ρf Sh
Uk − uℓ(Xk, t+∆t)

∆t
, (36)

and go to Step 1.

In the previous work [19], it was reported that gℓ=5(x, t+∆t) is enough to keep

no-slip condition on the boundary. Therefore, we iterate the above procedure240

until ℓ = 5 in the following computations.

3.3. Thermal immersed boundary method

In the thermal IBM, the heat source/sink term is applied on lattice points

near the boundary in order to enforce the thermal boundary conditions on the

boundary, i.e., the Dirichlet and Neumann conditions. In this paper, we use the245

multi-direct heat source scheme proposed by Wang et al. [9] for the Dirichlet

condition, and the heat flux correction scheme proposed by Ren et al. [10] for

the Neumann condition.

3.3.1. Multi-direct heat source scheme

This scheme is based on the same concept as the multi-direct forcing method,

that is, the heat source/sink term is calculated iteratively to enforce the Dirichlet

condition strongly. Supposing that gi(x, t), T (x, t), and u(x, t) are known, the

temporary g∗i (x, t +∆t) and T ∗(x, t +∆t) can be calculated by Eqs. (26) and

(20), respectively. Then, the temporary temperatures T ∗(Xk, t + ∆t) at the

boundary Lagrangian points Xk are interpolated in the same way as Eq. (29),

i.e.,

T ∗(Xk, t+∆t) =
∑
x

T ∗(x, t+∆t) W (x−Xk) (∆x)2. (37)

Let T d
k (t + ∆t) be the desired temperatures at the Lagrangian points Xk250

given as the Dirichlet condition. The heat source/sink term q(x, t + ∆t) is

determined by the following iterative procedure.
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Step 0. Compute the initial value of the heat source/sink term at the bound-

ary Lagrangian points by

q0(Xk, t+∆t) = ρfcpf Sh
T d
k − T ∗(Xk, t+∆t)

∆t
. (38)

Step 1. Compute the heat source/sink term at the lattice points of the mth

iteration by

qm(x, t+∆t) =

N∑
k=1

qm(Xk, t+∆t) W (x−Xk) ∆V. (39)

Step 2. Correct the temperature at the lattice points by

Tm(x, t+∆t) = T ∗(x, t+∆t) +
1

ρfcpf

∆t

Sh
qm(x, t+∆t). (40)

Step 3. Interpolate the temperature at the boundary Lagrangian points with

Tm(Xk, t+∆t) =
∑
x

Tm(x, t+∆t) W (x−Xk) (∆x)2. (41)

Step 4. Correct the heat source/sink term with

qm+1(Xk, t+∆t) = qm(Xk, t+∆t)+ρfcpf Sh
T d
k − Tm(Xk, t+∆t)

∆t
, (42)

and go to Step 1.

From preliminary computations, we found that qm=5(x, t+∆t) is enough to keep

the Dirichlet condition on the boundary points (see Table 1 in Section 4.1.1).255

Therefore, we iterate the above procedure until m = 5 in the following compu-

tations.

3.3.2. Heat flux correction method

Supposing that gi(x, t), T (x, t), and u(x, t) are known, the temporary g∗i (x, t+

∆t) can be calculated by Eq. (26). In addition, the temporary heat-flux vector

h∗(x, t+∆t) is calculated by Eq. (21) as follows:

h∗(x, t+∆t) =

9∑
i=1

g∗i (x, t+∆t) [ci − u(x, t+∆t)] . (43)
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The temporary heat-flux vectors h∗(Xk, t + ∆t) at the boundary Lagrangian

points Xk are interpolated in the same way as Eq. (29), i.e.,

h∗(Xk, t+∆t) =
∑
x

h∗(x, t+∆t) W (x−Xk) (∆x)2. (44)

Let nk(t + ∆t) be the unit normal vectors of the boundary at the Lagrangian

points Xk(t+∆t) pointing to the external fluid. Then, the temporary heat-flux

in the normal direction is given by

h∗
n(Xk, t+∆t) = nk · h∗(Xk, t+∆t). (45)

It should be noted that in the original heat flux correction method proposed

by Ren et al. [10], the temporary heat-flux is calculated by the second-order260

central difference approximation for the temperature, while the present method

uses Eq. (43). Both ways should have the same accuracy, but lattice points

used for calculating the temporary heat-flux are different. The number of the

points used in the present way is larger than that used in the way of Ren et

al. [10], and therefore it is expected that the present way is more stable. In265

our preliminary calculations, however, both ways gave almost the same results

and did not show any instability. Therefore, either way might be fine in two-

dimensional calculations.

Let Hd
k (t+∆t) be the desired heat fluxes at the Lagrangian points Xk in its

normal direction given as the Neumann condition. The heat source/sink term

q(x, t+∆t) is determined by

q(Xk, t+∆t) = 2
Hd

k (t+∆t)− h∗
n(Xk, t+∆t)

∆x
, (46)

where the coefficient 2 in the right-hand side of the above equation means that

the heat flux due to the difference of Hk(t+∆t) and h∗
n(Xk, t+∆t) should affect

the internal fluid as much as the external fluid. Then, the heat source/sink terms

at the Lagrangian points are distributed to the lattice points in the same way

as Eq. (39) as follows:

q(x, t+∆t) =

N∑
k=1

q(Xk, t+∆t) W (x−Xk) ∆V. (47)
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3.4. Algorithm of computation

When the motion of the boundary is determined in a predetermined manner,270

the algorithm of computation by the present numerical method is summarized

as below.

0. Suppose the initial value of fi(x, 0) and gi(x, 0), and compute ρ(x, 0),

u(x, 0), and T (x, 0) by Eqs. (17), (19), and (20), respectively.

1. Set Xk(t+∆t), nk(t+∆t), and Uk(t+∆t) in a predetermined manner.275

2. Compute f∗
i (x, t +∆t) by Eq. (25), and ρ∗(x, t +∆t) and u∗(x, t +∆t)

by Eqs. (17) and (19), respectively. Then, compute u∗(Xk, t + ∆t) by

Eq. (29).

3. Compute g(x, t+∆t) by Eqs. (32)–(36).

4. Compute fi(x, t+∆t) by Eq. (27), and ρ(x, t+∆t) and u(x, t+∆t) by280

Eqs. (17) and (19), respectively.

If the Dirichlet condition is considered for the heat transfer,

5. Set T d
k (t+∆t).

6. Compute g∗i (x, t+∆t) by Eq. (26) and T ∗(x, t+∆t) by Eq. (20). Then,

compute T ∗(Xk, t+∆t) by Eq. (37).285

7. Compute q(x, t+∆t) by Eqs. (38)–(42).

8. Compute gi(x, t+∆t) by Eq. (28) and T (x, t+∆t) by Eq. (20).

9. Advance one time step and return to 1.

If the Neumann condition is considered for the heat transfer,

5. Set Hd
k (t+∆t).290

6. Compute g∗i (x, t+∆t) by Eq. (26) and h∗(x, t+∆t) by Eq. (21). Then,

compute h∗(Xk, t+∆t) by Eq. (44).

7. Compute hn(Xk, t+∆t) by Eq. (45).

8. Compute q(x, t+∆t) by Eqs. (46) and (47).

9. Compute gi(x, t+∆t) by Eq. (28) and T (x, t+∆t) by Eq. (20).295

10. Advance one time step and return to 1.
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It should be noted that when the body is moved by the force and the torque

acting on the body, we calculate the force and the torque, compute the equations

of the body motion, and then determine Xk(t+∆t), nk(t+∆t), and Uk(t+∆t)

instead of the implementation 1 in the above algorithm.300

4. Numerical validations

In this section, we examine the accuracy of the present thermal IB-LBM

by applying it to some benchmark problems for the Dirichlet and Neumann

conditions. In addition, we investigate the internal heat effect through simula-

tions of moving-boundary flows with heat transfer by using the present thermal305

IB-LBM.

4.1. For the Dirichlet condition

4.1.1. Thermal flow around an iso-thermal circular cylinder

We consider a thermal flow around an iso-thermal circular cylinder. The di-

ameter of the circular cylinder isDs. The computational domain is [−10Ds, 18Ds]×310

[−10Ds, 10Ds]. The center of the circular cylinder is located at (x, y) = (0, 0).

In the inlet (x = −10Ds), a uniform iso-thermal flow in the x-direction with a

speed U∞ and at a temperature T∞ = 0 is imposed. In the outlet (x = 18Ds),

the non-reflecting condition [29] is imposed, i.e., ∂ϕ/∂t+C∂ϕ/∂x = 0 for ϕ = u

and T , where C = ∆x/∆t. In the bottom (y = −10Ds) and top (y = 10Ds)315

boundaries, the slip condition (∂u/∂y = 0 and v = 0 where u = (u, v)) and the

adiabatic condition (∂T/∂y = 0) are applied. The circular cylinder is station-

ary and iso-thermal at a temperature Ts = 1. The governing parameters of this

system are the Reynolds number defined by Re = U∞Ds/ν and the Prandtl

number defined by Pr = ν/α. We set Re = 20 and Pr = 0.73 in order to com-320

pare the present results with other numerical results [9, 30–32]. We consider

the steady state of this system.

In the lattice Boltzmann simulation, the boundary conditions have to be

implemented in terms of the particle distribution functions. In the inlet, the
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bounce-back scheme [33] and the iso-thermal condition proposed by Yoshino and325

Inamuro [21] are used for imposing the flow speed U∞ and the temperature T∞,

respectively. In the outlet, the velocity and the temperature are determined as

ϕ(18Ds, y, t+∆t) = ϕ(18Ds −∆x, y, t) for ϕ = u and T by using the first-order

upwind difference scheme, and we impose them in the same way as the inlet.

In the bottom and top boundaries, the mirror reflection of fi and the iso-flux330

condition proposed by Yoshino and Inamuro [21] are used for imposing the slip

condition and the adiabatic condition, respectively. The boundary conditions

on the surface of the circular cylinder are implemented by the present thermal

IB-LBM. The steady state is determined when four significant digits for the

mean Nusselt number Nu (shown below) converge to constant values.335

At first, we examine the effect of the number of iterations m in the multi-

direct heat source scheme. In this simulation, we set Ds = 50∆x, which is

comparable with that in Refs. [31, 32], and N = 204. In addition, we set

U∞ = 0.04, τf = 0.8000, and τg = 0.9110. We define the maximum and mean

errors from the iso-thermal condition on the cylinder surface, Emax and Emean,

as below:

Emax = max{|Ts − T (Xk)|; k = 1, · · · , N} × 100 [%], (48)

Emean =

∑N
k=1 |Ts − T (Xk)|

N
× 100 [%]. (49)

In addition, we calculate the mean Nusselt number Nu on the cylinder surface

and compare the present result with that by Dennis et al. [30]. The local Nusselt

number Nu at a point on the cylinder surface with the argument θ is defined by

Nu(θ) =
hn(θ)

λf∆T/Ds
, (50)

where hn(θ) is the heat flux in the normal direction of the cylinder surface at

the point and ∆T = Ts − T∞ is the characteristic temperature difference. The

mean Nusselt number Nu is defined by the mean value of Nu on the surface as

follows:

Nu =
1

πDs

∫ 2π

0

Nu(θ)
Ds

2
dθ =

1

πDs

1

λf∆T/Ds

∫ 2π

0

hn(θ)
Ds

2
dθ. (51)
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The integral in the right-hand side of the above equation should be equal to the

rate of total heat transferred from the body to the surrounding fluid given by

Eq. (10). Therefore, the mean Nusselt number Nu can be calculated as follows:

Nu =
Q

πλf∆T
. (52)

It should be noted that Qin = 0 since we consider the steady state, and conse-

quently Q can be calculated by the summation of the heat source/sink term over

all lattice points. Table 1 shows Emean, Emax, and Nu for different numbers of

iterations (m = 0, 1, . . . , 5) with the result given by Dennis et al. [30]. We can

see that the error from the Dirichlet condition is sufficiently small in the case of340

m = 5; the maximum error Emax is less than 0.05 % and the mean error Emean

is less than 0.02 %. In addition, it can be seen that Nu is compatible with the

result given by Dennis et al. [30].

Table 1: Comparison of Emean, Emax, and Nu for different numbers of iterations (m =

0, 1, · · · , 5). The relative error of Nu from the result given by Dennis et al. [30] is also shown.

m Emean [%] Emax [%] Nu

0 0.430 0.730 2.529 (1.10%)

1 0.165 0.288 2.535 (0.86%)

2 0.0831 0.152 2.537 (0.78%)

3 0.0461 0.0922 2.538 (0.74%)

4 0.0269 0.0625 2.538 (0.74%)

5 0.0161 0.0458 2.539 (0.70%)

Dennis et al. [30] 2.557

Next, we compare the local Nusselt number on the cylinder surface with

other numerical results [9, 30–32]. In this simulation, we set Ds = 96∆x345

and N = 332, which are the same as those in Ref. [9]. In addition, we set

U∞ = 0.03986, τf = 1.074, and τg = 1.286. Since the local Nusselt number on

the cylinder surface cannot be calculated by using the heat source/sink terms
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Figure 3: Comparison of the local Nusselt number on the cylinder surface with other numerical

results [9, 30–32] for the thermal flow around an iso-thermal circular cylinder.

applied near the boundary unlike the mean Nusselt number, we calculate it in

a finite difference form near the cylinder surface. It should be noted that the350

IBM has a problem that the boundary has the effective thickness [34–38], i.e.,

the diameter of the circular cylinder should be slightly larger than the input

diameter Ds effectively. Therefore, we define a virtual cylinder surface which is

concentric with and slightly larger than the original circular cylinder, and we

regard the virtual cylinder as an effective cylinder. We set the effective thickness355

of the boundary to 1.25∆x [38], i.e., the diameter of the effective cylinder to

Ds + 2.5∆x. We calculate the local heat flux on the effective cylinder surface

by the first-order one-sided finite difference approximation of the temperature.

Fig. 3 shows the local Nusselt numbers obtained by the present method and

other numerical methods [9, 30–32]. We can see that the present result has360

good agreement with the other results.

4.1.2. Taylor–Couette flow with heat transfer for the Dirichlet condition

We consider a thermal flow between two concentric circular cylinders. Let

the axial direction be the z-axis and a plane normal to the z-axis be the x-y
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plane. The radius of the inner cylinder is R1 and that of the outer cylinder365

is R2 = 2R1. Supposing that the outer cylinder is stationary, we consider a

flow induced by rotating the inner cylinder around the z-axis with the rotating

speed U1. In this calculation, supposing that the temperatures of the inner and

outer cylinders are fixed to T1 = 1 and T2 = 0, respectively, we consider a heat

transfer induced by the difference of the temperatures.370

The accuracy of the IB-LBM for the fluid motion (i.e., the velocity, the

pressure, and the torque acting on the inner cylinder) was investigated in the

previous work [37]. In the present study, therefore, we focus on the accuracy

for the heat transfer. The steady solution of the temperature for this problem

is given by

T (r) = T2 − (T2 − T1)
ln(r/R2)

ln(R1/R2)
, (53)

where r is the distance from the center of the cylinder. The rate of total heat

transferred from the inner cylinder to the surrounding fluid is given by

Q =
2πλf(T2 − T1)

ln(R1/R2)
. (54)

We take a computational domain of size [−H,H] × [−H,H] where H =

R2 + 2∆x. All sides of the computational domain are periodic. The Reynolds

number defined by Re = U1(2R1)/ν is fixed to 10, and the Prandtl number

defined by ν/α is fixed to 0.73. The relaxation times are set to τf = 0.7880 and

τg = 0.8945 in this simulation. The number of Lagrangian boundary points N375

is set to 4(2R1 +1) for the inner cylinder and 4(2R2 +1) for the outer cylinder.

We calculate errors in the temperature and the rate of total heat from the

above analytical solutions. The error norms are defined as follows. The maxi-

mum and mean errors in the temperature T are given by

Emax(T ) = max{|Tcalc − Tex|;R2
1 ≤ x2 + y2 ≤ R2

2}, (55)

Emean(T ) =
1

Min

∑
R2

1≤x2+y2≤R2
2

|Tcalc − Tex|, (56)

where Tcalc is a calculated value of T , Tex is the analytical value of T ,
∑

R2
1≤x2+y2≤R2

2

means the summation over lattice points in the range of R2
1 ≤ x2 + y2 ≤ R2

2,
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Figure 4: Errors in the temperature and the rate of total heat transferred from the inner

cylinder to the surrounding fluid in the simulation of a Taylor–Couette flow with heat transfer

for the Dirichlet condition.

and Min is the number of lattice points in this range. The error in the rate of

total heat Q is given by

E(Q) =

∣∣∣∣Qcalc −Qex

Qex

∣∣∣∣ , (57)

where Qcalc is a calculated value of Q, and Qex is the analytical value of Q. The

steady state is determined when six significant digits for Emax(T ), Emean(T ),

and E(Q) converge to constant values. Fig. 4 shows the decay of the errors

against the lattice spacing ∆x. We can see from this figure that the present380

results have first-order accuracy in both the temperature and the rate of total

heat. This means that the order of accuracy of the LBM, which is formally

second-order accurate, decreases by using the IBM. This is because the discon-

tinuity of the temperature gradient makes a decrease in the order of accuracy

of the temperature field in the same way as the fact that the discontinuity of385

the velocity gradient makes a decrease in the order of accuracy of the flow field

[37, 39, 40]. It should be noted that the order of the accuracy is comparable

with other thermal IB-LBMs (e.g., [17]).
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Figure 5: Computational domain for the sedimentation of a cold circular cylinder in a long

channel: (a) the whole domain; (b) the initial position of the circular cylinder.

4.1.3. Sedimentation of a cold circular cylinder in a long channel

We consider the sedimentation of a cold circular cylinder at a constant tem-390

perature in a long channel. This problem has been numerically investigated

and regarded as a good benchmark problem by many researchers [8, 13, 15, 17,

32, 41–43]. In this study, we compare the present results with recent results

calculated by Eshghinejadfard and Thévenin [15].

The computational domain and the coordinate system are shown in Fig. 5.

The diameter of the circular cylinder isDs, and the size of the domain isH×L =

4Ds × 40Ds. The fluid is initially at rest and at a temperature Tf = 1. The

circular cylinder is at a constant temperature Ts = 0 and the initial position

of its center is (Xc, Yc) = (1.5Ds, 4Ds), i.e., deviated by 0.5Ds from the center

of the channel (Fig. 5b). The circular cylinder falls under gravity with the

gravitational acceleration αg. Letting the density of the circular cylinder be ρs,

the mass and the inertia moment of the circular cylinder areM = ρs(πD
2
s /4) and

IB = MD2
s /8, respectively. The net gravitational force is Fg = (1−ρf/ρs)Mαg,

and the buoyancy force Fb by thermal expansion of the fluid is given by the
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Boussinesq approximation, i.e.,

Fb(x, t) = ρfβαg(T (x, t)− Tf), (58)

where β is the coefficient of thermal expansion. The gravitational force Fg is395

added to the circular cylinder in the y-direction in addition to the force applied

by the fluid. The buoyancy force Fb is applied to the fluid in the y-direction

and is added to Eq. (27) in the form of 3∆xEiciyFb. The left and right walls of

the channel are stationary and iso-thermal at a constant temperature Tf = 1,

and the boundary conditions are implemented by the bounce-back scheme [33]400

and the iso-thermal condition [21]. The top and bottom walls of the channel

are stationary and adiabatic, and the boundary conditions are implemented by

the bounce-back scheme [33] and the iso-flux condition [21].

The governing parameters of this system are the density ratio defined by

γ = ρs/ρf , the Reynolds number defined by Re = UrefDs/ν (where Uref =405 √
π(Ds/2)αg(γ − 1) is the reference speed), the Prandtl number defined by

Pr = ν/α, and the Grasshof number defined by Gr = αgβ∆TD3
s /ν

2 (where

∆T = Tf − Ts is the characteristic temperature difference). In this simulation,

we set γ = 1.00232, Re = 40.5, and Pr = 0.7, and calculate the motion of

the cylinder for Gr = 564, 2000, and 4500. In order to calculate in the above410

condition, we set D = 60∆x, N = 244, Uref = 0.00675, τf = 0.5300, and

τg = 0.5428. In addition, the Lagrangian points approximation [19] is used for

calculating the internal mass effect given by Eqs. (6) and (9).

Fig. 6 shows snapshots of the temperature fields around the circular cylinder

for various Grasshof numbers. We can see from this figure that the present415

results have good agreement with those by Eshghinejadfard and Thévenin [15]

for any of Grasshof numbers. In addition, Fig. 7 shows the trajectories of the

center of the circular cylinder. From this figure, it can be seen that the present

results are almost the same as those by Eshghinejadfard and Thévenin [15] for

any of Grasshof numbers. These results mean that the present thermal IB-LBM420

can give an accurate result for moving-boundary flows where the fluid motion,

the body motion, and the heat transfer interact with each other.
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Figure 6: Snapshots of the temperature fields around the circular cylinder for (a) Gr = 564,(b)

2000, and (c) 4500. The results by Eshghinejadfard and Thévenin [15] are also shown as a

reference.

4.2. For the Neumann condition

4.2.1. Thermal flow around an iso-heat-flux circular cylinder

We consider a thermal flow around an iso-heat-flux circular cylinder. The di-425

ameter of the circular cylinder isDs. The computational domain is [−14Ds, 20Ds]×

[−15Ds, 15Ds]. The center of the circular cylinder is located at (x, y) = (0, 0).

In the inlet (x = −14Ds), a uniform iso-thermal flow in the x-direction with a

speed U∞ and at a temperature T∞ = 0 is imposed. The other boundary condi-

tions are the same as those in Section 4.1.1. The circular cylinder is stationary430

and iso-heat-flux with a constant heat flux Hd, whose nondimensional value

Hd∗ = Hd/(λf∆T/Ds) is fixed to 1. The governing parameters of this system

are the Reynolds number defined by Re = U∞Ds/ν and the Prandtl number
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Figure 7: Trajectories of the center of the circular cylinder for Gr = 564, 2000, and 4500. The

results by Eshghinejadfard and Thévenin [15] are also shown as a reference.

defined by Pr = ν/α. We set Re = 10, 20, and 40 and Pr = 0.7 in order

to compare the present results with other numerical results [10, 18, 44]. We435

consider the steady state of this system. The steady state is determined when

four significant digits for the mean Nusselt number Nu (shown below) converge

to constant values. In the present simulation, we set Ds = 40∆x, N = 164,

U∞ = 0.04, and ∆T = 1.

Fig. 8 shows isotherms around the circular cylinder in the range of [−Ds, 4.015Ds]×440

[−1.65Ds, 1.65Ds]. In this figure, the results by Wang et al. [18] (Fig. 9 in this

reference) are also shown for comparison. From this figure, we can see that the

present results reasonably agree with the results by Wang et al. [18].

Next, we calculate the local Nusselt number on the cylinder surface defined

by

Nu(θ) =
Hd

λfT (θ)/Ds
, (59)

where T (θ) is the temperature on the cylinder surface at the argument θ, and it is

calculated by interpolating the temperature from the neighboring lattice points445

as shown in Eq. (37). Fig. 9 shows the local Nusselt numbers on the cylinder

surface obtained by the present method and other numerical methods [18, 44].
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We can see from this figure that the present results have good agreement with

other results for all the cases of Re = 10, 20, and 40. Table 2 shows the mean

Nusselt number Nu obtained by integrating the local Nusselt number. From450

this table, it can be seen that even for the mean Nusselt number the present

results have good agreement with other results [10, 18, 44].

4.2.2. Taylor–Couette flow with heat transfer for the Neumann condition

We consider the Taylor–Couette flow with heat transfer for the Neumann

condition. The computational condition is almost the same as that in Sec-455

(a)

Re = 10

Re = 20

Re = 40

(b)

Figure 8: Comparison of isotherms around the circular cylinder for the thermal flow around

an iso-heat-flux circular cylinder: (a) the present results; (b) numerical results by Wang et

al. [18].
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Figure 9: Comparison of the local Nusselt number on the cylinder surface with other numerical

results by Bharti et al. [44] and by Wang et al. [18] for the thermal flow around an iso-heat-flux

circular cylinder.

Table 2: Comparison of the mean Nusselt number Nu with other numerical results [10, 18, 44].

Re Nu

Present Bharti et al. [44] Ren et al. [10] Wang et al. [18]

10 2.028 2.040 2.016 2.01

20 2.753 2.779 2.741 2.69

40 3.719 3.775 3.741 3.68

tion 4.1.2 except that the inner cylinder is heated with a constant heat flux

Hd. In this calculation, supposing that the nondimensional heat flux Hd∗ =

Hd/(λf∆T/R2) is fixed to 1 (where ∆T = 1 in this simulation), we consider a

heat transfer induced by the heat flux. The other conditions are the same as

those in Section 4.1.2.460

For the same reason explained in Section 4.1.2, we focus on the accuracy for

the heat transfer. The steady solution of the temperature for this problem is

given by

T (r) =
Hd

λf
R1 ln

(
R2

r

)
, (60)
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where r is the distance from the center of the cylinder. The rate of total heat

transferred from the inner cylinder to the surrounding fluid is given by

Q = 2πR1H
d. (61)

We calculate errors in the temperature and the rate of total heat from the

above analytical solutions. The maximum and mean errors in the temperature

T are given by

Emax(T ) =
max{|Tcalc − Tex|;R2

1 ≤ x2 + y2 ≤ R2
2}

HdR2/λf
, (62)

Emean(T ) =
1

Min

∑
R2

1≤x2+y2≤R2
2
|Tcalc − Tex|

HdR2/λf
, (63)

where Tcalc is a calculated value of T , and Tex is the analytical value of T . The

error norm for Q is the same as that used in Section 4.1.2. The steady state

is determined when six significant digits for Emax(T ), Emean(T ), and E(Q)

converge to constant values. Fig. 10 shows the decay of the errors for the lattice

spacing ∆x. We can see from this figure that the present results have first-order465

accuracy in both the temperature and the rate of total heat. The decrease in

the order of accuracy compared with that of the LBM can be explained in the

same way as the case of the Dirichlet condition (see Section 4.1.2).

4.2.3. Natural convection in an annulus

We consider a natural convection in an annuls, which has been studied in470

many researches [10, 17, 18, 45]. Let the axial direction be the z-axis and a

plane normal to the z-axis be the x-y plane. The radius of the inner cylinder is

R1 and that of the outer cylinder is R2 = 2R1. The inner and outer cylinders

are stationary. The inner cylinder is heated with a constant heat flux Hd,

and the outer cylinder is iso-thermal at a constant temperature Tf = 0. In this475

calculation, supposing that the nondimensional heat fluxHd∗ = Hd/(λf∆T/R2)

is fixed to 1 (where ∆T = 1 in this simulation), we consider a flow with heat

transfer induced by the buoyancy force Fb by thermal expansion of the fluid

given by Eq. (58).
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Figure 10: Errors in the temperature and the rate of total heat transferred from the inner

cylinder to the surrounding fluid in the simulation of a Taylor–Couette flow with heat transfer

for the Neumann condition.

We take a computational domain of size [−H,H]× [−H,H] where H = R2+

2∆x. The buoyancy force Fb is applied only in the area between the inner and

outer cylinders in the y-direction. In all sides of the computational domain, the

no-slip condition and the iso-thermal condition at a constant temperature Tf = 0

are imposed by the bounce-back scheme [33] and the iso-thermal condition [21].

The Rayleigh number defined by Ra = βαgL
4Hd/(λfαν) (where L = R2 −R1)

is fixed to 5700, and the Prandtl number defined by ν/α is fixed to 0.7. The

relaxation times are set to τf = 0.7880 and τg = 0.8945 in this simulation.

The number of Lagrangian boundary points N is set to 4(2R1 + 1) for the

inner cylinder and 4(2R2+1) for the outer cylinder. We define the convergence

criterion for this problem by using the maximum differences of the flow velocity

and the temperature as used in Ref. [46], i.e.,

max
{
|
√
(un+1)2 + (vn+1)2 −

√
(un)2 + (vn)2|;R2

1 ≤ x2 + y2 ≤ R2
2

}
≤ 10−8,

(64)

max
{
|Tn+1 − Tn|;R2

1 ≤ x2 + y2 ≤ R2
2

}
≤ 10−8, (65)

where the superscripts n and n+1 represent t = n∆t and (n+1)∆t, respectively.480
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Fig. 11(a) shows the temperature on the cylinder surface in the steady state

obtained by the present method and other numerical methods [10, 18, 45]. In

the present result, we set R1 = 50∆x. We can see from this figure that the

present result reasonably agrees with the other numerical results.

In addition, we calculate the temperature field for six different grid sizes of

R1 = 10∆x, 12.5∆x, 20∆x, 25∆x, 50∆x, and 100∆x, and we examine the order

of accuracy when the result of the finest grid is taken as the reference solution.

Note that the analytical solution of this problem is unknown. Fig. 11(b) shows

the L2 norm of the temperature and the order of accuracy, where the L2 norm

is defined by

L2(T ) =

√√√√∑
R2

1≤x2+y2≤R2
2
|Tcalc − Tref|2∑

R2
1≤x2+y2≤R2

2
|Tref|2

, (66)

where Tcalc is a calculated value of T for each resolution, Tref is the reference485

value of T , and
∑

R2
1≤x2+y2≤R2

2
means the summation over lattice points on

which Tcalc is calculated in the range of R2
1 ≤ x2 + y2 ≤ R2

2. We can see from

Fig. 11(b) that the slope of the line of the convergence rate of the L2 norm is

1.36. It seems better than the convergence rate obtained in Section 4.2.2. It is

expected that the convergence rate tends to 1 as the resolution of the reference490

solution is finer. We have to mention that the convergence rate obtained by

Wang et al. [18] in the same problem is 1.724, which is better than our result.

This means that the boundary condition-enforced immersed boundary–lattice

Boltzmann flux solver proposed by Wang et al. [18] is more accurate than the

present method. The reason might be attributed to the fact that their method495

can avoid the discontinuity of the temperature gradient by using two auxiliary

layers inside and outside the boundary for enforcing the desired temperature

gradient on the boundary. In addition, Wang et al. [18] reported that their

method can enforce the iso-heat-flux condition more accurately than the heat

flux correction method proposed by Ren et al. [10], since their method corrects500

the temperature field implicitly. Actually, in our preliminary calculations, the

accuracy in the iso-heat-flux condition for the present method is inferior to that

for their method. However, it should be noted that the present method can
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Figure 11: (a) Comparison of temperature profile on the inner cylinder surface for natural

convection in an annulus at Ra = 5700, and (b) the L2 norm of the temperature and the

order of accuracy when the result of the finest grid is taken as the reference solution.

calculate the temperature field accurately as shown in the previous sections,

although the temperature gradient around the boundary is not accurate. In505

addition, the present method is easily applied to moving-boundary flows without

increasing the computational cost, while the method of Wang et al. [18] has

not been applied to moving-boundary flows and its computational cost might

increase in moving-boundary flows due to calculations of the geometry-related

matrices and their inversions in every time step. Therefore, we believe that510

the present method is advantageous for moving-boundary flows in terms of the

computational efficiency.

4.2.4. Heat convection with flow over an oscillating circular cylinder with a

constant heat flux

We consider a heat convection with flow over an oscillating circular cylinder

with a constant heat flux. The diameter of the circular cylinder is Ds. The

computational domain is [−6.4Ds, 19.2Ds]× [−6.4Ds, 6.4Ds]. The center Xc =

(xc, yc) of the circular cylinder oscillates in the y-direction as follows:

xc(t) = 0, (67)

yc(t) = A sin(2πft), (68)
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numerical results by Zhang et al. [7] and by Hu et al. [17] for the flow over an oscillating

circular cylinder with a constant heat flux.

where A is the amplitude of the position and f is the frequency. In the inlet (x =515

−6.4Ds), a uniform iso-thermal flow in the x-direction with a speed U∞ and at

a temperature T∞ = 0 is imposed. The other boundary conditions are the same

as those in Section 4.1.1. The circular cylinder is iso-heat-flux with a constant

heat flux Hd, whose nondimensional value Hd∗ = Hd/(λf∆T/Ds) is fixed to 1.

The governing parameters of this system are the Reynolds number defined by520

Re = U∞Ds/ν, the Prandtl number defined by Pr = ν/α, the Strouhal number

defined by St = fDs/U∞, and the Keulegan–Carpenter number defined by

KC = 2πA/Ds. We set Re = 200, Pr = 0.7, St = 0.2, and KC = 0.3π in

order to compare the present results with other numerical results [7, 17]. In the

present simulation, we set Ds = 40∆x, N = 164, U∞ = 0.04, and ∆T = 1.525

Fig. 12 shows the time-averaged temperature on the cylinder surface ob-

tained by the present method and other numerical methods [7, 17]. We can see

from this figure that the present result reasonably agrees with other numerical

results. This means that the present thermal IB-LBM can give a reasonable

result for moving-boundary flows with heat transfer for the iso-heat-flux condi-530

tion.
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4.3. Internal heat effect in the simulation of moving-boundary flows with heat

transfer by the thermal IBM

In this section, we investigate the internal heat effect Qin given by Eq. (12)

for the rate of total heat transferred from the boundary to the surrounding535

fluid. Since the internal mass effect Fin and Tin for the force and torque depend

on the Reynolds number as investigated by Suzuki and Inamuro [19], it can be

expected that the internal heat effect Qin for the rate of total heat depends

on the Reynolds number and the Péclet number. Therefore, we investigate

the internal heat effect Qin for various Reynolds and Péclet numbers through540

simulations of moving-boundary flows with heat transfer by the present thermal

IB-LBM. Unfortunately, however, we could not find appropriate reference data

about the rate of total heat in moving-boundary flows with heat transfer. Hence,

we construct a new benchmark problem for investigating the internal heat effect

Qin for the rate of total heat.545

4.3.1. Problem and computational condition

We consider a heated circular cylinder which oscillates translationally in a

closed small box at a low temperature. The diameter of the circular cylinder

is Ds. The computational domain is [−3Ds, 3Ds] × [−2Ds, 2Ds]. The cylinder

placed at the center of the domain suddenly starts to oscillate in the x-direction

Table 3: The parameters used in simulations of Section 4.3.

Re Pe KC Umax τf τg

100 100 5 0.03 0.545 0.545

10 100 5 0.03 0.950 0.545

1 100 5 0.03 5.00 0.545

100 10 5 0.03 0.545 0.950

100 1 5 0.03 0.545 5.00
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with the following speed:

Uc(t) = Umax cos(2πft), (69)

Vc(t) = 0, (70)

where Uc and Vc are the respective velocity components in the x- and y-directions

of the cylinder, Umax is the amplitude of the speed, and f is the frequency. All

the walls of the box are stationary and iso-thermal at a constant temperature

Tw = 0, and the boundary conditions are implemented by the bounce-back550

scheme [33] and the iso-thermal condition [21]. The fluid is initially at rest

and at a temperature Tw = 0. In this study, we consider two cases where the

circular cylinder is iso-thermal at a constant temperature Ts = 1 and where

it is iso-heat-flux with a constant heat flux Hd (whose nondimensional value

Hd∗ = Hd/(λf∆T/Ds) is fixed to 1). The governing parameters of this sys-555

tem are the Reynolds number defined by Re = UmaxDs/ν, the Péclet number

defined by Pe = UmaxDs/α, and the Keulegan–Carpenter number defined by

KC = 2πA/Ds (where A is the amplitude of the position of the cylinder). It

should be noted that this problem is an original problem of this study, and no

published experimental and numerical data are available. This problem is con-560

structed for effective investigation into the internal heat effect Qin for various Re

and Pe. In the present simulation, we set Ds = 50∆x, N = 204, and ∆T = 1,

and other parameters for various cases are shown in Table 3.

4.3.2. Calculation of the internal heat effect

The rate of total heat Q transferred from the circular cylinder to the sur-

rounding fluid is calculated by Eq. (10). The summation of the heat source/sink

term Qtot can be calculated as follows:

Qtot(t) =
∑
x

q(x, t)(∆x)2. (71)

In this study, we consider two approximations for calculating the internal heat565

effect Qin, i.e., (A) No internal heat effect and (B) Lagrangian points approxi-

mation, in a similar way to the work by Suzuki and Inamuro [19].
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(A) No internal heat effect

The internal heat effect is ignored, that is,

Qin(t) ≈ 0. (72)

(B) Lagrangian points approximation

The most straightforward approximation of Eq. (12) is the finite difference

approximation in time for the sum of the specific energy of the internal

mass over internal Lagrangian points Xin(t) which move together with

the body motion. It should be noted that the temperature T (Xin, t) on

internal Lagrangian points Xin(t) must be interpolated from neighbor

lattice points. The interpolation can be implemented by

T (Xin, t) =
∑
x

T (x, t) W (x−Xin(t)) (∆x)2. (73)

The total energy Ein(t) of the internal mass at time t is calculated by

Ein(t) =
∑

all Xin(t)

ρfcpfT (Xin, t) ∆Vin, (74)

where ∆Vin is the volume element of internal Lagrangian points. In the

present work, we arrange initial internal Lagrangian points Xin(0) in lat-

tice points with the width of ∆x, and therefore we take ∆Vin = (∆x)2 in

the same way as the work by Suzuki and Inamuro [19]. The time deriva-

tive in Ein(t) is approximated by the change between two successive time

t−∆t and t as below:

Qin(t) ≈ Sh
Ein(t)− Ein(t−∆t)

∆t
, (75)

where at t = 0 we assume that Ein(−∆t) = Ein(0).570

In this study, we investigate the internal heat effect Qin by comparing the

results of (A) and (B) for iso-thermal and iso-heat-flux conditions.
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4.3.3. Case for iso-thermal condition

At first, we show the results of the case where the circular cylinder is iso-

thermal at a constant temperature Ts = 1. It should be noted that Qin should575

vanish when a sufficiently-long time has passed so that the temperature inside

the cylinder reaches Ts. This is because the state that the temperature inside

the cylinder is uniformly equal to Ts is a solution of the convection–diffusion

equation (3) inside the cylinder whose surface is iso-thermal at a constant tem-

perature Ts, and it leads Ein(t) = const., i.e., Qin(t) = 0. Therefore, the results580

of No internal heat effect and Lagrangian points approximation should coincide

when a sufficiently-long time has passed.

Fig. 13 shows the time variations of Q for various Reynolds and Péclet num-

bers in the 10th period of the oscillation (9 ≤ ft ≤ 10). It should be noted that

the results during each period after ft = 6 are almost the same. By comparing585

Figs. 13(a), (b), and (c), we can find that the results of Lagrangian points ap-

proximation have unphysical oscillations with very high frequency at Pe = 100

independently of Re. This result means that Lagrangian points approximation

has a serious problem in the calculation of Qin at Pe = 100. In addition, we

can see that the results of No internal heat effect and Lagrangian points ap-590

proximation show similar curves on average. It is reasonable since in this case

Qin should vanish when a sufficiently-long time has passed as discussed above.

By comparing Figs. 13(a), (d), and (e), we can see that unphysical oscillations

cannot be observed in the results of Lagrangian points approximation, and the

results of No internal heat effect are almost the same as those of Lagrangian595

points approximation. These results mean that the unphysical oscillation in

the results of Lagrangian points approximation decrease as Pe decreases, and

it becomes negligibly small for Pe ≤ 10.

In conclusion of the case for the iso-thermal condition, the internal heat

effect is negligible independently of Reynolds and Péclet numbers. In addition,600

although Lagrangian points approximation gives an unphysical oscillation with

very high frequency in the calculation of Qin at Pe = 100, the magnitude of
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Figure 13: Time variations of the rate of total heat transferred from the circular cylinder to

the surrounding fluid for (a) (Re, Pe) = (100, 100), (b) (10, 100), (c) (1, 100), (d) (100, 10),

and (e) (100, 1) in the case where the circular cylinder is iso-thermal.

the unphysical oscillation decreases as Pe decreases, and it becomes negligibly

small for Pe ≤ 10. The former conclusion is reasonable as discussed above.

Therefore, there is no need to care about the internal heat effect for the iso-605

thermal condition with a constant temperature. However, it should be noted

that the internal heat effect should be considered for the iso-thermal condition

with a space- and/or time-dependent temperature. The latter conclusion shows

a serious problem of Lagrangian points approximation at a high Péclet number.

The remedy of the problem remains in future work.610

4.3.4. Case for iso-heat-flux condition

Next, we show the results of the case where the circular cylinder is iso-heat-

flux with a constant heat flux Hd. It should be noted that in this case the

analytical solution is available and Q/(πλf∆T ) must be equal to 1.

Fig. 14 shows the time variations of Q for various Reynolds and Péclet615

numbers in the 10th period of the oscillation (9 ≤ ft ≤ 10). By comparing

Figs. 14(a), (b), and (c), we can find that the results of No internal heat effect
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have a distinct error from the analytical solution Q/(πλf∆T ) = 1 at Pe = 100

independently of Re. On the other hand, the deviation between the analytical

solution and the results of Lagrangian points approximation is relatively small,620

although the results of Lagrangian points approximation have unphysical oscil-

lations with very high frequency. These results mean that the magnitude of the

internal heat effect is significant at Pe = 100 in the case for the iso-heat-flux

condition, and Lagrangian points approximation has a problem in the calcula-

tion of Qin, which is the same as in the case for the iso-thermal condition. By625

comparing Figs. 14(a), (d), and (e), we can see that the error in the results of

No internal heat effect from the analytical solution decreases as Pe decreases,

and it becomes negligibly small for Pe = 1.

In conclusion of the case for the iso-heat-flux condition, the internal heat

effect is significant in the range of 10 ≤ Pe ≤ 100 independently of Re, and630

Lagrangian points approximation gives an unphysical oscillation with very high

frequency in the calculation of Qin at a high Péclet number. The former conclu-

sion shows that the internal heat effect should be considered for Pe ≥ 10 in the

case for the iso-heat-flux condition. The latter conclusion is the same as that in

the case for the iso-thermal condition.635

5. Application: two-dimensional thermal flow in a heated channel

with moving cold particles

In this section, we apply the present method to an interesting application

inspired from ice slurry flow [23]. Ice slurry is a homogenous mixture of small

ice particles and carrier liquid, and it can transport cold thermal energy directly640

because of its fluidity and have a high heat exchange rate because of fine ice

particles. However, it is difficult to know the detailed behavior of ice slurry

flow in pipes, and therefore it has been seen as a challenge to its successful

commercial implementation [47]. In this study, we consider a simplified model

of ice slurry flow in a pipe heated by a thermal load, i.e., a two-dimensional645

thermal flow in a heated channel with moving cold particles.
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Figure 14: Time variations of the rate of total heat transferred from the circular cylinder to

the surrounding fluid for (a) (Re, Pe) = (100, 100), (b) (10, 100), (c) (1, 100), (d) (100, 10),

and (e) (100, 1) in the case where the circular cylinder is iso-heat-flux.

5.1. Modeled system and computational conditions

We consider a two-dimensional infinitely long channel with width H = 7.5

mm as a modeled system of the experiment by Kumano et al. [48]. Ethanol

solution (5 wt.% concentration) is filled in the channel as the fluid, and the650

density is ρf = 999.78 kg/m3, the kinematic viscosity is ν = 2.565 × 10−6

m2/s, and the thermal diffusivity is α = 1.333 × 10−7 m2/s (which are for

the solidifying temperature −2◦C of the ethanol solution [48]). We assume ice

particles in the ethanol solution as circular cylinders with density ρs = ρf , i.e.,

naturally buoyant. A single particle with diameter Ds is contained in every655

length L of the channel (see Fig. 15). The mass and the inertia moment of the

particle are M = ρs(πD
2
s /4) and IB = MD2

s /8, respectively. The channel walls

are heated at a constant temperature Tw = 1, while the particle is at a constant

temperature Ts = 0. We consider a flow induced by a pressure gradient in the

x-direction, and a heat transfer induced by the temperature difference between660

the walls and the particles. Melting and solidification of the particle and natural

convection are neglected in this study.
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Figure 15: Computational domain for a thermal flow in a heated channel with moving cold

particles. The periodic boundary condition with a constant pressure difference ∆p is used at

the inlet and outlet of the channel.

In order to calculate the above system, we consider the computational do-

main with size of L×H, and the periodic boundary condition with a constant

pressure difference ∆p is applied at the inlet and outlet of the domain [49] (see

Fig. 15). Also, the periodic condition is used for the temperature at the inlet

and the outlet of the domain. In addition, the bounce-back scheme [33] and the

iso-thermal condition [21] are used at the bottom and top walls. At t = 0, the

fluid velocity and the temperature are set to u = 0 and T = Ts = 0, respec-

tively, and the particle is stationary. We define the reference Reynolds number
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Reref as follows:

Reref =
UrefH

ν
, (76)

where Uref is the cross-sectional-averaged flow speed corresponding to the Poiseuille

flow induced by the pressure gradient −∆p/L as follows:

Uref =
1

12ρfν

∆p

L
H2. (77)

In this study, we set Uref = 7.13× 10−2 m/s. Therefore, the governing parame-

ters of the system are Reref = 208 and Pr = ν/α = 19.2.

In the present simulation, we slightly modify the LBM in order to make the665

fluid velocity u periodic at the inlet and the outlet of the domain, while in the

original LBM the fluid momentum ρu is periodic. The modifications are shown

in Appendix B. In addition, the Lagrangian points approximation [19] is used

for calculating the internal mass effect given by Eqs. (6) and (9). We set H =

L = 280∆x, ∆p = 2.337× 10−4, Uref = 0.06365, τf = 0.7570, and τg = 0.5134.670

We change the diameter of the particle in the range of 0.071 ≤ Ds/H ≤ 0.35,

and we investigate the effects of the diameter ratio DR = Ds/H on the motion

of the particle and on the temperature field.

5.2. Results and discussions

At first, we show the trajectories of the particle with various diameter ratios675

in Fig. 16. The initial position of the center of the particle is set to (Xc, Yc) =

(0.5H, 0.4H). We can see from Fig. 16(a) that the particle migrates to each

equilibrium position for various diameter ratios, which is between the center line

and the bottom wall of the channel, i.e., the Segré–Silberberg effect [50] can be

observed. It should be noted that the equilibrium positions are independent of680

the initial position. From Fig. 16(b), it can be seen that the equilibrium position

of the bottom of the particle gets closer to the bottom wall of the channel as

DR increases.

Next, we calculate the Nusselt numbers on the bottom and top walls of the

channel defined as follows:

Nub = − H

Tw − Ts

∂T

∂y

∣∣∣∣
x=0.5H,y=0

, Nut =
H

Tw − Ts

∂T

∂y

∣∣∣∣
x=0.5H,y=H

, (78)
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Figure 16: Trajectories of (a) the center of the particle and (b) the bottom of the particle.

where the derivatives in the above equations are calculated by the first-order

one-sided finite difference approximation of the temperature. Fig. 17 shows685

the time variations of the Nusselt numbers on the top and bottom walls of

the channel. In this figure, the results when the particle is adiabatic are also

shown for comparison. We can see from Fig. 17(a) that Nub tends to each

equilibrium value for various diameter ratios, and the equilibrium value increases

with DR. This means that the endothermic energy amount increases with DR.690

On the other hand, we can see that Nut decreases monotonically with time, and

the differences between the results for various DR are small. This is because

the distance between the bottom wall and the particle becomes smaller as DR

increases (Fig. 16b), and consequently the bottom wall is easily cooled by the

cold particle, while the top wall is too far from the particle even for a large DR.695

In the case where the particle is adiabatic, it can be seen from Fig. 17(b) that

both Nub and Nut decrease monotonically with time for any of the diameter

ratios, although slight differences can be observed between the results of Nub

for various DR. It can be considered reasonable that adiabatic particles hardly

affect the endothermic energy amount on the walls.700

Table 4 shows the equilibrium values of the position of the center of the
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Figure 17: Time variations of the Nusselt numbers of the bottom and top walls of the channel

for (a) the cold particle at a constant temperature Ts = 0 and (b) the adiabatic particle. In

(b), DR = 0 means the case where the channel contains no particle.

particle Ỹc, the position of the bottom of the particle Ỹb, the Nusselt number

of the bottom wall Ñub, and the effective Reynolds number defined by Reeff =

ŨH/ν, where Ũ is the cross-sectional-averaged flow speed for the particle–fluid

mixture at the inlet in the steady state. It should be noted that since Nub705

oscillates periodically depending on the horizontal position of the particle, the

mean value of the maximum and the minimum is shown in this table. We can

see from Table 4 that Ỹb decreases and Ñub increases with DR, as shown in

Figs. 16(b) and 17(a), too. In addition, we can see that Reeff decreases with

DR. This is because Ũ becomes smaller than Uref due to the disturbance by710

the particle, since the pressure difference ∆p is constant. This means that if the

flow rate of the channel is fixed, the pressure drop should increase with DR.

Finally, we show snapshots of the temperature fields from the initial state
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Table 4: The equilibrium values of the position of the center of the particle Ỹc, the position of

the bottom of the particle Ỹb, the Nusselt number of the bottom wall Ñub, and the effective

Reynolds number Reeff .

DR Ỹc Ỹb Ñub Reeff

0.071 0.335 0.299 2.41 207

0.14 0.319 0.247 3.09 205

0.21 0.296 0.189 3.99 198

0.29 0.278 0.136 5.30 184

0.35 0.286 0.107 6.19 169

to the steady state in Fig. 18. In this figure, the results when the particle is

adiabatic are also shown for comparison. We can see from Fig. 18(a) that the715

fluid in the channel is gradually heated, while the fluid around the particle is

kept cold. In addition, the gradation of the temperature from the wall to the

particle is wavy due to the disturbance by the particle. Comparing Figs. 18(a)

and (b), we find that the wavy pattern in the gradation of the temperature is

very similar at an early stage (t∗ = 80). This wavy pattern should be a cause720

of the difference between the results when the particle is adiabatic as shown

in Fig. 17(b). In Fig. 18(b), however, the high-temperature area diffuses more

rapidly and widely than that in Fig. 18(a). This result suggests an advantage of

ice slurry flow that it can transport cold thermal energy for much longer period

and distance.725

6. Conclusions

We constructed a thermal immersed boundary–lattice Boltzmann method

for moving-boundary flows with the Dirichlet and Neumann conditions. The

present method incorporates a simple thermal LBM proposed by Inamuro et

al. [20] and Yoshino and Inamuro [21] with two types of thermal IBMs, i.e., the730

multi-direct heat source scheme [9] and the heat flux correction scheme [10] for

47



(a)

= 0 = 80 = 160 = 240 = 320 = 400

0.0 1.00.2 0.4 0.6 0.8

Temperature

(b)

Figure 18: Snapshots of the temperature fields for (a) the cold particle at a constant tem-

perature Ts = 0 and (b) the adiabatic particle with diameter ratio DR = 0.21 at various

nondimensional time t∗ = tUref/H.

calculating the temperature field with the Dirichlet and Neumann conditions,

respectively.

We validated the present method through many benchmark problems in-

cluding stationary and moving boundaries with iso-thermal and iso-heat-flux735

conditions. As a result, we found that the present method has first-order accu-

racy for the temperature and the rate of total heat transferred from the bound-

ary to the surrounding fluid, and the present results have good agreement with

other numerical results. Also, we investigated the internal heat effect through

simulations of moving-boundary flows with heat transfer by using the present740

method. It was found that there is no need to care about the internal heat ef-

fect for the iso-thermal condition with a constant temperature independently of

Reynolds and Péclet numbers. However, it was suggested that the internal heat

effect should be considered for the iso-thermal condition with a space- and/or

time-dependent temperature. On the other hand, in the case for the iso-heat-745

flux condition, it was found that the internal heat effect is significant for Péclet

numbers over 10 independently of the Reynolds number. In addition, we found
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that Lagrangian points approximation gives an unphysical oscillation with very

high frequency in the calculation of the internal heat effect at a high Péclet

number. The remedy of the serious problem remains in future work.750

We applied the present method to an interesting example of a moving-

boundary flow with heat transfer, i.e., a two-dimensional thermal flow in a

heated channel with moving cold particles, which is a simplified model of ice

slurry flow. As a result, we found that the Nusselt number on the channel wall

increases as the ratio of the diameter of the particle to the channel width in-755

creases, since a larger particle gets closer to the wall due to the Segré–Silberberg

effect [50]. In addition, we found that ice slurry flow can transport cold ther-

mal energy for much longer period and distance than particle–fluid mixture

with adiabatic particles. For further investigations, we would like to calculate

the channel flows with two or more particles in every length L of the channel,760

to extend the system in three-dimension, and to consider the effects of melt-

ing/solidification of the particle and natural convection.
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Appendix A. Nondimensional variables

In Section 3, we use the following nondimensional variables defined by a

characteristic length Ĥ0, a characteristic particle speed ĉ, a characteristic time

scale t̂0 = Ĥ0/Û0 where Û0 is a characteristic flow speed, a reference fluid density

ρ̂f0, a characteristic temperature difference ∆T̂0, a reference temperature T̂0, and
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a reference specific heat at constant pressure ĉpf0:

ci = ĉi/ĉ, x = x̂/Ĥ0, t = t̂/t̂0,

∆x = ∆x̂/Ĥ0, ∆t = ∆t̂/t̂0,

fi = f̂i/ρ̂f0, gi = (ĝi − T̂0)/∆T̂0,

ρ = ρ̂/ρ̂f0, p = p̂/(ρ̂f0ĉ
2), u = û/ĉ,

T = (T̂ − T̂0)/∆T̂0, h = ĥ/(ρ̂f0ĉpf0∆T̂0ĉ),

ρf = ρ̂f/ρ̂f0, ν = ν̂/(ĉĤ0), α = α̂/(ĉĤ0),

λf = λ̂f/(ρ̂f0ĉpf0ĉĤ0), cpf = ĉpf/ĉpf0,

g = ĝĤ0/(ρ̂f0ĉ
2), q = q̂Ĥ0/(ρ̂f0ĉpf0∆T̂0ĉ),

Xk = X̂k/Ĥ0, Uk = Ûk/ĉ,

T d
k = (T̂ d

k − T̂0)/∆T̂0, Hd
k = Ĥd

k/(ρ̂f0ĉpf0∆T̂0ĉ).



(A.1)

Note that the circumflex represents ‘dimensional.’ It should be noted that the

time step ∆t̂ is equal to the time span during which the particles travel one

lattice spacing, that is, ∆x̂/∆t̂ = ĉ. We can easily obtain ∆t = Sh∆x (where770

Sh = Ĥ0/(t̂0ĉ) = Û0/ĉ) from the above relation.

In Sections 4 and 5, we use the following nondimensional variables:

Ds = D̂s/Ĥ0, U∞ = Û∞/ĉ,

T∞ = (T̂∞ − T̂0)/∆T̂0, Ts = (T̂s − T̂0)/∆T̂0,

R1 = R̂1/Ĥ0, R2 = R̂2/Ĥ0, U1 = Û1/ĉ,

T1 = (T̂1 − T̂0)/∆T̂0, T2 = (T̂2 − T̂0)/∆T̂0,

αg = α̂gĤ0/ĉ
2, β = β̂∆T̂0, Tf = (T̂f − T̂0)/∆T̂0,

hd = ĥd/(ρ̂f0ĉpf0∆T̂0ĉ), ∆T = ∆T̂ /∆T̂0,

A = Â/Ĥ0, f = f̂ t̂0, Umax = Ûmax/ĉ,

H = Ĥ/Ĥ0, Tw = (T̂w − T̂0)/∆T̂0, ∆p = ∆p̂/(ρ̂f0ĉ
2),

L = L̂/Ĥ0.


(A.2)
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Appendix B. Modifications of the LBM in Section 5

In Section 5, instead of using Eq. (15), we use the equilibrium distribution

function of the incompressible model [51] as follows:

f eq
i (p,u) = Ei

[
3p+ 3ci · u+

9

2
(ci · u)2 −

3

2
u · u

]
. (B.1)

According to the above modification, Eqs. (19) and (27) are modified as follows:

u =
9∑

i=1

fici, (B.2)

fi(x, t+∆t) = f∗
i (x, t+∆t) + 3∆xEici · g(x, t+∆t). (B.3)
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