1
2
2
ر ۸
4
5
6
7
8
9
10
11
12
13
11
14
15
16
17
18
19
20
21
22
23
2/
24
25
26
27
28
29
30
31
32
33
24
24
35
36
37
38
39
40
41
42
43
11
74 15
45
46
47
48
49
50
51
52
52
55
54 55
22
56
57
58

1	Mapping growing stock volume and biomass carbon storage of larch
2	plantations in Northeast China with L-band ALOS PALSAR
3	backscatter mosaics
4	Tian Gao ^{a,b} , J. J. Zhu ^{a,b,*} , Q. L. Yan ^{a,b} , S. Q. Deng ^c , X. Zheng ^{a,b} , J. X.
5	Zhang ^{a,b} , G. D. Shang ^{a,b,d}
6	
7	^a CAS Key Laboratory of Forest Ecology and Management, Institute of Applied
8	Ecology, Chinese Academy of Sciences, Shenyang, China
9	^b Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, China
10	^c Institute of Mountain Science, Shinshu University, Nagano, Japan
11	^d University of Chinese Academy of Sciences, Beijing, China
12	
13	* Correspondence author. E-Mail: jiaojunzhu@iae.ac.cn (J.J. Zhu); Tel.:
14	+86-24-83970303; Fax: +86-24-83970300.
15	

Mapping growing stock volume and biomass carbon storage of larch plantations in Northeast China with L-band ALOS PALSAR

18 backscatter mosaics

Reliable spatial information on growing stock volume (GSV) and biomass is critical for creating management strategies for plantation forests. This study developed empirical models to map the GSV and biomass of larch plantations (LPs) in Northeast China (1.25 million km² total area) by integrating L-band synthetic aperture radar (SAR) data with ground-based survey data. The best correlation model was used to map the GSVs and biomasses of LPs. The total GSV and biomass carbon storage were estimated at 224.3 ± 59.0 million m³ and $113.0 \pm 29.7 \ 10^{12}$ g C with average densities of 85.1 m³ ha⁻¹ and 42.9 10^{6} g C ha⁻¹, respectively, over a total area of 2.64 million ha. The saturation effect of SAR was determined beyond 260 m³ ha⁻¹, which was expected to influence the estimations for a small proportion of the study area. The accuracy of the estimations has limitations mainly due to the uncertainties in the GSV inventories, discrimination of natural larch and the SAR dataset. Based on the mapping results of the GSVs of LPs, a planning strategy for multipurpose management was tentatively proposed. This study can inform policies and management practices to assure broader and sustainable benefits from plantation forests in the future.

36 Keywords: larch plantation; growing stock volume; biomass carbon storage; Phased Array

37 L-band synthetic aperture radar backscatter; saturation effects; Northeast China

38 Word Count: 8817

1. Introduction

41	Planted forests are an essential component of the terrestrial ecosystem and provide
42	important ecosystem services to human society (Carle and Holmgren 2008). China
43	possesses the largest area (69 million ha) of planted forests in the world, accounting
44	for 26.1 % of the planted forest area in the world (Food and Agriculture Organization
45	2010; Chinese Ministry of Forestry 2014). According to the aims, the planted forests
46	in China can be classified as protective forests for improving environmental
47	conditions (e.g., harness soil and water losses) and productive forests for timber
48	(Mason and Zhu 2014). The latter, which is traditionally defined as a "plantation
49	forest", is normally afforested by a single species for convenient management
50	(Kanninen 2010). Historically, plantation forests were partially developed from
51	secondary forests. Since the 1950s, for example, primarily driven by the need for
52	timber supply, larch (Larix spp.) has been widely planted in Northeast China as a
53	commercial timber species with replacement of secondary forests (Zhu et al. 2010).
54	Because larch is drought- and cold-resistant and grows rapidly, larch has become one
55	of the most important timber species, playing an important role in meeting timber
56	demands for the rapid economic development of China (Zhu et al. 2008). In recent
57	years, however, several problems have been noticed in larch plantations (LPs), such
58	as poor natural regeneration capabilities (Zhu et al. 2008; Yan, Zhu, and Gang 2013)
59	and declines in soil fertility (Yang et al. 2010; Yang et al. 2012), which may have
60	negative effects on the sustainability of ecosystem services. At the same time, facing
61	the growing environmental threat and pressure from the promise to slash the CO_2

62	emissions of the country, "ecological civilization" that aims to improve the
63	environment has been presented as the national strategy of China since 2013, and
64	forestry occupies a crucial role in this strategy framework (UNDP and IUES 2013).
65	There is a growing demand for plantation forests to be proposed for environmental
66	and conservation aims. The historical plans and management practices (e.g., logging
67	regime) for plantation forests may no longer be able to adapt to the needs of
68	policymakers due to shifted purposes. Accurate, detailed, and up-to-date spatial and
69	structural information on a plantation forest is essential for understanding its services
70	and further designing optimum forest management strategies and policies.
71	Growing stock volume (GSV) is defined as the stem volume of all living trees in
72	a stand and is a fundamental indicator for plantation forests since it represents the
73	commercial timber wood volume of a stand. Traditionally, the methods used to
74	estimate the GSV of a forest over broad geographical scales rely on field-based
75	surveys. First, the diameter at breast height (DBH) for each tree is measured, which is
76	used to calculate the stem volume. Then, the volumes of all trees within a sampling
77	site are summed to estimate the GSV of a stand. Finally, the surveys at the site level
78	are extrapolated at provincial or national levels. Nevertheless, there are two problems
79	that hinder the availabilities of field-based methods. Since GSVs are typically
80	estimated from limited field samples, the extrapolated GSV estimates have high
81	uncertainties (Saatchi and Moghaddam 2000). In addition, field-based surveys do not
82	include the explicit distribution of the GSV of a forest, which is crucial for plantation
83	forest management practices (e.g., logging). A wall-to-wall estimate that combines

satellite-based imagery with field-based forest measurements can help address these

issues (Immitzer et al. 2016). By integrating remote sensing image with field-based

GSV data, the relationship between raster values and ground GSV measurements can

be established, and a spatially continuous GSV can be mapped; thus, this method has

been widely used to estimate the GSV of a forest over large spatial scales (Santoro,

Compared to optical remote sensing, synthetic aperture radar (SAR) is a

powerful tool that can be used to retrieve information on forest structure due to its

presented a positive logarithmic relationship between SAR backscatter and GSV

(Avtar, Suzuki, and Sawada 2014; Chowdhury, Thiel, and Schmullius 2014; Hamdan,

Khali Aziz, and Mohd Hasmadi 2014; Santoro, Eriksson, and Fransson 2015; Thiel

and Schmullius 2016), and the general experiences indicate that SAR data at long

wavelengths (L-band) are more appropriate for GSV estimations than data at shorter

wavelengths (X- and C-bands) (Rosenqvist et al. 2007; Peregon and Yamagata 2013).

The adequacy of L-band SAR data has been reported for tropical forests (Cutler et al.

2012; Rahman and Tetuko Sri Sumantyo 2012), savanna woodlands (Mitchard et al.

2009; Mermoz et al. 2014), mangroves (Hamdan, Khali Aziz, and Mohd Hasmadi

boreal forests (Pantze, Santoro, and Fransson 2014; Wilhelm et al. 2014) and

2014), temperate forest (Cartus, Santoro, and Kellndorfer 2012; Robinson et al. 2013),

plantations (cashew and oil palm) (Morel, Fisher, and Malhi 2012; Avtar, Takeuchi,

and Sawada 2013). Nonetheless, wall-to-wall estimates of the GSV of plantation

sensitivity to geometric attributes (Karam et al. 1995). Previous studies have

Eriksson, and Fransson 2015; Schlund et al. 2015).

1
2
3
4
5
6
7
/
8
9
10
11
12
13
17
14
15
16
17
18
19
20
21
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
50
37
38
39
40
41
42
43
<u>1</u> 1
77 15
43
46
47
48
49
50
51
52
52
55
54
55
56
57
58

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2	2	
б	n	

106	forests at a regional scale have not been reported. On the other hand, the availability
107	of L-band SAR data for GSV estimation primarily struggles with the problem linked
108	to the saturation effect (the sensitivity of SAR backscatter decreases with increases in
109	GSV). While saturation levels have been examined for multiple forest types, these
110	studies were carried out at regional scales that involved various forest types.
111	Saturation effects are site dependent and are closely linked to forest structures and
112	environments (e.g., moisture conditions) (Lucas et al. 2010). Various forest structures
113	and environmental conditions at a regional scale may cover up the difference in
114	saturation levels among forest types (i.e., natural forests and plantation forests). As
115	the area of plantation forests is rapidly increasing worldwide, the contributions of
116	plantation forests are expected to become increasingly important (Kanninen 2010).
117	However, the saturation effect of L-band SAR for monitoring plantation forests is not
118	well documented, and the potential of using L-band SAR for the estimation of the
119	GSV of plantation forests remains unclear.
120	As a key component of the terrestrial ecosystem, the biomass of a forest
121	determines its ecosystem services, such as timber production, prevention of soil loss
122	by wind and runoff, and carbon sink (Costanza et al. 1997; Pan et al. 2011).
123	Quantitative information on the carbon stocks of forest biomass is critical for forest
124	ecosystem service assessments. Volume-derived biomass estimation is an appropriate
125	method that has been widely used to estimate forest biomass at large scales (Brown
126	and Lugo 1984; Turner et al. 1995). The volume-derived biomass method was
127	originally designed to use stem data to obtain reliable biomass or carbon stock

128	estimates because most forest inventories record information regarding sellable timber
129	volume (Sharp, Lieth, and Whigham 1975; Fang et al. 1998). For the volume-derived
130	biomass methodology, the key parameter is the ratio of total stand biomass to stem
131	volume (Fang and Wang 2001). Previous studies reported that the ratio varied with
132	forest type, site condition, age-class and management practice (Schroeder et al. 1997;
133	Brown, Schroeder, and Kern 1999; Fang et al. 2001). Accordingly, Fang et al. (2001)
134	improved a method to calculate the contentious ratio of total stand biomass to stem
135	volume, and this method has been used to estimate biomass carbon storage at national
136	and global levels (Pan et al. 2011). Previous studies based on the volume-derived
137	biomass method have mostly focused on the "size of forest biomass carbon stock"
138	(amount), which is considered a key component of carbon budget assessments (Fang
139	et al. 2001; Pan et al. 2011). Although biomass quantifications can be obtained at the
140	province, forest type and age-class levels (Guo et al. 2013), the explicit spatial
141	distribution of forest biomass is still lacking. For plantation forests especially, the
142	pattern is valued for informing forest management policies.
143	This study sought to evaluate the performances of multiple ALOS PALSAR
144	(Advanced Land-Observing Satellite Phased Array L-band Synthetic Aperture Radar)
145	backscatter-derived variables for mapping the GSV of LPs in Northeast China by
146	using field survey samples and an ALOS PALSAR dataset. The study also improved
147	upon the volume-derived method to obtain the continuous spatial distribution of LP
148	biomass. By assessing the GSV and biomass carbon storage estimates from LPs, this
149	study provides insights into the prospects of LPs.

150 2. Data and Methods

151 2.1 Study area

152	This study was conducted in the northeast part of China, which is defined here to
153	include Liaoning Province, Jilin Province, Heilongjiang Province, eastern Inner
154	Mongolia Autonomous Region and northern Hebei Province (115 °E – 135 °E, 38 °N
155	- 53 °N; about 1,250,000 km ²). As shown in Figure 1, the study area is characterized
156	by plains separated by five major mountain ranges, with a west-east distribution of the
157	Yanshan Mountains, Daxing'an Mountains, Xiaoxing'an Mountains, Zhangguangcai
158	Mountains and Changbai Mountains. These mountains are the sources of the main
159	rivers in Northeast China, including the Songhua River, the Liao River and the Yalu
160	River. The climate in Northeast China is controlled by the East Asia monsoon,
161	showing warm temperate, temperate and cool temperate zones from south to north,
162	and humid, semi-humid and semiarid zones from east to west (Wang et al. 2008).
163	Northeast China is one of the most important forest regions in China. Since the 1950s,
164	LPs have been planted on approximate 2.6 million ha in Northeast China, accounting
165	for 84.2 % of the total LP area of the country.
100	2.2 Field data
100	
167	The LP volume data and interpretation locations were collected over large geographic
168	extents across Northeast China between July and October of 2013 to 2015. The
169	sampling sites, as well as the LP interpretation locations, covered the main
170	distribution of LPs, including the Yanshan Mountains, Daxing'an Mountains,
171	Zhangguangcai Mountains and Changbai Mountains (Figure 1). Each plot was

1
2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
25
22
30
37
38
39
40
41
42
43
11
44
45
46
47
48
49
50
51
52
52
)) [/
54 55
55
56
57
58

172	established at least 15 m from the border of a LP patch for its representative, and each
173	plot had a dimension of 30 m \times 30 m. Trees with DBH values less than 6 cm were
174	defined as saplings, and the stem volumes of saplings are too small to be considered
175	in the GSV estimation. In addition, most of the stem volume equations are available
176	for trees with DBH values greater than 4 cm; thus, the stems of trees with DBH values
177	\geq 4 cm were measured in each plot (Meng et al., 2006). In addition, tree density and
178	age were recorded. To calculate the stem volume accurately, local stem volume
179	equations were employed to estimate the stem volumes of the sampled trees in a given
180	area (Table 1).
181	The stem volume of all trees in a sampling plot were summed as the GSV of
182	the plot, and 316 field samples were obtained. In addition to the above sample data,
183	another 64 plots were compiled from the Forest Resource Management Inventory
184	(FRMI) from 2011 to supplement our field surveys. The FRMI is usually conducted
185	by local forestry administrations, aiming to support forest management and planning.
186	Following representative principles, the FRMI survey method is similar to the survey
187	in this study, including the DBH measurements and the same stem volume equations
188	for volume calculation. However, the FRMI sampling plot is not the same size of 30
189	$m\times 30$ m for a LP patch, and rectangular and circular plot shapes were also employed
190	in the FRMI. Since LPs were planted and managed (e.g., thinning) as patches, the
191	trees within a patch are relatively homogeneous; thus, the effects of different
192	sampling methods on the survey results were limited. To temporally match the SAR
193	data (2010), the empirical annual increments of GSV that linked multiple LP ages (Gu

194 1987; Saihanba Forestry Center 2012), as well as the thinning records that were
195 provided by the local forestry administration, were employed to adjust the GSVs of
196 the LPs to those of 2010. Finally, a total of 380 samples with units of m³ ha⁻¹ were
197 obtained to train and test the GSV estimation models.

198 2.3 SAR data and processing

PALSAR data were acquired from Northeast China by the ALOS mission of the Japanese Aerospace Exploration Agency (JAXA), which was launched in January 2006 and operated until April 2011. The ALOS PALSAR mosaic at HH (horizontal transmit and horizontal receive) and HV (horizontal transmit and vertical receive) polarizations have been open to the public for free downloads since 2014 (Shimada et al. 2014). To generate the ALOS PALSAR mosaics, the HH and HV data that were acquired between June and October were used, and the original strip data that show minimum responses to surface moisture were preferentially selected to produce the PALSAR mosaic (Shimada et al. 2014).

All supplied mosaics were already geometrically corrected and radiometrically calibrated, as well as adjusted for seasonal changes between adjacent strips. In this study, ALOS PALSAR HH and HV data from 2010 were used in $1^{\circ} \times 1^{\circ}$ mosaic tiles (about 111 km × 111 km) with a pixel spacing of 25 m × 25 m. A median filter of 5 pixel × 5 pixel was employed to reduce speckle effects (Lee et al. 2009). The digital number (DN) signal was converted into gamma-naught (γ^{0}) using the following equation (Shimada et al. 2010):

 $\gamma^0 = 10 \cdot \log_{10} (DN)^2 - 83$

(1)

216 where DN represents 16 bits unsigned integer digital numbers.

217	Previous studies have reported that the transformation of the original HH and
218	HV bands may improve the saturation point for biomass or GSV estimations (Mougin
219	et al. 1999; Sarker et al. 2012; Hamdan, Khali Aziz, and Mohd Hasmadi 2014). For
220	example, Hamdan, Khali Aziz, and Mohd Hasmadi (2014) found that patches of
221	matured mangrove stands appeared brighter than stands that were newly planted when
222	the images were produced by manipulating the polarizations, such as HH / HV and
223	(HH \cdot HV) ^{-1/2} . To examine this potential for the estimations of the GSV of LPs, the
224	PALSAR backscatter-derived variables were calculated, including HV / HH , (HH +
225	HV) / 2 and (HH \cdot HV) $^{-1/2}$.

226 2.4 Mapping larch plantation

Understanding the distribution of LPs is a prerequisite for investigations on the GSV and biomass of LPs. Larch is a coniferous and deciduous tree species that can be identified by its remarkable seasonal changes (Gao et al. 2015). During the growing season, larch can be discriminated from a broadleaf forest by the spectra of its coniferous features; during the non-growing season, larch drops its leaves, which allows it to be discriminated from the other evergreen coniferous tree species. To identify the unique phenological behaviors of larch, a Landsat dataset with a spatial resolution of 30 m was applied, which was captured during the growing season (leaf on, between June and October) and non-growing season (leaf off, between November and March) of 2010. In cases where the data availability was limited (e.g., cloud-covered images), images were selected from the following year. The cloud

238	coverage of each of image was less than 10.0 %, and the images where clouds did not
239	cover the LP area were preferred. A total of 164 cloudless scenes were finally
240	collected, consisting of 82 scenes for each season. These scenes were collected from
241	the United States Geological Survey (USGS) and had been processed to the L1T level
242	(orthorectified). Geometric correction was performed to reduce the error to less than
243	15 m. Then, the Landsat images were converted into reflectance values using the
244	radiative transfer "code" based on MODTRAN4 (Rodriguez-Galiano et al. 2012),
245	which was performed using the Fast Line-of Sight Atmospheric Analysis of Spectral
246	Hypercubes (FLAASH) software package in ENVI 5.0.
247	False color composites were selected for the Landsat images with green $(530 - $
248	590 nm), red $(640 - 670 \text{ nm})$ and near-infrared (NIR) bands $(850 - 880 \text{ nm})$ to
249	enhance the separability between forest types. At the pixel level, unsupervised
250	classification (k-means) was employed for the summer images to discriminate
251	coniferous forests by visually identifying the coniferous forests. Then, the same
252	method was applied to the winter images to extract the evergreen coniferous forests.
253	The number of classes was set up within the range of 20 to 25, and the maximum
254	iterations were 10 to 15. The classification results were visually inspected, and the
255	classification procedure was repeated after changing the k-means parameters,
256	depending on the classification results.
257	The spatial distribution of larch was finally obtained by overlaying the two
258	results. The discrimination of natural larch is a practical problem. Natural larch is
259	mainly distributed through some areas in Jilin Province, Heilongjiang Province, and

eastern Inner Mongolia Autonomous Region, whereas there is no natural larch in

Inventory data for China (2009 to 2013) were used to exclude natural larches from the

interpreted results (Chinese Ministry of Forestry 2014). In addition, LPs in Northeast

China are mostly single species monocultures and were originally planted as patches.

time-consuming work, and more detailed descriptions of LP mapping can be found in

Since the GSV or biomass of a forest is logarithmically correlated to SAR backscatter

(Sandberg et al. 2011; Hamdan, Khali Aziz, and Mohd Hasmadi 2014), logarithmic

GSVs were estimated by the following three steps. First, the field-based GSVs were

polarizations, as well as the three variables transformed by the original HH and HV

polarizations, and a database was established. Second, the database was applied to

train logarithmic regression models by randomly selecting 70.0 % of the total records

(Figure 2). Third, the root mean squared error (RMSE) values were calculated with

the reserved records to evaluate the performances of these models for GSV

regression models were employed in this study for the GSV estimations. The LP

correlated to the spatially corresponding pixel backscatter of the PALSAR

A visual inspection was employed to distinguish the texture features and shapes to

exclude natural larch. The final LP mapping results were tested by field-based

interpretation, and an accuracy of 92.5 % was obtained. LP mapping is

the study from our research group reported by Shang et al. (2017).

Liaoning Province or northern Hebei Province. The National Forest Resource

1
2
3
4
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
23
23
24
25
26
27
28
29
30
31
32
33
37
25
33
30
3/
38
39
40
41
42
43
44
45
16
40
47
48
49
50
51
52
53
54
55
56
50
57
58
59

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

estimation.

2.5 Estimation of GSV

282
$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (Y_{P,i} - Y_{O,i})^2}$$
(2)

 $Y_{P,i}$ and $Y_{O,i}$ represent the retrieved-GSV and ground-truth GSV, respectively, and *N* is 284 the sample number.

285 2.6 Estimation of biomass carbon storage

The volume-derived biomass method was used to estimate the LP biomass in
Northeast China. Here, the biomass expansion factor (BEF) is defined as the ratio of
total stand biomass to GSV and can be expressed as a reciprocal equation (Fang and
Wang 2001):

$$BEF = a + b / x \tag{3}$$

where $x (m^3 ha^{-1})$ is the stand stem volume per unit area (GSV); *a* and *b* are constants for a specific forest type, which were assigned as 0.610 and 33.806, respectively, in this study (Guo et al. 2010). Spatially continuous BEF values that were based on the GSV distribution were mapped (Section 2.5). Then, the BEF combined with GSV data were used to map the LP biomass (t ha⁻¹) for the entire study area. Finally, the biomass carbon storage was obtained by converting the biomass into units of carbon (t ha⁻¹) with a coefficient of 0.5.

298 2.7 Definitions of saturation level

A limitation of SAR is that saturation effects occur at higher GSV levels, leading to the loss of predictive power for GSV (Imhoff 1995; Peregon and Yamagata 2013), and defining the saturation level is indispensable for understanding the applicability of the estimation. To quantify the uncertainty caused by the saturation effect, two

303	saturation level definitions were employed: the fitted asymptote between GSV or
304	above ground-biomass (AGB) and backscatter increases less than 0.01 dB,
305	corresponding to an increase in AGB of 10^6 g ha ⁻¹ (Lucas et al. 2010), and the
306	asymptote increases less than 0.20 dB, corresponding to an increase in AGB of 10^6 g
307	ha ⁻¹ (Mermoz et al. 2014). The root: shoot biomass ratios of 0.2 were used to obtain
308	the AGB and estimate the saturation level (Wang, Fang, and Zhu 2008).
309	3. Results
310	3.1 ALOS PALSAR backscatter-based variables versus GSV for LPs
311	The five ALOS PALSAR backscatter-based variables were related to ground GSV to
312	develop logarithmic regression models (Figure 2). The highest model accuracy was
313	established by the (HV + HH) / 2 variable, following by HV, (HH \cdot HV) ^{-1/2} , and HH.
314	The HV / HH variable did not show a significant relationship with GSV. Therefore,
315	the $(HV + HH) / 2$ variable was selected for the GSV prediction model.
316	The $(HV + HH) / 2$ backscatter of all corresponding sampling plots ranged
317	from -6.39 dB to -19.79 dB, with a mean of -9.33 dB. The backscatter increased
318	asymptotically with GSV. The changes in backscatter per increase in GSV of 10 m^3
319	ha^{-1} were 0.25 dB, 0.16 dB, 0.12 dB, and 0.10 dB at GSV levels of 100 m ³ ha^{-1} , 150
320	m ³ ha ⁻¹ , 200 m ³ ha ⁻¹ and 250 m ³ ha ⁻¹ , respectively, showing a decrease in sensitivity.
321	According to the two saturation level definitions (Section 2.7), the saturation levels of
322	the variable (average of HH and HV) for the retrieval of the LP GSV are 260 m^3 ha ⁻¹
323	(backscatter less than 0.20 dB per 10^6 g ha ⁻¹) and 490 m ³ ha ⁻¹ (backscatter less than

324	0.01 dB per 10^6 g ha ⁻¹), respectively. The model validation supported the lower
325	saturation level definition, indicating that the sensitivity of the predictive variable
326	decreased at a GSV of 250 m ³ ha ⁻¹ (Figure 2 (f)). If the lower saturation level (260 m ³
327	ha ⁻¹) was taken into consideration, only a small proportion (< 0.2 %) of the area was
328	affected, suggesting that the saturation effect weakly influenced the retrieval of LP
329	GSV. If the test samples with GSV values greater than 245 m ³ ha ⁻¹ were not included
330	in the model validation, the RMSE and relative RMSE (rRMSE, i.e., the RMSE
331	divided by the averaged GSV) would reach \pm 33.1 m ³ ha ⁻¹ and 26.3 %, respectively
332	(Table 2).

333 3.2 Mapping GSV and biomass carbon storage of LPs

The optimum regression model that was fitted by the average of HV and HH was applied to map LP GSV at a pixel level with 25 m spatial resolution (Figure 3). The total LP GSV over Northeast China (LP area of 2.64 million ha) was estimated to be 224.3 million m³, with an average GSV density of 85.1 m³ ha⁻¹.

Spatially, LP GSV shows substantial heterogeneity without an obvious trend. Low GSV density ($< 40 \text{ m}^3 \text{ ha}^{-1}$) was observed in the southern part of the Inner Mongolia Autonomous Region near the forest-steppe ecotone between the Daxing'an Mountains and Horqin Steppe and in northern and eastern parts of Heilongjiang Province. A medium-low GSV (40 to 75 m^3 ha⁻¹) was observed in the mid-eastern part of Jilin Province and northern part of the Inner Mongolia Autonomous Region, as well as the northern and eastern parts of Heilongjiang Province. Medium-high GSV (75 to 145 m³ ha⁻¹) appeared in the eastern part of Liaoning Province, northern part of

346	Hebei Province, eastern part of the Inner Mongolia Autonomous Region and middle
347	part of Heilongjiang Province. High-density GSV (> $145 \text{ m}^3 \text{ ha}^{-1}$) appeared in the
348	mid-eastern part of Liaoning Province and a small area in the middle part of
349	Heilongjiang Province.
350	The BEF mainly ranged from 0.8 to 1.4, with a mean of 1.1. Based on the
351	estimated GSV and BEF, the biomass carbon storage (above- and belowground
352	biomass) of LPs was assessed to be $113.0 \ 10^{12}$ g C, with a mean biomass density of
353	42.9 10^6 g C ha ⁻¹ (Figure 4). The spatial biomass carbon storage pattern was
354	consistent with the GSV distribution.
355	4. Discussions
356	4.1 Saturation effect for the estimation of GSV
357	
358	The saturation level of the ALOS PALSAR variable (average of HH and HV) was 260
359	m ³ ha ⁻¹ in this study, suggesting that the saturation effect is weak for the estimation of
360	LP GSV. The saturation effect is site dependent and is influenced by the different
361	observed objects as well as the various environmental conditions (Sandberg et al.
362	2011). Since saturation levels can be represented by aboveground biomass or GSV,
363	these results were unified by an expression of aboveground biomass to compare
364	saturation levels among different studies (Table 3). Saturation levels have been
365	examined to occur in wide AGB values ranging from 100 to $200 \ 10^6$ g ha ⁻¹ . The
366	saturation levels for temperate and boreal forests were observed to exceed $140 \ 10^6 \ g$
367	ha ⁻¹ (Cartus, Santoro, and Kellndorfer 2012; Chowdhury, Thiel, and Schmullius 2014;

368	Thiel and Schmullius 2016). The saturation levels for cashew plantations (Avtar,
369	Suzuki, and Sawada 2014), mangroves (Hamdan, Khali Aziz, and Mohd Hasmadi
370	2014), tropical forests (Saatchi et al. 2011), and savannas (Mermoz et al. 2014) were
371	lower than those of temperate and boreal forests. Our observed saturation level is
372	higher than that observed in most previous studies, and this finding can be interpreted
373	as follows. Most of the LPs in China are afforested as a single species monoculture and
374	an even-aged structure, and the undergrowth vegetation is sparse. This simple stand
375	structure can enhance the proportion of backscatter from the tree stem (Watanabe et al.
376	2006). Furthermore, the large area of this study also contributes to the high saturation
377	levels. The wide ranges of GSV and the corresponding ALOS PALSAR backscatter
378	resulted in the steep slope of the regression fit the logarithmic curve (Lucas et al.
379	2010). These results suggested that the ALOS PALSAR data were well adapted to
380	monitor plantation forests and estimate their biophysical parameters at a large spatial
381	scale.

4.2 Uncertainty assessment

Taking the rRMSE of 26.3 % into consideration, the total LP GSV can be estimated to range between 165.3 and 283.3 million m³ in Northeast China. Since the estimated biomass value was linearly related to the estimated GSV, the modeling error can be directly applied to the biomass, which can be estimated to range from 83.2 to 142.7 10^{12} g C. In addition to the modeling error, the estimation accuracy for this large geographic extent still contains some limitations due to the uncertainties in LP mapping, sampling errors, GSV calculations and SAR data. Although extensive work

390	has been conducted to improve the discrimination accuracy for LPs (Section 2.4), the
391	estimation results still contained errors, such as the discrimination of natural larch.
392	Since the GSV of natural larch may be greater than that of a LP, this misclassification
393	would result in the overestimation of GSV, which mainly occurred in the Daxing'an
394	Mountains. In addition, since larch was planted as patches and the management
395	practices (e.g., thinning) were also conducted in the patches, the area within the same
396	patch is generally homogenous. In the LP mapping process, the misclassified and
397	mixed pixels mainly appeared in the marginal areas, leading to the increased
398	uncertainty in the GSV estimations.
399	Another possible uncertainty is from sampling errors. The sampling errors are
400	related to the limited sizes and locations of the study plots, which may not represent
401	the general level of a sampled LP patch (Chave et al. 2004). In addition, the two field
402	survey datasets that were produced by our sampling team and the FRMI were
403	combined to train and validate the GSV estimation models. Although the two datasets
404	were generated with similar sampling principles and measures, there were differences
405	in the sampling practices. Considering the homogeneity of a plantation forest patch,
406	the uncertainty induced by sampling errors can be expected to be small.
407	The GSV calculation of sampling sites also produces errors. Here, only LPs
408	were considered, and site-specific allometric models were chosen for the stem volume
409	calculations; thus, we imply that this error would be less than 5.0 % (Chave et al.
410	2005; Mermoz et al. 2014). Furthermore, the empirical annual increases in GSV were
411	employed to temporally match the field survey samples with remote sensing data.

1
2
2
1
4 r
5
6
7
8
9
10
11
12
13
14
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
32
22
24
34 25
35
36
37
38
39
40
41
42
/2
7-J //
44 45
45
46
47
48
49
50
51
52
52
52
54 55
55
56
57
58

412	Since various site conditions of LPs cannot be taken into consideration in the annual
413	GSV increases, the age-related empirical values were used. This simplification would
414	homogenize the annual increases in the GSV of LPs with different site conditions for
415	3 to 5 years.
416	Finally, the largest uncertainty for the LP GSV estimation would be induced
417	from the SAR datasets with large geographic extents and terrain effects, including the
418	radiometric accuracy, speckle noise, and geometric accuracy of the dataset. The
419	ALOS PALSAR mosaic data used in this study were preprocessed by selecting
420	through visual inspection to minimize the surface moisture response. This seasonal
421	change (wet and dry season) of the backscatter coefficient was limited to less than
422	0.20 dB in both HH and HV polarizations (Shimada et al. 2014). If the LPs with
423	average backscatters of -9.33 dB were considered as reference objects, the seasonal
424	variation in the backscattering coefficient leads to a GSV estimation error of
425	approximately \pm 5.4 m ³ ha ⁻¹ , accounting 16.3 % of the GSV estimation RMSE. In
426	addition, ALOS PALSAR mosaic data were produced by 16 looks (Shimada et al.
427	2014), and a median filter of 5 pixel \times 5 pixel was employed to reduce the speckle
428	achieved in this study (Section 2.3). To reduce the terrain effects on the
429	backscattering coefficient, the ALOS PALSAR images were orthorectified and
430	slope-corrected using a 90 m Shuttle Radar Topography Mission Digital Elevation
431	Model (Shimada et al. 2010). This process obtained a geometric accuracy of 12 m for
432	the ALOS PALSAR mosaic, assuring close correspondence between the sampling
433	sites and image pixels. Although these efforts were made to correct the PALSAR

data, the radiometric and geometric errors caused by incomplete calibration remained;
for example, there were seasonal differences between strips due to soil moisture
(Shimada et al. 2009). This uncertainty has been considered a challenge to improving
the accuracy of forest GSV or biomass estimations through satellite-based SAR data
(Slavback, Pinzon, and Tucker 2003; Shimada and Ohtaki 2010).

439 4.3 Implications of the GSV and biomass estimates for LP management

The LP GSV in Northeast China was estimated to be 224.3 million m³, with a mean density of 85.1 m³ ha⁻¹. As a dominant timber species that has been afforested in North China since the 1960s, this GSV is low for meeting the timber demands of China. As reported by the Chinese Ministry of Forestry (2015), the timber demands of China are 539 million m³. This result means that even if all LPs in Northeast China were harvested, they could provide less than half of the timber demands of China for one year. During the past two decades, the plantation forest patterns have undergone profound changes. On the one hand, the fast-growing plantation forests of South China developed rapidly. For example, although the eucalyptus plantation area accounts for merely 2.2 % (4.5 million ha) of the forest area of China, eucalyptus contributed to 26.9 % (> 30 million m^3) of the timber production of China (Peng 2015). In addition, the bamboo forests of China increased from 3.2 million ha in the 1980s to 6.0 million ha in the 2010s (Chinese Ministry of Forestry 2014). These fast-growing plantation forests provide a large number of wood goods, including roundwood and fiber, which partly substituted the timber supply from traditional plantation forests in North China. On the other hand, the wood-based panel (plywood,

1	
2	
3	
4	
5	
6	
7	
2 2	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

456	medium density fiberboard, particleboard, etc.) industry of China has experienced
457	dramatic development. Wood-based panel production increased by approximately one
458	hundred times from 2.0 million m ³ in the early 1990s to 274 million m ³ in 2014,
459	accounting for 60.0 % of the wood-based panel production in the world (Chinese
460	Ministry of Forestry 2015). Consequently, the developments of fast-growing forest
461	plantations and the wood-based panel industry mitigate the pressure on timer
462	production that is supposed to be produced by traditional plantation forests, and LPs
463	are not expected to provide as much timber as before.
464	Over the past 40 years, China has experienced rapid economic development
465	and has become the second-largest economy in the world (Ouyang et al. 2016).
466	Unfortunately, this process has been accompanied by a deteriorating environment. To
467	continue the sustainable development and improve livelihoods and the environment,
468	"ecological civilization" was presented as a national strategy in 2013. Since 2015,
469	China has imposed total logging bans in natural forests to conserve natural forests and
470	promote their non-timber ecosystem services. LPs are mainly distributed in mountain
471	ranges, which are the sources or headwaters of the main rivers in Northeast China.
472	These regions are of great importance to the water supply for agriculture and industry,
473	as well as soil retention, biodiversity conservation, carbon sinks, recreational
474	activities, etc. Here, the LP biomass estimate of $113 \ 10^{12}$ g C accounts for
475	approximately 5.6 % of the total forest biomass carbon storage in Northeast China
476	(Guo et al. 2013). As an important part of the forest ecosystem, the regulating services
477	of LPs should be recognized as vital to regional ecological security. Thus,

478	multipurpose management practices should be carried out to inform policymakers and
479	assure broader and sustainable benefits from LPs in the future.
480	The priorities of timber supply and regulating services (e.g., water
481	conservation) of LPs should be reconsidered for planning multipurpose management
482	strategies. The GSV represents the amount of current timber in a LP stand, which is
483	closely related to its timber production (Gao et al. 2016) and can thus be applied as an
484	important reference for multipurpose management plans. According to our estimates,
485	the high GSV area (greater than 130 m^3 ha ⁻¹) accounted for 9.0 % of the LP areas in
486	Northeast China, and these areas mostly had good site conditions, as well as
487	convenient traffic. These LPs can be managed as fast-growing and high-yielding
488	plantations that can primarily meet the timber supply demands. The LPs with low
489	GSV (less than 70 m ³ ha ⁻¹) accounted for 28.5 % of the LP areas, and these areas had
490	poor site conditions with steep slopes on mountains, which suppress timber
491	production. The LP regulating services should be highlighted in these areas due to the
492	high ecological vulnerability. Nonetheless, most of the LPs in China are planted as
493	single species and even-aged stand structures that focus on timber production, which
494	can threaten their regulating services (Rodriguez et al. 2006). Inducing LPs in the
495	larch-broadleaved mixed forests (LBMF) has been recognized as an approach to
496	improve the regulating services (Mason and Zhu 2014), and some studies have
497	examined the feasibility of this method through thinning practices (Zhu et al. 2010;
498	Gang, Yan, and Zhu 2015) and natural regeneration (Yan, Zhu, and Gang 2013). With
499	the support of local LP management, these approaches can be applied to the LPs that

500	are distributed in the mountain regions where environmental adjustment values clearly
501	outweigh timber supply values. The rest of the area (70 $\text{m}^3 \text{ha}^{-1}$ to 130 $\text{m}^3 \text{ha}^{-1}$)
502	accounts for 62.5 % of the LP area where both timber production and regulating
503	services would be taken into consideration. Trade-offs or synergies among multiple
504	ecosystem services should be examined when quantifying ecosystem services in
505	several forest management scenarios relative to potential forest management practices
506	(e.g., inducing LBMF) to adjust the species composition of plantation forests.
507	Research on the scenario trade-offs or synergies of a forest can pragmatically inform
508	policy discussions and further support decisions related to plantation forest
509	management planning (Zheng et al. 2016).
510	5 Conclusion
510	Using a combination of L hand SAR data and a ground based inventory an empirical
JII	Using a combination of L-band SAR data and a ground-based inventory, an empirical
512	model was developed to map LP GSV, and biomass was further estimated at a
513	regional scale. The saturation effect of the ALOS PALSAR backscatter for the
514	retrieval of LP GSV was examined at a high level, indicating its potential to be a
515	reliable dataset for monitoring plantation forests. The GSV and biomass of LPs in
516	Northeast China were estimated at 224 million m ³ and 113 10 ¹² g C, respectively.
517	Considering the current timber production and supply of China, as well as the
518	growing environmental threats, the non-timber services of LPs should be highlighted.
519	Based on the mapping result, this study tentatively proposed an explicit pattern for
520	ecosystem service priority (which ecosystem services should be prioritized) that is
521	simply linked to the LP GSV. To obtain broader and sustainable benefits from larch

522	plantations, a more detailed multipurpose management plan should be created that
523	systematically evaluates ecosystem services, as well as natural and social factors. In
524	addition, as most forests provide a variety of services, including provision (e.g.,
525	timber production), support (e.g., soil formation), and regulation (e.g., water
526	conservation), future studies should focus on the relationships (trade-offs and
527	synergies) among ecosystem services when managing plantation forests in complex
527	synergies) among ecosystem services when managing plantation forests in complex
528	landscapes and regions.
529	
530	Acknowledgements
531	This research was supported by the National Key Research and Development Program of
532	China (2016YFD0600206), the National Natural Science Foundation of China (31500466)
533	and the National Basic Research Program of China (973 Program, No. 2012CB416906). We
534	thank members of sampling team of the Institute of Applied Ecology, Chinese Academy of
535	Sciences (Yirong Sun, Guangqi Zhang, Chunyu Zhu, Liyan Huang, Guangchen Wang, Jingpu
536	Zhang, Jing Wang, Ao Shen, Junxia Cong) for assistance with larch plantation field
537	investigation. We would also be grateful to Shun Cheng of the Saihanba Forestry Center for
538	sharing the Forest Resource Management Inventory data, and Hailong Sun of Northeast
539	Forestry University, Ji Ye of Institute of Applied Ecology, Chinese Academy of Sciences for
540	sharing allometric models of larch plantations.
541	
542	Reference
543	Avtar, Ram, Rikie Suzuki, and Haruo Sawada. 2014. "Natural forest biomass
544	estimation based on plantation information using PALSAR data." PLoS ONE
545	9 (1):e86121. doi: 10.1371/journal.pone.0086121.
546	Avtar, Ram, Wataru Takeuchi, and Haruo Sawada. 2013. "Monitoring of biophysical

1	
1	
2	
3	
4	
5	
2	
6	
7	
8	
9	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
25	
24	
25	
26	
27	
27	
28	
29	
30	
31	
27	
32	
33	
34	
35	
26	
30	
37	
38	
39	
10	
40	
41	
42	
43	
ΔΔ	
45	
45	
46	
47	
48	
40	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
57	
58	
59	

547	parameters of cashew plants in Cambodia using ALOS/PALSAR data."
548	Environ Monit Assess 185 (2):2023-37.
549	Brown, Sandra L., Paul Schroeder, and Jeffrey S. Kern. 1999. "Spatial distribution of
550	biomass in forests of the eastern USA." Forest Ecology and Management
551	123 (1):81-90.
552	Brown, Sandra, and E. Ariel Lugo. 1984. "Biomass of tropical forests: A new estimate
553	based on forest volumes." Science 223 (4642):1290-3.
554	Carle, Jim, and Peter Holmgren. 2008. "Wood from Planted Forests A Global Outlook
555	2005-2030." Forest Products Journal 58 (12):6-18.
556	Cartus, Oliver, Maurizio Santoro, and Josef Kellndorfer. 2012. "Mapping forest
557	aboveground biomass in the Northeastern United States with ALOS PALSAR
558	dual-polarization L-band." Remote Sensing of Environment 124:466-78.
559	Chinese Ministry of Forestry. 2014. "Forest Resource Statistics of China." [In Chinese]
560	Department of Forest Resource and Management, Chinese Ministry of
561	Forestry, Beijing, China.
562	Chinese Ministry of Forestry. 2015. "Forestry development Report of China." [In
563	Chinese] Department of Forest Resource and Management, Chinese Ministry
564	of Forestry, Beijing, China.
565	Chave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Fölster,
566	et al. 2005. "Tree allometry and improved estimation of carbon stocks and
567	balance in tropical forests." Oecologia 145 (1):87-99. doi:
568	10.1007/s00442-005-0100-x.

569	Chave, Jerome, Richard Condit, Salomon Aguilar, Andres Hernandez, Suzanne Lao,
570	and Rolando Perez. 2004. "Error propagation and scaling for tropical forest
571	biomass estimates." Philosophical Transactions of the Royal Society B:
572	Biological Sciences 359 (1443):409-20.
573	Chowdhury, Tanvir Ahmed, Christian Thiel, and Christiane Schmullius. 2014.
574	"Growing stock volume estimation from L-band ALOS PALSAR polarimetric
575	coherence in Siberian forest." Remote Sensing of Environment 155:129-44.
576	Costanza, Robert, Ralph D'Arge, Rudolf de Groot, Stephen Farber, Monica Grasso,
577	Bruce Hannon, Karin Limburg, et al. 1997. "The value of the world's
578	ecosystem services and natural capital." Nature 387 (6630):253-60.
579	Cutler, M. E. J., D. S. Boyd, G. M. Foody, and A. Vetrivel. 2012. "Estimating tropical
580	forest biomass with a combination of SAR image texture and Landsat TM data:
581	An assessment of predictions between regions." ISPRS Journal of
582	Photogrammetry and Remote Sensing 70:66-77.
583	Department of Forestry of Inner Mongolia Autonomous Region. 1993. "Tree Volume
584	Table of Department of Forestry of Inner Mongolia Autonomous Region." [In
585	Chinese] Department of Forestry of Inner Mongolia Autonomous Region,
586	Hohhot, China.
587	Department of Forestry of Liaoning Province. 1994. "Tree Volume Table of Liaoning
588	province." [In Chinese] Department of Forestry of Liaoning Province.
589	Shenyang, China.
590	Department of Forestry of Heilongjiang Province. 1998. "Tree Volume Table of

591	Heilongjiang province." [In Chinese] Department of Forestry of Heilongjiang
592	Province. Harbin, China.
593	Department of Forestry of Jilin Province. 2002. "Tree Volume Table of Jilin province."
594	[In Chinese] Department of Forestry of Jilin Province. Changchun, China.
595	Fang, Jingyun, Anping Chen, Changhui Peng, Shuqing Zhao, and Longjun Ci. 2001.
596	"Changes in forest biomass carbon storage in China between 1949 and 1998."
597	Science 292 (5525):2320-2.
598	Fang, Jingyun, G. Geoff Wang, Guohua Liu, and Songling Xu. 1998. "Forest biomass
599	of China: An estimate based on the biomass-volume relationship."
600	Ecological Applications 8 (4):1084-91.
601	Fang, Jingyun, and Zhangming Wang. 2001. "Forest biomass estimation at regional
602	and global levels, with special reference to China's forest biomass."
603	Ecological Research 16 (3):587-92.
604	Food and Agriculture Organization, 2010. "Food and Agriculture Organization
605	Resources Assessment 2010." In, Rome, pp. 90.
606	Gang, Qun, Qiaoling Yan, and JiaoJun Zhu. 2015. "Effects of thinning on early seed
607	regeneration of two broadleaved tree species in larch plantations: implication
608	for converting pure larch plantations into larch-broadleaved mixed forests."
609	Forestry 88 (5):573-85.
610	Gao, Tian, Jiaojun Zhu, Songqiu Deng, Xiao Zheng, Jinxin Zhang, Guiduo Shang,
611	and Liyan Huang. 2016. "Timber production assessment of a plantation forest:
612	An integrated framework with field-based inventory, multi-source remote

613	sensing data and forest management history." International Journal of
614	Applied Earth Observation and Geoinformation 52:155-65.
615	Gao, Tian, Jiaojun Zhu, Xiao Zheng, Guiduo Shang, Liyan Huang, and Shangrong Wu.
616	2015. "Mapping spatial distribution of larch plantations from multi-seasonal
617	Landsat-8 OLI imagery and multi-scale textures using random forests."
618	Remote Sensing 7 (2):1702-20. doi: 10.3390/rs70201702.
619	Gu, C. 1985. "A Study on the Increment of Main Forest Communities in the Forest
620	Region of the Daxingan Mountain." [In Chinese] Journal of North-east
621	Forestry University 15, 108-114.
622	Guo, Zhaodi, Jingyun Fang, Yude Pan, and Richard Birdsey. 2010. "Inventory-based
623	estimates of forest biomass carbon stocks in China: A comparison of three
624	methods." Forest Ecology and Management 259 (7):1225-31.
625	Guo, Zhaodi, Huifeng Hu, Pin Li, Nuyun Li, and Jingyun Fang. 2013.
626	"Spatio-temporal changes in biomass carbon sinks in China's forests from
627	1977 to 2008." Science China Life Sciences 56 (7):661-71.
628	Hamdan, O., H. Khali Aziz, and I. Mohd Hasmadi. 2014. "L-band ALOS PALSAR
629	for biomass estimation of Matang Mangroves, Malaysia." Remote Sensing of
630	Environment 155 (0):69-78.
631	Imhoff, M. L. 1995. "Radar backscatter and biomass saturation: ramifications for
632	global biomass inventory." Geoscience and Remote Sensing, IEEE
633	Transactions on 33 (2):511-8.
634	Immitzer, Markus, Christoph Stepper, Sebastian Böck, Christoph Straub, and Clement

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
10	
עו סכ	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
3/	
25	
35	
36	
37	
38	
39	
40	
41	
/1 ∕\2	
42 42	
43	
44	
45	
46	
47	
48	
40	
79 50	
50	
51	
52	
53	
54	
55	
56	
57	
57	
28	
59	
60	

635	Atzberger. 2016. "Use of WorldView-2 stereo imagery and National Forest
636	Inventory data for wall-to-wall mapping of growing stock." Forest Ecology
637	and Management 359:232-46.
638	Isaev, A., G. Korovin, D. Zamolodchikov, A. Utkin, and A. Pryaznikov. 1995.
639	"Carbon Stock and Deposition in Phytomass of the Russian Forests." Water,
640	Air, and Soil Pollution 82 (1): 247-256.
641	Kanninen, M. 2010. "Plantation forests: global perspectives." In Ecosystem goods and
642	services from plantation forests, edited by J. Bauhus, P. van der Meer and M.
643	Kanninen, 1-15. London: Earthscan.
644	Karam, Mostafa A., Faouzi Amar, Adrian K. Fung, Eric Mougin, Armand Lopes,
645	David M. Le Vine, and André Beaudoin. 1995. "A microwave polarimetric
646	scattering model for forest canopies based on vector radiative transfer theory."
647	Remote Sensing of Environment 53 (1):16-30.
648	Kira, T. 1976. "Terrestrial Ecosystem: A General Introduction. " Kyoritus-shuppan,
649	Tokyo, Japan.
650	Lee, J. S., J. H. Wen, T. Ainsworth, K. S. Chen, and A. Chen. 2009. "Improved sigma
651	filter for speckle filtering of SAR imagery." IEEE Transactions on
652	Geoscience and Remote Sensing 47:202-13.
653	Lucas, R. M., J. Armston, R. Fairfax, R. Fensham, A. Accad, J. Carreiras, and More
654	Authors. 2010. "An evaluation of the ALOS PALSAR L-band
655	backscatter-above ground biomass relationship Queensland, Australia: impacts
656	of surface moisture condition and vegetation structure." IEEE Journal of

657	Selected Topics in Applied Earth Observations and Remote Sensing 4
658	(3):576-93.
659	Mason, W. L., and J. J. Zhu. 2014. "Silviculture of Planted Forests Managed for
660	Multi-functional Objectives: Lessons from Chinese and British Experiences."
661	In Challenges and Opportunities for the World's Forests in the 21st Century,
662	edited by Trevor Fenning, 37-54. Dordrecht: Springer Netherlands.
663	Meng, X. 2005. "Forest Measuration (the 2 nd edition)". [In Chinese] China Forestry
664	Publishing House, Beijing.
665	Mermoz, Stéphane, Thuy Le Toan, Ludovic Villard, Maxime Réjou-Méchain, and
666	Joerg Seifert-Granzin. 2014. "Biomass assessment in the Cameroon savanna
667	using ALOS PALSAR data." Remote Sensing of Environment 155
668	(0):109-19.
669	Mitchard, E. T. A., S. S. Saatchi, I. H. Woodhouse, G. Nangendo, N. S. Ribeiro, M.
670	Williams, C. M. Ryan, S. L. Lewis, T. R. Feldpausch, and P. Meir. 2009.
671	"Using satellite radar backscatter to predict above-ground woody biomass: A
672	consistent relationship across four different African landscapes."
673	Geophysical Research Letters 36 (23):L23401.
674	Morel, Alexandra C., Joshua B. Fisher, and Yadvinder Malhi. 2012. "Evaluating the
675	potential to monitor aboveground biomass in forest and oil palm in Sabah,
676	Malaysia, for 2000–2008 with Landsat ETM+ and ALOS-PALSAR."
677	International Journal of Remote Sensing 33 (11):3614-3639. doi:
678	10.1080/01431161.2011.631949 doi: 10.1080/01431161.2011.631949.

Mougin, E., C. Proisy, G. Marty, F. Fromard, H. Puig, J. L. Betoulle, and J. P. Rudant.

1999. "Multifrequency and multipolarization radar backscattering from

Ouyang, Zhiyun, Hua Zheng, Yi Xiao, Stephen Polasky, Jianguo Liu, Weihua Xu,

Qiao Wang, et al. 2016. "Improvements in ecosystem services from

Pan, Yude, Richard A. Birdsey, Jingyun Fang, Richard Houghton, Pekka E. Kauppi,

Werner A. Kurz, Oliver L. Phillips, et al. 2011. "A large and persistent carbon

Science 333:988-93.

detection of boreal forest using bi-temporal ALOS PALSAR backscatter data."

Peregon, Anna, and Yoshiki Yamagata. 2013. "The use of ALOS/PALSAR backscatter

Rahman, M. Mahmudur, and Josaphat Tetuko Sri Sumantyo. 2012. "Retrieval of

International 28 (5):382-403. doi: 10.1080/10106049.2012.710652

Robinson, Chelsea, Sassan Saatchi, Maxim Neumann, and Thomas Gillespie. 2013.

to estimate above-ground forest biomass: A case study in Western Siberia."

tropical forest biomass information from ALOS PALSAR data." Geocarto

investments in natural capital." *Science* 352 (6292):1455.

Pantze, Andreas, Maurizio Santoro, and Johan E. S. Fransson. 2014. "Change

mangrove forests." IEEE Transactions on Geoscience and Remote Sensing

ן ר	
2	
-+ 5	
6	
7	
/ 8	
0	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 25	
35	
30 27	
3/ 20	
20	
39 40	
+0 ⊿1	
+ı ⊿ว	
≁∠ ⊿२	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

37 (1):94-102.

sink in the world's forests."

Remote Sensing of Environment 155:120-8.

Pen, Kefeng. 2015. "Article Title." China Science Daily, October 26.

Remote Sensing of Environment 137 (0):139-46.

2014/10/17 doi: 10.1080/10106049.2012.710652.

1	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
57	
52	
22	
54 57	
55	
56	
57	
58	
59	
60	

701	"Impacts of spatial variability on aboveground biomass estimation from l-band
702	radar in a temperate forest." Remote Sensing 5:1001-23. doi:
703	10.3390/rs5031001.
704	Rodriguez-Galiano, V. F., M. Chica-Olmo, F. Abarca-Hernandez, P. M. Atkinson, and
705	C. Jeganathan. 2012. "Random Forest classification of Mediterranean land
706	cover using multi-seasonal imagery and multi-seasonal texture." Remote
707	Sensing of Environment 121:93-107.
708	Rodriguez, Jon Paul, T. Douglas Beard, Elena M. Bennett, Graeme S. Cumming,
709	Steven J. Cork, John Agard, Andrew P. Dobson, and Garry D. Peterson. 2006.
710	"Trade-Offs Across Space, Time, and Ecosystem Services." Ecology and
711	Society 11.
712	Rosenqvist, A., M. Shimada, N. Ito, and M. Watanabe. 2007. "ALOS PALSAR: A
713	pathfinder mission for global-scale monitoring of the environment."
714	Geoscience and Remote Sensing, IEEE Transactions on 45 (11):3307-16.
715	Saatchi, Sassan, Miriam Marlier, Robin L. Chazdon, David B. Clark, and Ann E.
716	Russell. 2011. "Impact of spatial variability of tropical forest structure on
717	radar estimation of aboveground biomass." Remote Sensing of Environment
718	115 (11):2836-49.
719	Saatchi, Sassan, and Mahta Moghaddam. 2000. "Estimation of crown and stem water
720	content and biomass of boreal forest using polarimetric SAR imagery." IEEE
721	Transactions on Geoscience and Remote Sensing 38 (2):697-709.
722	Saihanba Forestry Center, 2012. "Forest Resource Plan and Inventory Report (4 th) of

1
2
3
4
5
5
0
/
8
9
10
11
12
13
14
15
16
17
18
19
20
21
21
∠∠ วว
23
24
25
26
27
28
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
57
55
22
20 57
5/
58
59

723	Saihanba Forestry Center of Hebei Province." [In Chinese] Saihanba Forestry
724	Center, Hebei, China.
725	Sandberg, G., L. M. H. Ulander, J. E. S. Fransson, J. Holmgren, and T. Le Toan. 2011.
726	"L- and P-band backscatter intensity for biomass retrieval in hemiboreal
727	forest." Remote Sensing of Environment 115 (11):2874-86.
728	Santoro, Maurizio, Leif Eriksson, and Johan Fransson. 2015. "Reviewing ALOS
729	PALSAR backscatter observations for stem volume retrieval in Swedish
730	forest." Remote Sensing 7 (4):4290-317. doi: 10.3390/rs70404290.
731	Sarker, Md Latifur Rahman, Janet Nichol, Baharin Ahmad, Ibrahim Busu, and Alias
732	Abdul Rahman. 2012. "Potential of texture measurements of two-date dual
733	polarization PALSAR data for the improvement of forest biomass estimation."
734	ISPRS Journal of Photogrammetry and Remote Sensing 69:146-66.
735	Schlund, Michael, Felicitas von Poncet, Steffen Kuntz, Christiane Schmullius, and
736	Dirk H. Hoekman. 2015. "TanDEM-X data for aboveground biomass retrieval
737	in a tropical peat swamp forest." Remote Sensing of Environment 158
738	(0):255-66.
739	Schroeder, Paul, Sandra Brown, Jiangming Mo, Richard Birdsey, and Chris
740	Cieszewski. 1997. "Biomass estimation for temperate broadleaf forests of the
741	United States using inventory data." Forest Science 43 (3):424-34.
742	Shang, Guiduo, Zhu Jiaojun, Gao Tian, Zheng Xiao, Zhang Jinxin. 2017. "Using
743	multi-source remote sensing data to classify larch plantations in Northeast
744	China and support the development of multi-purpose silviculture." Journal

745	of Forestry Research doi: 10.1007/s11676-017-0518-0.
746	Sharp, Douglas D., Helmut Lieth, and Dennis Whigham. 1975. "Assessment of
747	Regional Productivity in North Carolina." In Primary Productivity of the
748	Biosphere, edited by Helmut Lieth and Robert H. Whittaker, 131-46. Berlin,
749	Heidelberg: Springer Berlin Heidelberg.
750	Shimada, M., O. Isoguchi, T. Tadono, and K. Isono. 2009. "PALSAR Radiometric and
751	Geometric Calibration." IEEE Transactions on Geoscience and Remote
752	Sensing 47 (12):3915-32.
753	Shimada, M., and T. Ohtaki. 2010. "Generating large-scale high-quality SAR mosaic
754	datasets: Application to PALSAR data for global monitoring." IEEE Journal
755	of Selected Topics in Applied Earth Observations and Remote Sensing 3
756	(4):637-56.
757	Shimada, Masanobu, Takuya Itoh, Takeshi Motooka, Manabu Watanabe, Tomohiro
758	Shiraishi, Rajesh Thapa, and Richard Lucas. 2014. "New global
759	forest/non-forest maps from ALOS PALSAR data (2007-2010)." Remote
760	Sensing of Environment 15:13-31.
761	Slayback, D. J., S. Los Pinzon, and C. J. Tucker. 2003. "Northern hemisphere
762	photosynthetic trends 1982-99." Global Change Biology 9 (1):1-15.
763	Thiel, Christian, and Christiane Schmullius. 2016. "The potential of ALOS PALSAR
764	backscatter and InSAR coherence for forest growing stock volume estimation
765	in Central Siberia." Remote Sensing of Environment 173:258-73.
766	Turner, David P., Greg J. Koerper, Mark E. Harmon, and Jeffrey J. Lee. 1995. "A

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
12	
14	
14	
15	
16	
17	
18	
19	
20	
21	
י∠ רר	
22	
23	
24	
25	
26	
27	
28	
20	
29	
20	
31	
32	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
4/	
48	
49	
50	
51	
52	
52	
22	
54 	
55	
56	
57	
58	
59	
60	

767	carbon budget for forests of the conterminous United States." Ecological
768	<i>Applications</i> 5 (2):421-36.
769	UNDP (United Nations Development Program), and IUES (Institute for Urban and
770	Environmental Studies). 2013. "China National Human Development Report
771	2013 Sustainable and Liveable Cities: Toward Ecological Civilization". China
772	Publishing Group Corporation, Beijing.
773	Wang, Xiangping, Jingyun Fang, and Biao Zhu. 2008. "Forest biomass and root-shoot
774	allocation in northeast China." Forest Ecology and Management 255
775	(12):4007-20.
776	Watanabe, M., M. Shimada, A. Rosenqvist, T. Tadono, M. Matsuoka, Shakil Ahmad
777	Romshoo, K. Ohta, R. Furuta, K. Nakamura, and T. Moriyama. 2006. "Forest
778	structure dependency of the relation between L-Band sigma and biophysical
779	parameters." Geoscience and Remote Sensing, IEEE Transactions on 44
780	(11):3154-65.
781	Wilhelm, Sebastian, Christian Hüttich, Mikhail Korets, and Christiane Schmullius.
782	2014. "Large area mapping of boreal growing stock volume on an annual and
783	multi-temporal level using PALSAR L-band backscatter mosaics." Forests 5
784	(8):1999-2015. doi: 10.3390/f5081999.
785	Yan, Qiaoling, Jiaojun Zhu, and Qun Gang. 2013. "Comparison of spatial patterns of
786	soil seed banks between larch plantations and adjacent secondary forests in
787	Northeast China: implication for spatial distribution of larch plantations."
788	<i>Trees</i> 27 (6):1747-54.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
∠ I วว	
22	
25	
24	
25	
20	
27	
20	
29	
30	
27	
22	
27	
34	
36	
30	
38	
30	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
-	

789	Yang, Kai, Jiaojun Zhu, Qiaoling Yan, and Jinxin Zhang. 2012. "Soil enzyme
790	activities as potential indicators of soluble organic nitrogen pools in forest
791	ecosystems of Northeast China." Annals of Forest Science 69 (7):795-803.
792	Yang, Kai, Jiaojun Zhu, Min Zhang, Qiaoling Yan, and Osbert Jianxin Sun. 2010.
793	"Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast
794	China: a comparison between natural secondary forest and larch plantation."
795	Journal of Plant Ecology 3 (3):175 -82.
796	Zheng, Hua, Yifeng Li, Brian E. Robinson, Gang Liu, Dongchun Ma, Fengchun Wang,
797	Fei Lu, Zhiyun Ouyang, and Gretchen C. Daily. 2016. "Using ecosystem
798	service trade-offs to inform water conservation policies and management
799	practices." Frontiers in Ecology and the Environment 14 (10):527-32.
800	Zhu, J. J., Z. G. Liu, H. X. Wang, Q. L. Yan, H. Y. Fang, L. L. Hu, and L. Z. Yu. 2008.
801	"Effects of site preparation on emergence and early establishment of Larix
802	olgensis in montane regions of northeastern China." New Forests 36
803	(3):247-60.
804	Zhu, Jiaojun, Kai Yang, Qiaoling Yan, Zugen Liu, Lizhong Yu, and Hexin Wang. 2010.
805	"Feasibility of implementing thinning in even-aged Larix olgensis plantations
806	to develop uneven-aged larch-broadleaved mixed forests." Journal of Forest
807	<i>Research</i> 15 (1):71-80.
808	
809	

810	Table 1 Allometric models for volume calculation of larch plantation. The allometric
811	models were collected from the forestry administrations (Department of Forestry of
812	Inner Mongolia Autonomous Region 1993; Department of Forestry of Liaoning
813	Province 1994; Department of Forestry of Heilongjiang Province 1998; Department
814	of Forestry of Jinlin Province 2002; Saihanba Forestry Center 2012). $V(m^3)$ is the
815	stand stem volume of trees and $D(cm)$ is the diameter at breast height of trees.
816	Table 2 Growing stock volume (y) estimation accuracy of regression models
817	expressed in terms of R^2 (the coefficient of determination), RMSE and rRMSE for five
818	independent variables (x) from ALOS PALSAR polarisations. *The model samples
819	and test samples were 276 and 104, respectively. The model accuracy tested by the
820	samples that GSV is less than 245 m^3 ha ⁻¹ .
821	Table 3 Comparison of saturation levels of L-band SAR data for GSV estimation
822	among different studies. Only GSV was documented in the original references. To
823	compare saturation levels among different studies, saturation level expressed by GSV
824	$(m^3 ha^{-1})$ were convert to AGB (10 ⁶ g ha ⁻¹). A mean BEF (0.88) for the Russian taiga
825	forests (Isaev et al. 1995) and mean ratios (0.71) of AGB to total biomass (Kira 1976)
826	were applied to estimate the saturation levels of AGB (10^6 g ha ⁻¹). The ratios (0.83) of
827	AGB to total biomass of LP were used to convert total biomass to AGB (Wang et al.
828	2008).
829	
830	
831	

1	
2	
3	
4	
5	
6	
7	
/ 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
227	
20	
29	
50 21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
<u>4</u> 0	
50	
50	
רם בח	
52	
ک ∠ د	
54	
55	
56	
57	
58	
59	

832	
833	Figure 1 Locations of the sampling sites across Northeast China. Some plots overlap
834	visually each other and are therefore invisible. The numbers of samples are 64 for
835	2011, 36 for 2013, 166 for 2014 and 114 for 2015, respectively.
836	Figure 2 Relationships between the variables of ALOS PALSAR polarisations and
837	growing stock volume (GSV). The ground truth GSV samples were plotted against
838	variables, including HH (a), HV (b), HV / HH (c), (HV + HH) / 2 (d) and
839	$(HH \cdot HV)^{-1/2}$ (e). Scatterplots of ground truth GSV against the retrieved GSV by the
840	best variable $((HV + HH) / 2) (f)$.
841	Figure 3 Spatial distribution of LP GSV.
842	Figure 4 Spatial distribution of LP BEF (a) and biomass (b).
843	
844	
845	
846	
847	

Table 1 Allometric models for volume calculation of larch plantation. The allometric models were collected from the forestry administrations (Department of Forestry of Inner Mongolia Autonomous Region 1993; Department of Forestry of Liaoning Province 1994; Department of Forestry of Heilongjiang Province 1998; Department of Forestry of Jinlin Province 2002; Saihanba Forestry Center 2012). V (m³) is the stand stem volume of trees and D (cm) is the diameter at breast height of trees.

Region	Allometric model
Northern Hebei Province	$V = 0.000095 D^{2.561805}$
Liaoning Province	$V = 0.000083 D^{2.626108}$
Jilin Province	$V = 0.000208 D^{2.371992}$
Heilongjiang Province	$V = 0.000126 D^{2.483454}$
Inner Mongolia Autonomous Region	$V = 0.000069 D^{2.685323}$

Table 2 Growing stock volume (*y*) estimation accuracy of regression models expressed in terms of R^2 (the coefficient of determination), RMSE and rRMSE for five independent variables (*x*) from ALOS PALSAR polarisations. *The model samples and test samples were 276 and 104, respectively. The model accuracy tested by the samples that GSV is less than 245 m³ ha⁻¹.

Maniah la	M- 1-1	D ²	RMSE	rRMSE	RMSE*	rRMSE*
variable	Middel	ĸ	$(m^3 ha^{-1})$	(%)	$(m^3 ha^{-1})$	(%)
НН	$y = 1.9621 \ln(x)$ -	0.540	+ 16 565	26.057	± <i>4</i> 1 840	22 206
	15.603	0.349	±40.363	36.95/	± 41.840	33.206
HV	$y = 2.8387 \ln(x)$ -	0.637	+ 30 125	31.051	+ 34 668	27 514
11 V	25.255	0.037	± 39.123	51.051	± 34.008	27.314
HV / HH	$y = 0.0962 \ln(x) +$	0.057	+ 121 709	96 594	+ 112 674	89 474
11 V / 1111	1.475	0.057	± 121.709	90.394	± 112.074	09.424
$(\mathrm{HH} + \mathrm{HV})/2$	$y = 2.4004 \ln(x)$ -	0.638	+ 37 546	29 799	+ 33 104	26 273
(111 + 117) / 2	20.429	0.050	± 57.540	29.199	± 55.104	20.275
$(HH \cdot HV)^{-1/2}$	$y = -2.3710 \ln(x) +$	0.623	± 40.148	31.864	± 35.669	28.309
	19.835	0.025				

Table 3 Comparison of saturation levels of L-band SAR data for GSV estimation among different studies. Only GSV was documented in the original references. To compare saturation levels among different studies, saturation level expressed by GSV $(m^3 ha^{-1})$ were convert to AGB (10⁶ g ha⁻¹). A mean BEF (0.88) for the Russian taiga forests (Isaev et al. 1995) and mean ratios (0.71) of AGB to total biomass (Kira 1976) were applied to estimate the saturation levels of AGB (10⁶ g ha⁻¹). The ratios (0.83) of AGB to total biomass of LP were used to convert total biomass to AGB (Wang et al. 2008).

	Saturation level		D. G	
Forest type	Study Site	(10^6 g ha^{-1})	Kelerence	
Cashew		100	(Avtar, Suzuki, and Sawada.	
plantation	cambodia 100 plantation		2014)	
Mangrove	Malaasia	125	(Hamdan, Khali Aziz, and	
	Malaysia	125	Mohd Hasmadi 2014)	
Tropics forest	Costa Rica	100	(Saatchi et al. 2011)	
Savanna	Cameroon	100	(Mermoz et al. 2014)	
Temperate forest	Northeastern	200	(Cartus, Santoro, and	
	United States	200	Kellndorfer 2012)	
Boreal forest	Central Siberia	145 (230 m ³ ha ⁻¹)	(Thiel and Schmullius 2016)	
Boreal forest	Siberia	157 (250 m ³ ha ⁻¹)	(Chowdhury et al. 2014)	
Larch plantation	Northeast			
	China	$160 (260 \text{ m}^3 \text{ ha}^3)$	This study	

Figure 1 Locations of the sampling sites across Northeast China. Some plots overlap visually each other and are therefore invisible. The numbers of samples are 64 for 2011, 36 for 2013, 166 for 2014 and 114 for 2015, respectively.

210x219mm (300 x 300 DPI)

Figure 2 Relationships between the variables of ALOS PALSAR polarisations and growing stock volume (GSV). The ground truth GSV samples were plotted against variables, including HH (*a*), HV (*b*), HV / HH (*c*), (HV + HH) / 2 (*d*) and (HH \cdot HV)^{-1/2} (*e*). Scatterplots of ground truth GSV against the retrieved GSV by the best variable ((HV + HH) / 2) (*f*).

750x636mm (96 x 96 DPI)

Figure 3 Spatial distribution of LP GSV.

210x229mm (300 x 300 DPI)

Figure 4 Spatial distribution of LP BEF (a) and biomass (b).

440x229mm (300 x 300 DPI)