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Abstract: Individual tree delineation using remotely sensed data plays a very important role in
precision forestry because it can provide detailed forest information on a large scale, which is required
by forest managers. This study aimed to evaluate the utility of airborne laser scanning (ALS) data for
individual tree detection and species classification in Japanese coniferous forests with a high canopy
density. Tree crowns in the study area were first delineated by the individual tree detection approach
using a canopy height model (CHM) derived from the ALS data. Then, the detected tree crowns were
classified into four classes—Pinus densiflora, Chamaecyparis obtusa, Larix kaempferi, and broadleaved
trees—using a tree crown-based classification approach with different combinations of 23 features
derived from the ALS data and true-color (red-green-blue—RGB) orthoimages. To determine the
best combination of features for species classification, several loops were performed using a forward
iteration method. Additionally, several classification algorithms were compared in the present study.
The results of this study indicate that the combination of the RGB images with laser intensity, convex
hull area, convex hull point volume, shape index, crown area, and crown height features produced the
highest classification accuracy of 90.8% with the use of the quadratic support vector machines (QSVM)
classifier. Compared to only using the spectral characteristics of the orthophotos, the overall accuracy
was improved by 14.1%, 9.4%, and 8.8% with the best combination of features when using the
QSVM, neural network (NN), and random forest (RF) approaches, respectively. In terms of different
classification algorithms, the findings of our study recommend the QSVM approach rather than NNs
and RFs to classify the tree species in the study area. However, these classification approaches should
be further tested in other forests using different data. This study demonstrates that the synergy of the
ALS data and RGB images could be a promising approach to improve species classifications.

Keywords: forest resource measurement; airborne laser scanning; RGB imagery; individual tree
detection; tree crown-based classification; machine learning approaches

1. Introduction

The planted forests in Japan cover approximately 10 million ha [1]. Although harvest activities
have almost stopped in some forests because of decreases in timber prices during the past 30 years,
recently, many forest owners have had to improve their harvest efficiency to deal with the
foreign competition related to the Trans-Pacific Partnership (TPP) agreement. One solution for the
improvement of timber productivity is obtaining accurate and timely information on the condition of
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forest resources to support decision making. In addition, most privately owned forests, which account
for approximately 58% of the total forested area in Japan [1], were entrusted to FOCs (Forest Owners’
Cooperatives) for management with the main purpose of wood production. To date, forest information,
such as species composition, diameter at breast height (DBH) and stem density, has been obtained
from traditional field-based surveys. The FOCs are eager to obtain spatially explicit and up-to-date
stand information on DBH, tree height, volume and species distribution patterns over large areas at
a low cost. More than 50% of Japanese land has been covered by airborne laser scanning (ALS) as
of July 2013 [2]. The FOCs can obtain ALS data at a low cost, but they do not possess techniques to
interpret the data. Consequently, the forest industry in Japan is looking to the next generation of forest
inventory techniques to improve the current wood procurement practices.

Remote sensing has been established as one of the primary tools for large-scale analysis of forest
ecosystems [3]. It has become possible to measure forest resources at the individual tree level using
high resolution images and computer technology [4,5]. However, it is nearly impossible to estimate the
DBH and volume attributes of forests at the single tree level using only two-dimensional airborne and
satellite imagery [6,7]. One of the most prominent remote sensing tools used in forest studies is ALS,
which measures distances by precisely timing a laser pulse emitted from a sensor and reflected from a
target, resulting in accurate three-dimensional (3D) coordinates for the objects [8]. With the capability
of directly measuring forest structure (including canopy height and crown dimensions), laser scanning
is increasingly used for forest inventories at different levels [9]. Previous studies have shown that ALS
data can be used to estimate a variety of forest inventory attributes, such as tree height, basal area,
volume and biomass [7,10–13]. Several researchers have developed area-based approaches to estimate
forest attributes at the stand level using ALS data [14–16]. However, few studies have focused on the
automated delineation of single trees in Japanese forests [17].

Precision forestry, which can be defined as a method to accurately determine the characteristics
of forests and treatments at the stand, plot or single tree level [18], is a new direction for better
forest management. Individual tree detection technology plays a very important role in precision
forestry because it can provide precise forest information required at the above three levels. Individual
tree-level assessments can also be used for simulation and optimization models of forest management
decision support systems [18]. During the past two decades, many approaches have been developed to
detect individual tree crowns from remotely sensed data [10,19,20]. Early studies focused on assessing
individual trees based on optical imagery with high resolution [21–23]. With the wide introduction of
ALS into remote sensing, an increasing number of studies have undertaken individual tree detection
using point clouds [12,24,25]. Through time, these studies have shown increased complexity of analyses,
increased accuracy of results, and a focus on the use of ALS data alone [26,27]. Lu et al. [28] provided
a literature review of more than 20 existing algorithms for individual tree detection and tree crown
delineation from ALS, which showed overall accuracies ranging from 42% to 96% depending on the
point density, forest complexity and reference data used. In general, these developed algorithms
can be divided into two types: one uses a rasterized canopy height model (CHM) to delineate tree
crowns [25,29,30], and the other directly uses 3D point clouds to detect individual trees [12,31,32].
Considering the effectiveness of the different tree crown delineation methods, some comparative
studies were recently published showing that, depending on the forest type and structure, one
method can be superior to another [33–35]. For example, the CHM-based approaches, such as inverse
watershed segmentation and region growing algorithms, work best for coniferous trees in boreal
forests [24,36,37]. The 3D point-based approaches sometimes successfully identify suppressed and
understory trees [12,38], while most of the algorithms have lower accuracies over more structurally
complex forests, especially in highly dense stands with interlocked tree crowns. Overall, single tree
delineation in dense temperate and subtropical forests remains a challenging task. A marker-controlled
watershed segmentation has shown a powerful capability for individual tree delineation in numerous
previous studies [9,25,39,40].

Conventional existing methods for classifying forest species from remotely sensed data are mostly
based on the spectral information from forest canopies [5,41]. Despite vegetation cover classification
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successes at the stand and landscape levels [42,43], improved accuracy of species classification at the
individual tree level is still needed [4]. The availability of laser instruments to measure the 3D positions
of tree elements, such as foliage and branches, provides an opportunity to significantly improve
forest species classification accuracy [44]. During the last decade, a large number of researchers have
contributed to the study of tree species classification using ALS data [45–47]. Several ALS features
have been extracted to describe crown structural properties of individual trees, such as crown shape
and vertical foliage distribution [44,48]. These features are usually calculated based on the parameters
of a 3D surface model fitted to the ALS points within a given tree [38,45,49]. However, most of the
previous studies showed that it is difficult to accurately classify mixed forests based solely on point
clouds [30,46,50–52]. Consequently, the combinations of ALS points with passive data sources, such as
multispectral and hyperspectral images, have also been used to classify tree species at the single tree
level [27,53], but most studies focused on test sites located in boreal forests with a relatively simple
forest structure [40]. However, species classification at the single tree level in Japanese temperate
forests remains a challenging task. Stand density is generally higher, deciduous tree crowns are often
interlocked, and species mixture is greater and more irregular compared with other temperate forests.

Selection of classification approaches plays an important role in forest species identification.
Traditional parametric classification methods, e.g., Maximum Likelihood (ML), are easily affected
by the “Hughes Phenomenon,” which arises in high dimensionality data when the training dataset
size is not large enough to adequately estimate the covariance matrices [53]. In forest classification
studies, acquiring a sufficient amount of training data that exceeds the total number of spectral
bands and other features required for the ML classifier is an impractical task, especially in highly
spectrally variable environments. Consequently, non-parametric machine learning methods such as
decision tree approaches have recently received increasing attention in species classification studies [54].
The most commonly used approach is support vector machines [27,39,40,47,48,55,56]. Random
forest classification [57] is considered as a solution to overcome the over-fitting issue [50,53,58,59].
Additionally, some researchers believed that linear and quadratic discriminant analysis classifiers were
more suitable for their studies [44,51,60]. To the best of our knowledge, only a few studies compared
the performance of different approaches in forest classification. For example, Li et al. [61] investigated
three machine learning approaches—decision trees, random forest, and support vector machines—to
classify local forest communities at the Huntington Wildlife Forest located in the central Adirondack
Mountains of New York State and found that random forest and support vector machines produced
higher classification accuracies than decision trees. However, assessing the performance of different
methods in tree species identification at the individual tree level is still needed. Based on the above
analyses, this study focused on the following objectives:

1. To assess the utility of ALS data for measuring single tree crowns in Japanese conifer plantations
with a high canopy density using the watershed algorithm;

2. To determine the best combination of spectral bands and structural features for tree species
classification; and

3. To evaluate the capability of different machine learning approaches for forest classification at the
individual tree level.

2. Materials and Methods

2.1. Study Area and Field Measurements

The study area, located in Nagano, central Japan, is part of the campus forests of Shinshu
University. The center of the test site is located at 35◦52′N, 137◦56′E and has an elevation of 770 m
above sea level. The area belongs to the temperate zone and consists of high-density plantations with
coniferous trees ranging from 30 to 90 years old. In this study, compartments 1–7 of the campus forests,
with an area of approximately 7.3 ha, were selected as the research object (Figure 1). The forests in the
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study area are mainly dominated by Pinus densiflora (Pd), Chamaecyparis obtusa (Co), Larix kaempferi
(Lk), and secondary broadleaved trees (Bl).
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0.1 cm. Tree locations were calculated using the geographic coordinates of the vertices of the plots 
and were mapped to the nearest 0.1 m. The plot vertices were measured with a Global Positioning 
System (GPS) device (Garmin MAP 62SJ, Taiwan), and the locations were post-processed with local 
base station and orthoimages, resulting in an average error of 0.465 m (RMSE: 1.87 pixels with a 
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Figure 1. A map of the study area showing field data collected from April 2005 to June 2007. DBH,
diameter at breast height; Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl,
broadleaved trees.

Field measurements were undertaken from April 2005 to June 2007. All trees with a DBH larger
than 5 cm were tallied, and the species, DBH and tree height were recorded. Each tree was tagged with
a permanent label and noted as either live or dead, and the DBHs were measured to the nearest 0.1 cm.
Tree locations were calculated using the geographic coordinates of the vertices of the plots and were
mapped to the nearest 0.1 m. The plot vertices were measured with a Global Positioning System (GPS)
device (Garmin MAP 62SJ, Taiwan), and the locations were post-processed with local base station and
orthoimages, resulting in an average error of 0.465 m (RMSE: 1.87 pixels with a resolution of 25 cm).
The descriptive statistics of the forests in the seven compartments are summarized in Table 1. The DBH
frequency distribution of all trees in the study area is shown in Figure 2. In addition, the forests in
compartments 4 and 2 were investigated again in June 2015 and June 2016, respectively, to determine
whether the dominant tree species in the canopy layer had changed. The results suggested no obvious
changes in the canopy layer because no timber harvesting activities were conducted during this period.

Table 1. Characteristics of the forests at the study site surveyed from April 2005 to June 2007. DBH,
diameter at breast height. Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl,
broadleaved trees. a stem density of the trees with a DBH larger than 5 cm; b stem density of the trees
with a DBH larger than 25 cm (the upper trees).

Compartment
(Area, ha)

Dominant
Species

Min DBH
(cm)

Max DBH
(cm)

Average
DBH (cm)

Average
Height (m)

Density a

(Stem/ha)
Density b

(Stem/ha)
Basal Area

(m2/ha)

1 (0.67) Pd, Lk, Bl 5.4 59.0 22.8 15.2 583 245 31.0
2 (1.06) Pd, Lk, Bl 7.4 56.9 21.8 15.9 822 299 39.1
3 (1.10) Pd, Lk 5.0 58.7 22.3 16.7 744 328 37.4
4 (1.39) Pd, Co, Lk 5.0 77.1 22.2 16.2 954 405 49.6
5 (1.10) Pd, Co 5.0 81.6 24.3 16.5 775 385 46.8
6 (1.22) Pd, Co 6.8 63.6 23.6 15.9 710 294 42.6
7 (0.73) Pd, Co 7.7 65.3 26.3 17.4 632 362 41.8
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each DBH class.

2.2. Airborne Laser Data and True-Color (Red-Green-Blue—RGB) Images

Airborne laser scanning data were collected in June 2013 using a Leica ALS70-HP system
(Leica Geosystems AG, Heerbrugg, Switzerland). The system was configured to record up to three
echoes per pulse, i.e., first or only, intermediate and last. The wavelength of the laser scanner is
1064 nm. In this study, the point cloud data were acquired at a flight altitude of approximately 1800 m
above ground level and at a speed of 203 km/h. The scanner was operated at a pulse rate of 308 kHz
(i.e., 308,000 points per second), with a maximum scanning angle of ±15◦ and a beam divergence of
0.2 mrad. The specifications rendered the density of the collected point clouds to be at least 4 points
per m2. To obtain a high point density, each flight line was surveyed twice using the laser scanner
to provide 50% overlapping strips, which allowed us to acquire a point density ranging from 13 to
30 points per m2 (over the forested area). In addition, true-color (RGB) images with three bands
(red, green and blue) and a resolution of 25 cm were acquired at the same time as the laser data from
the RCD30 sensor using the color mode.

2.3. Data Analyses

The research flow chart in Figure 3 provides an overview of the methods.
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2.3.1. Establishment of Canopy Height Model (CHM) and RGB Orthoimages

CHM and RGB orthoimages were created using the following steps: First, ground points were
automatically extracted from the original point clouds using the standard approach in TerraScan
software. Second, the ground points were manually corrected, and a digital elevation model (DEM)
with a resolution of 50 cm was generated using the corrected ground points based on the TIN
(triangulated irregular network) algorithm. Next, ortho-rectified RGB images were created using
the above DEM data and raw camera photos in TerraPhoto software. Subsequently, a digital surface
model (DSM) with a resolution of 50 cm was generated using the point cloud data, in which the height
of the highest point in each grid with a length of 50 cm was considered to be the DSM value of the
corresponding pixel. A CHM was then calculated by subtracting the DEM from the DSM. An image
registration using polynomial fitting was finally completed for the RGB orthoimages based on the
CHM, with an average error of 0.41 m (RMSE: 0.82 pixels). In addition, an intensity map with a 50 cm
resolution was generated by averaging the laser intensity values of all points within each pixel.

2.3.2. Correcting for CHM Artifacts

An accurate delineation of tree crowns required generating a CHM with a high resolution of
50 cm [62] such that a ground point did not always occur within each pixel [27]. As a result, the
CHM data contained a number of artifacts that prevented the successful segmentation of tree crowns.
In particular, the CHM contained many severe elevation drops, especially in the middle of the canopy.
The elevation drop artifacts were directly related to the scanning pattern of the laser sensor, i.e., the
z-value thin troughs were located between the lines of the laser scans [27]. The challenge was further
complicated because the artifact pixels were not NaN (Not a Number) values; rather, their values
were well within a typical CHM. This problem has been noted before, especially when attempting
to delineate individual trees [62]. Jakubowski et al. [27] presented an effective and detailed method
to correct these artifacts in their research. However, this method did not work well for our data
in this study. Consequently, we developed a simpler and more feasible approach to mitigate this
problem using the following steps: First, the original CHM data (called ORG) were processed using a
focal statistics calculation with a circular kernel of 3-pixel radius, which was completed using ArcGIS
software, and the result was saved as FOCAL; second, the original CHM was smoothed twice using a
low pass filter with a window of 3 × 3 pixels, and the result was saved as FILTER; then, the outlier
pixel values in the original CHM were corrected using two conditional calculations: (1) if FILTER −
ORG ≥ 1 m, the original pixels of the CHM data were valued as FOCAL; and (2) if FILTER – ORG ≤
−1.5 m, the original pixels were valued as FILTER. A part of the original and corrected CHM data is
displayed in Figure 4.
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2.3.3. Individual Tree Detection and Feature Extraction

Single tree detection and crown segmentation in the study area were performed using the above
corrected CHM data and a marker-controlled watershed algorithm. During the segmentation processes,
the tree crown shapes and individual tree locations were determined using the following steps [9,63].
(1) The corrected CHM (Figure 5a) was smoothed with a Gaussian filter to remove small variations
on the crown surface. The degree of smoothing was determined by the standard deviation value
(Gaussian scale) and kernel size of the filter. A standard deviation of 0.7 and a bandwidth of five
pixels were used based on trial and error. The Gaussian smoothed CHM is displayed in Figure 5b;
(2) Local maxima (LM) searches were performed in a sliding neighborhood of 5 × 5 pixels. These local
maxima were considered as potential tree tops (Figure 5c). Due to the dispersive crown shape of the
large deciduous trees, the LM algorithm tended to extract more than one tree top within a tree crown.
Consequently, these local maxima were dilated using a dish-shaped structuring element with a radius
of two pixels (Figure 5d); (3) The dilated local maxima were then used as markers in the following
marker-controlled watershed segmentation for tree crown delineations. Each segment was considered
to present a single tree crown, and the highest laser point height within each segment was used as an
estimate of the tree height (Figure 5e). In total, 2438 tree crowns were detected in the study area.
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Figure 5. Procedure used for individual tree detection and feature extraction. (a) Corrected CHM;
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crowns with tree tops; and (f) laser point clouds within an individual tree crown.

After the individual tree crowns were segmented from the CHM, the laser returns that fell within
each segment were extracted and used to derive the tree features (Figure 5f). Both structural and
spectral features were generated from individual tree point clouds, CHM and RGB orthoimages. As a
result, a total of 23 tree-level variables were extracted, consisting of 17 ALS-derived metrics and
6 optical metrics (Table 2). Additionally, the species of all segmented tree crowns in the study area
were manually identified based on the field data and other information, including high resolution
orthophotos and existing thematic maps.
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Table 2. Features and variables extracted from the airborne laser (ALS) data and orthoimages for
all trees.

RS Sources Features Description

True-color
(RGB)

orthoimages

Ravg The average value of the red band within each segment

Rsd The standard deviation of the red band within each segment

Gavg The average value of the green band within each segment

Gsd The standard deviation of the green band within each segment

Bavg The average value of the blue band within each segment

Bsd The standard deviation of the blue band within each segment

Airborne laser
data (ALS)

Laser intensity (LI) The average laser intensity within each segment

Convex hull area (CHA) The area of the convex hull of each segment

Convex hull point volume (CHPV) The volume of the crown points within the convex hull of each segment

Shape index (SI) The ratio of the area to the perimeter of each segment

Crown area (CA) The area of each segment

Crown height (CH) The difference between the highest and lowest pixels of the CHM within each segment

Crown slope (CS) The average slope value of the CHM within each segment

Convex hull point density (CHPD) The point density of the crown points within the convex hull of each segment

Crown point density (CPD) The point density of the crown points within each segment

Crown point volume (CPV) The volume of the crown point clouds within each segment

Convex hull volume (CHV) The volume of the convex hull of each segment derived from the CHM

Convex hull surface area (CHSA) The surface area of the convex hull of each segment derived from the CHM

Convex hull diameter (CHD) The diameter of a circle with an area equal to the convex hull of each segment

Crown volume (CV) The crown volume of each segment derived from the CHM

Crown surface area (CSA) The surface area of each segment derived from the CHM

Crown diameter (CD) The diameter of a circle with an area equal to each segment

Tree height (TH) Estimated using the highest laser point within each segment

2.3.4. Crown-Based Supervised Classification and Counting of Different Tree Species

In this study, to overcome the “mixed pixels” problem of the pixel-based classification (i.e., some
pixels within a tree crown may be classified into two or more different classes), each tree crown was
considered to be an object that was classified using its attributes extracted from the ALS and orthophoto
data (Table 2). Seven approaches with 24 algorithms were compared (Table 3). In addition, the 23 tree
features were divided into three groups: ALS-derived features (17), spectral orthoimage-derived
features (6), and the combination of both data sources (23). The best method and best combination of
tree features for species classification were identified using the following steps: (1) The 2438 segmented
tree crowns with manually identified species were randomly split into 70% and 30% portions for a
training dataset (n = 1707) and a validation independent dataset (n = 731), respectively. The calibration
dataset was used to train the prediction models, while the validation dataset was used to test the
quality and reliability of the prediction models. (2) The first five methods, including decision trees
(DT), discriminant analyses (DA), support vector machines (SVM), K-nearest neighbors (KNN) and
ensemble classifiers (EC), with 22 algorithms were trained using 16 and 84 combinations that were
randomly selected from the 17 ALS-derived and all 23 features, respectively. This was performed using
the classification learner application in Matlab R2015b software [64]. (3) The six RGB image-derived
metrics were selected as the basic dataset to determine the best combination of tree features for species
classification because these metrics provided an acceptable classification. In detail, these RGB features
were first used to classify the tree crowns using the quadratic support vector machines (QSVM)
approach; then, each combination of the basic dataset with each ALS-derived feature was used to
perform a classification, and the combination that had the highest increment in overall accuracy
was selected as the new basic dataset; next, each combination of the new basic dataset with each
remaining ALS-derived feature was used to perform a classification, and the combination with the
highest increment in overall accuracy was chosen as the new basic dataset; the above process was
repeated until the overall accuracy of all of the new combinations decreased in comparison to the



Remote Sens. 2016, 8, 1034 9 of 22

previous classification step. (4) The feature combinations that had the highest overall accuracy in each
loop process were also used to perform tree crown classifications using the neural network (NN) and
random forest (RF) approaches to compare the results obtained using the QSVM approach. The NN
and RF classifications were completed using the Neural Network Toolbox in Matlab R2015b [65] and
R 3.2.3 software, respectively. The detailed procedure of RF classifications using R software is listed in
our previous studies [43,66].

Table 3. Classification methods with different algorithms used in this study.

Method Algorithm

Decision trees (DT) a
Complex tree
Medium tree
Simple tree

Discriminant analyses
(DA) a

Linear discriminant
Quadratic discriminant

Support vector
machines (SVM) a

Linear SVM
Quadratic SVM

Cubic SVM
Fine Gaussian SVM

Medium Gaussian SVM
Coarse Gaussian SVM

K-nearest neighbors
classifiers (KNN) a

Fine KNN
Medium KNN
Coarse KNN
Cosine KNN
Cubic KNN

Weighted KNN

Ensemble classifiers
(EC) a

Boosted trees
Bagged trees

Subspace discriminant
Subspace KNN

RUSBoosted trees

Neural network (NN) b Two-layer feed-forward network

Random forest (RF) c Regression tree

Notes: a for detailed information refer to [64]; b for detailed information refer to [65]; c for detailed information
refer to [57].

After the tree crown-based supervised classification processes were completed, the total number
of trees of different species in each compartment was counted using the summarize function in ArcGIS
v10.0. The detected accuracy of the tree crowns can be calculated using the following formula:

φ = (1 − |ND − NF|/NF) × 100 (1)

where φ is the delineated accuracy (%), ND is the number of the trees detected by the watershed
segmentation method, and NF is the number of the trees in the field data. In this study, based on
the DBH frequency distribution of all of the trees in the study area and the average DBH in each
compartment (Figure 2, Table 1), the trees with a DBH larger than 25 cm in the field data were selected
as the canopy trees and were used to test the accuracy of the delineated tree crowns to distinguish
between species.
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3. Results

3.1. Comparison of Classification Methods

The 100 trained models were used to classify the validation dataset, and their overall accuracies
are summarized in Figure 6. The results indicated that the QSVM approach had a higher overall
accuracy compared with the other methods.
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Figure 6. Classification accuracy of the 22 algorithms using 16 and 84 sub-datasets randomly selected
from the 17 ALS-derived data and all 23 features, respectively. CT, complex tree; MT, medium tree;
ST, simple tree; LD, linear discriminant; QD, quadratic discriminant; LS, linear SVM; QS, quadratic
SVM; CS, cubic SVM; FGS, fine Gaussian SVM; MGS, medium Gaussian SVM; CGS, coarse Gaussian
SVM; FK, fine KNN; MK, medium KNN; CAK, coarse KNN; CSK, cosine KNN; CUK, cubic KNN; WK,
weighted KNN; BST, boosted trees; BGT, bagged trees; SD, subspace discriminant; SK, subspace KNN;
RT, RUSBoosted trees.

3.2. Delineation of Tree Crowns and Identification of Tree Species

As a result, a total of 2438 trees with an average accuracy of 93.54% were detected in the
seven compartments (Figure 7). In terms of different compartments, more than 91% of the trees
in each compartment were delineated except for compartment 1, which had an accuracy of 71.8%.
In compartment 1, 163 upper trees were recorded in the field data, while 209 tree crowns were
generated from the CHM data. This is because the forest in compartment 1 was mainly dominated
by large broadleaved trees, and those deciduous trees with dispersive crowns were easily split into
multiple crown components, which resulted in one segment for each component. In addition, there
was a young Larix kaempferi stand in this compartment, which led to a lower count based on the
field data compared with the interpreted results. After the tree crowns were detected based on the
CHM, the species attributes of each crown were manually identified using field data, multi-temporal
airborne images, and existing thematic maps. As a result, the delineated tree crowns and tree tops
distinguishing the species are shown in Figure 8 by overlaying the true color image with a transparency
of 50%.



Remote Sens. 2016, 8, 1034 11 of 22
Remote Sens. 2016, 8, 1.34  11 of 22 

 

 
Figure 7. The detected accuracy of the tree crowns in different compartments and in the whole study area. 

 

Figure 8. Delineated tree crowns and tree tops using the CHM data (a); and manually identified tree 
species (b). Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees. 

3.3. Object-Based Supervised Classification of the Tree Species 

3.3.1. Determining the Best Combination of Tree Features for Species Classification 

The trained QSVM model using the 1707 tree crowns was used to predict the species attributes 
of the 731 test tree crowns, and an overall accuracy of 76.7% was obtained with the use of the six RGB 
features derived from the orthoimagery (Table 4). Then, 17 combinations of the six RGB features with 
each ALS feature were used to train the QSVM model and to predict the species of the test tree 
crowns. As a result, the combination of the RGB and LI features had a higher overall accuracy, with 
a value of 83.3%, in comparison to the other combinations in the first loop. In the second loop, the 
combination of RGB, LI, and CHA features had the highest overall accuracy of 88.8%, with an 
improvement of 5.5 percentage points compared to the best result of the previous loop. Until the 

Figure 7. The detected accuracy of the tree crowns in different compartments and in the whole study area.

Remote Sens. 2016, 8, 1.34  11 of 22 

 

 
Figure 7. The detected accuracy of the tree crowns in different compartments and in the whole study area. 

 

Figure 8. Delineated tree crowns and tree tops using the CHM data (a); and manually identified tree 
species (b). Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees. 

3.3. Object-Based Supervised Classification of the Tree Species 

3.3.1. Determining the Best Combination of Tree Features for Species Classification 

The trained QSVM model using the 1707 tree crowns was used to predict the species attributes 
of the 731 test tree crowns, and an overall accuracy of 76.7% was obtained with the use of the six RGB 
features derived from the orthoimagery (Table 4). Then, 17 combinations of the six RGB features with 
each ALS feature were used to train the QSVM model and to predict the species of the test tree 
crowns. As a result, the combination of the RGB and LI features had a higher overall accuracy, with 
a value of 83.3%, in comparison to the other combinations in the first loop. In the second loop, the 
combination of RGB, LI, and CHA features had the highest overall accuracy of 88.8%, with an 
improvement of 5.5 percentage points compared to the best result of the previous loop. Until the 

Figure 8. Delineated tree crowns and tree tops using the CHM data (a); and manually identified tree
species (b). Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees.

3.3. Object-Based Supervised Classification of the Tree Species

3.3.1. Determining the Best Combination of Tree Features for Species Classification

The trained QSVM model using the 1707 tree crowns was used to predict the species attributes of
the 731 test tree crowns, and an overall accuracy of 76.7% was obtained with the use of the six RGB
features derived from the orthoimagery (Table 4). Then, 17 combinations of the six RGB features with
each ALS feature were used to train the QSVM model and to predict the species of the test tree crowns.
As a result, the combination of the RGB and LI features had a higher overall accuracy, with a value of
83.3%, in comparison to the other combinations in the first loop. In the second loop, the combination
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of RGB, LI, and CHA features had the highest overall accuracy of 88.8%, with an improvement of
5.5 percentage points compared to the best result of the previous loop. Until the seventh loop was
performed by repeating the above steps, no improvement in the overall accuracy was found in the
11 combinations (Table 4). In addition, the combination of all 23 features was tested in this study.
However, the overall accuracy obtained was 87.6% (Table 5). Consequently, the combination of RGB,
LI, CHA, CHPV, SI, CA and CH, which was identified in the sixth loop, can be considered the most
suitable dataset to classify the tree crowns in the study area.

Table 4. Overall accuracy (%) of the quadratic SVM classifications using different features and
increments compared to the highest accuracy in each previous loop. ACC, accuracy; INC, increment.
The feature abbreviations are the same as in Table 2.

Feature ACC INC ACC INC ACC INC ACC INC ACC INC ACC INC ACC INC

RGB 76.7 - - - - - - - - - - - - -
LI 83.3 6.6 - - - - - - - - - - - -

CHA 81.7 5.0 88.8 5.5 - - - - - - - - - -
CHPV 82.0 5.3 87.5 4.2 90.2 1.4 - - - - - - - -

SI 81.9 5.2 87.3 4.0 90.0 1.2 90.6 0.4 - - - - - -
CA 81.5 4.8 86.7 3.4 89.9 1.1 90.4 0.2 90.7 0.1 - - - -
CH 80.1 3.4 85.8 2.5 89.1 0.3 89.7 −0.5 90.4 −0.2 90.8 0.1 - -
CS 80.3 3.6 84.8 1.5 89.5 0.7 89.3 −0.9 89.2 −1.4 89.2 −1.5 89.5 −1.3

CHPD 77.8 1.1 83.9 0.6 89.1 0.3 88.6 −1.6 89.7 −0.9 89.3 −1.4 89.2 −1.6
CPD 77.0 0.3 83.8 0.5 88.4 −0.4 88.8 −1.4 89.1 −1.5 89.5 −1.2 88.6 −2.2
CPV 80.7 4.0 84.5 1.2 89.7 0.9 90.2 0.0 90.3 −0.3 90.2 −0.5 89.6 −1.2
CHV 79.9 3.2 85.1 1.8 89.3 0.5 89.2 −1.0 89.5 −1.1 90.0 −0.7 89.5 −1.3

CHSA 80.3 3.6 85.3 2.0 88.9 0.1 88.9 −1.3 89.2 −1.4 89.1 −1.6 89.7 −1.1
CHD 79.7 3.0 84.4 1.1 89.3 0.5 89.6 −0.6 90.3 −0.3 90.2 −0.5 90.3 −0.5
CV 80.7 4.0 85.4 2.1 89.2 0.4 90.0 −0.2 89.5 −1.1 90.0 −0.7 89.7 −1.1

CSA 78.2 1.5 84.9 1.6 89.5 0.7 88.8 −1.4 89.2 −1.4 89.3 −1.4 89.6 −1.2
CD 79.2 2.5 86.0 2.7 89.6 0.8 89.5 −0.7 89.6 −1.0 90.0 −0.7 90.3 −0.5
TH 76.9 0.2 83.3 0.0 88.8 0.0 88.6 −1.6 88.9 −1.7 88.8 −1.9 89.5 −1.3

Table 5. Overall accuracy (%) and kappa coefficient of the QSVM, NN and RF classifications obtained
using different tree features. OA, overall accuracy; KC, kappa coefficient. Other abbreviations are the
same as in Tables 2 and 3.

Dataset
QSVM NN RF

OA KC OA KC OA KC

RGB 76.7 0.63 81.6 0.72 75.9 0.62
RGB + LI 83.3 0.74 86.7 0.80 83.9 0.74
RGB + LI + CHA 88.8 0.83 89.5 0.84 84.4 0.75
RGB + LI + CHA + CHPV 90.2 0.85 90.6 0.86 84.3 0.75
RGB + LI + CHA + CHPV + SI 90.6 0.86 91.0 0.86 84.5 0.75
RGB + LI + CHA + CHPV + SI + CA 90.7 0.86 89.8 0.84 84.7 0.76
RGB + LI + CHA + CHPV + SI + CA + CH 90.8 0.86 89.3 0.83 84.3 0.75
All features 87.6 0.81 90.2 0.85 83.2 0.73

3.3.2. Comparison of Classifications of the Tree Crowns Using Different Approaches

The datasets from RGB, all 23 features, and the combinations that had the highest overall
accuracies in the six loops were used to train the NN and RF models and to predict the species
of the test tree crowns. As a result, an accuracy report of the three methods was generated, as shown
in Table 5. The results suggest that the overall accuracies of the classifications using the NN approach,
with values ranging from 81.6% to 91%, were much higher than those using the RF classifier, with
values less than 85%. Additionally, the producer and user accuracies of the different species for
the classifications of the tree crowns classified using the three approaches with the highest overall
accuracy are summarized in Figure 9. The results indicate that the QSVM and NN approaches resulted
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in superior classifications compared with the RF method, and QSVM was slightly better than NN.
Consequently, the trained models using the QSVM and NN algorithms were used for further analyses.Remote Sens. 2016, 8, 1.34  13 of 22 
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3.4. Counting Trees of Different Species in the Study Area

All of the detected tree crowns in the study area were classified using the QSVM and NN
models developed in Section 3.2. As a result, two classification thematic maps of tree crowns were
generated, as displayed in Figure 10, by overlaying the RGB orthoimages with a transparency of 50%.
The number of detected tree crowns that distinguished the species in each compartment and in the
whole study area was then counted using the spatial statistics function in ArcGIS software, and these
results, as well as the count values from the field data, are listed in Table 6. The results suggest that
Pinus densiflora and Larix kaempferi were the main dominant species in the forests in compartments 1, 3
and 4. Additionally, the forests in compartments 4 and 1 were co-dominated by Chamaecyparis obtusa
and large broadleaved trees, respectively. However, Pinus densiflora was the most dominant species in
compartment 2. The canopy trees in compartments 5–7 were mainly dominated by Pinus densiflora and
Chamaecyparis obtusa. Although most of the dominant canopy trees in the different compartments were
successfully delineated, many Chamaecyparis obtusa trees were not detected in compartments 4 and 6.

In terms of the detected accuracies of the dominant tree species in each compartment (Figure 11),
the dominant trees in the forests with a relatively simple spatial structure were delineated with a higher
accuracy than those in other stands. For example, Pinus densiflora and Larix kaempferi, the dominant
species in compartment 3, were detected with an accuracy of more than 92%. Moreover, the detected
rate of Pinus densiflora and Chamaecyparis obtusa in compartment 5 reached 95% and 98%, respectively.
By contrast, Chamaecyparis obtusa, one of the dominant species in compartment 4, where the forest had
the highest stem density and the most complex spatial structure of multiple layers among the seven
compartments, had a poor accuracy of approximately 40% because the interlocked crowns of different
species in this compartment increased the probability of misclassification. Additionally, although the
detection rate of the tree crowns in compartments 6 and 7 was higher than 98%, the Pinus densiflora trees
were identified with an accuracy of less than 60%. This is because the forests in both compartments
had a high mixing degree of dominant trees, which was disadvantageous for species classification.
In addition, the Larix kaempferi trees in compartments 1 and 2 were not accurately extracted using
either approach, due to misclassifications. The young Larix kaempferi stand in compartment 1 also
contributed to the low detection accuracy. In terms of different classification methods, the results
suggest that the detection of dominant trees in most compartments using the QSVM approach was
slightly better than that using the NN approach.
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Figure 10. Tree crown classification based on the quadratic SVM (a) and neural network (b) models.
Pd, Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees.

Table 6. Count of the upper trees surveyed in the field data and classified using different approaches
based on distinguishing species. QSVM, quadratic SVM classifier; NN, neural network; Pd,
Pinus densiflora; Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees.

Compartment Species Field Data QSVM NN Compartment Species Field Data QSVM NN

1

Pd 50 68 66

5

Pd 167 175 175
Co - 5 11 Co 235 230 231
Lk 49 74 81 Lk 3 7 6
Bl 64 62 51 Bl 18 20 20

Total 163 209 209 Total 423 432 432

2

Pd 251 253 251

6

Pd 143 206 209
Co 16 1 2 Co 190 122 116
Lk 23 38 45 Lk 18 31 30
Bl 55 42 36 Bl 8 3 7

Total 345 334 334 Total 359 362 362

3

Pd 182 170 168

7

Pd 51 73 76
Co 4 3 4 Co 207 192 188
Lk 169 177 179 Lk 1 1 2
Bl 5 7 6 Bl 7 4 4

Total 360 357 357 Total 266 270 270

4

Pd 263 257 251

All

Pd 1107 1202 1196
Co 143 61 58 Co 795 614 610
Lk 88 117 118 Lk 351 445 461
Bl 24 39 47 Bl 181 177 171

Total 518 474 474 Total 2434 2438 2438
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3.5. Accuracy of Position Matching of Interpreted and Surveyed Trees

In this study, matching analyses were used to estimate the errors of omission (the trees that were
not detected by remotely sensed data) and commission (the treetop candidates that could not be linked
to field trees). Three thematic maps with a resolution of 5 m (the average distance between tree tops)
were established using nearest neighborhood interpolation. One map was created using the field data
(FD), and the other two used the two tree top datasets annotated with species attributes from the two
species maps of the tree crowns that were classified using the QSVM and NN approaches, respectively.
Then, two matching analyses were conducted between FD and QSVM and between FD and NN, and
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the error matrices for the two matchings are listed in Table 7. The results indicate that, between QSVM
and FD, the matching of the four classes had a commission accuracy ranging from 79.7% to 94.5%
while the omission accuracy ranged from 80.2% to 94.1%. A slight matching discrepancy was found
between the tree positions detected using the QSVM and NN methods and those recorded in the
field, which had overall matching accuracies of 89.4% and 87.6%, respectively. In terms of different
tree species, the tree positions of the four classes classified using QSVM were matched to the field
data with slightly higher accuracy than those classified using NN. The commission accuracy of the
matching between QSVM and FD had an improvement ranging from −1.6% to 3.2% when compared
to the matching between NN and FD, and the omission accuracy was improved from 0.6% to 3.9% by
matching QSVM and FD. The findings of this study indicate that the positions of the trees were more
accurately delineated using QSVM than NN.

Table 7. Error matrices for the matching tests between detected and surveyed trees. Pd, Pinus densiflora;
Co, Chamaecyparis obtusa; Lk, Larix kaempferi; Bl, broadleaved trees.

Method Class Name
Field Data

Total
Commission
Accuracy (%)

Overall
Accuracy (%)Pd Co Lk Bl

QSVM

Pd 1214 39 15 17 1285 94.5

89.4

Co 48 545 23 32 648 84.1
Lk 16 11 520 27 574 90.6
Bl 12 34 32 307 385 79.7

Total 1290 629 590 383 2892
Omission Accuracy (%) 94.1 86.6 88.1 80.2

NN

Pd 1191 42 37 34 1304 91.3

87.6

Co 35 540 31 24 630 85.7
Lk 25 18 497 20 560 88.8
Bl 39 29 25 305 398 76.6

Total 1290 629 590 383 2892
Omission Accuracy (%) 92.3 85.9 84.2 79.6

4. Discussion

With the wide use of multiple data sources in forest resource measurements, a large number of
features can be easily extracted from different datasets and used for forest classification and attribute
estimation. Some authors used principal component analysis (PCA) to reduce the dimensions of
feature space [67]. However, how to select the optimal number of principal component features as
input to the classifier is another challenging task. In [68], the dimensionality of the data was reduced
from 361 to 32 using a robust PCA method. A classification accuracy of 92.19% was achieved when
the first 22 principal components were used. Then, the accuracy decreased slightly. In the pre-test,
we attempted to classify the tree crowns using the principal components transformed from the tree
features. However, the results indicated that all the classifications using PCA-transformed data had a
lower overall accuracy than those using the original variables. Consequently, the results of the PCA
classifications were excluded from this study. In addition, several studies selected feature importance
to decrease the dimensions of the features [44,51,53]. Feature importance assessment was initially
conducted using an internal ranking method established in the classifiers before forest classification
to extract those that are most important, and then tree species were classified based on the selected
features. In this study, however, we found that for the same feature there were different contribution
degrees to species classification in different loops, indicating that the importance of a feature is
changeable and greatly depends on a special combination with other features. Therefore, how to
determine the best combination of features for tree classification in different forests remains a critical
issue that should be further clarified [40,53].

Although several studies have demonstrated that a multisource information-based approach is a
feasible method for the improvement of forest classification [39,40,53], data registration of different
sensors is still a challenging task. The interpretation of species-specific individual trees always requires
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a registration error of less than 1 m, which is difficult to obtain especially for datasets acquired at
different altitudes and in different seasons. In this study, matching with an accuracy of approximately
0.5 m between the orthoimages and CHM data was achieved, which can be one of the reasons that
explains our better classification results compared with those of previous studies [39,55]. With the
development of navigation technology, such as the synergy of different positioning satellite systems,
the increasingly improved systematic error will be more advantageous for the measurement of forest
resources at the single tree level.

A large number of studies have shown that the use of multispectral images is an effective means
for species identification [4,22,41] because it can provide abundant spectral and textural information on
tree crowns. In addition to the average spectral reflectance of the three bands, the standard deviations
(SD) of the pixel values within each tree crown were also used to differentiate species in this study.
Compared with our previous study [69], in which the tree crowns in the same area as this study were
delineated using another algorithm, the overall accuracy was improved by 3.2 percentage points with
the use of the SD features. Moreover, in the pre-test of this study, we found that the standard deviations
contributed to the species classification with an improvement in overall accuracy ranging from 1.7%
to 3.5%. The above results indicate that the SD parameter may be a valuable source of information
for discriminating tree crowns of different species in Japanese plantations. However, a relatively low
accuracy of 76.7% was obtained when using only the RGB features for the classification (Table 4).
Errors in the classification can be attributed to the lack of near-infrared (NIR) information. Several
authors have demonstrated that NIR improved the accuracy of forest classification in different study
areas [4,70,71]. The findings of this study also suggest that the overall accuracy was improved by 6.6%
with the use of a laser intensity (LI) feature with a wavelength of 1064 nm in the QSVM classification.
Accordingly, the contribution of NIR, which can be obtained in laser scanning measurements using
the colorIR mode, to species identification should be assessed in future studies. In addition, some
studies suggested that band ratios and vegetation indices, such as NDVIs generated using different
band combinations [39,53,72], have advantages for species differentiation and biomass estimation
because these features can reduce Bi-directional Reflectance Distribution Function (BRDF) errors and
do not saturate as quickly as single band data [55]. Consequently, the potential of these features for the
improvement of tree crown-based classification requires further study.

A combination of ALS and complementary data sources has been proven to be a promising
approach to improve the accuracy of tree species recognition [40]. Different from previous
studies [44,48,53], we aimed to develop a simple but efficient framework to propose and validate
feature parameters from airborne laser data for tree species classification. Compared to only using
the spectral characteristics of the orthophoto, the classification accuracy was improved in this study
for all tree species using the ALS-derived features. Based on a comparison with the RGB features,
the overall accuracy was improved by 14.1%, 9.4%, and 8.8% with the best combination of features
when the respective QSVM, NN, and RF approaches were used (Table 5). As shown in most previous
studies [60,73,74], the results of this study also suggest that the laser intensity is an important feature
for the classification of individual trees, which improved the overall accuracy by 5.1% to 8% with
the use of different classification approaches. Additionally, the convex hull area (CHA), convex hull
point volume (CHPV), shape index (SI), crown area (CA), and crown height (CH) features contributed
to the species classifications to different extents (Table 4). CHA, CHPV and SI improved the overall
accuracy by 5.5%, 1.4% and 0.4%, respectively. However, CA and CH only contributed 0.2% to the
species classification. The best combination of features for species classification was determined using
the QSVM approach, which indicates that there may be other best combinations for the NN and RF
methods. In addition, the findings of this study did not support the recommendation that as many
additional features as possible should be included in the tree species classification [44].

In this study, 22 algorithms were initially compared using 100 classifications, and the
results indicated that the QSVM classifier had higher classification accuracies than the other
classifiers. Then, the QSVM classifier was compared with the NN and RF approaches using
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eight combinations of different features. Previous studies obtained comparable results from the
RF classifications [50,53,58,59], and some authors showed that RF produced higher classification
accuracies than other classification techniques such as decision trees and bagging trees [61,75]. In our
study, however, we found that the QSVM and NN models were preferable to the RF models based
on the classification accuracies. Although the overall accuracies of the classifications using NN were
slightly higher than those using QSVM, it should be noted that several problems still remain with
the NN method. For example, the NN model is more difficult to interpret than the QSVM model
because it exhibits one or more hidden layer(s) and may therefore appear to be a “black box.” In terms
of classification accuracies of different species, QSVM even obtained slightly better results than NN,
especially for the broadleaved trees. Accordingly, we recommend the quadratic SVM approach rather
than the neural network method to classify the tree crowns of forests in the study area. However, these
classification approaches should be further compared in other forests using different data.

In theory, the success rate of individual tree detection to distinguish species depends on the
accuracies of tree crown delineation and species classification in the study area. In this study,
more than 90% of the trees in most compartments were delineated, and a classification accuracy
of 90.8% was obtained by the QSVM approach when using the best combination of features. However,
some dominant tree species were detected with a relatively low accuracy in some compartments.
For example, Chamaecyparis obtusa was detected with an accuracy of less than 65% in compartments 4
and 6, and the Pinus densiflora trees were delineated at 57% in compartment 7. These results can
be attributed to the high stem density and complex spatial structure of the forests in these areas,
which increase the probability of overlap between tree crowns and were disadvantageous for
species classification. Additionally, the DBH distribution also contributed to the detection accuracy.
The compartments with a higher standard deviation for DBH classes had a lower accuracy. Another
reason may be that the forest inventory data from 2005 to 2007 were used to examine the detection
accuracy, whereas the airborne laser data were acquired in 2013. Although no management activities,
such as thinning or timber harvest, were conducted since 2005, slightly better results were found in the
accuracies calculated using the data surveyed in 2015 and 2016 for compartments 4 and 2 compared
with those recorded in 2007. In addition, the trees with a DBH larger than 25 cm were considered to be
the dominant canopy trees of the study area and were used to calculate the detection accuracy of the
tree crowns to distinguish species. In fact, a notable difference in stand structure was found between
some compartments. Consequently, a determination approach using the canopy trees in different
forests should be further explored.

The synergy of laser scanning data with multi and/or hyperspectral images for individual tree
detection to distinguish species has received more attentions in recent years [39,40,67]. However,
although more than 50% of Japanese land has been covered by ALS data as of July 2013 [2], few
airborne multispectral images with more than four bands are available in these areas. The successful
launch of several commercial satellites such as GeoEye-1, WorldView-2 and WorldView-3 that can
acquire images with a resolution less than 1 m provided a solution to this problem [4]. In addition,
WorldView-4, which was just launched on 11 November 2016, can be expected to be an effective means
for single tree crown identification because it has the capability to collect 30 cm resolution imagery
with an accuracy of 3 m CE90 [76]. In fact, a combination of ALS data and WorldView-3 images has
been successfully used for extracting the damaged trees caused by pine wood nematode in another
study. Consequently, single tree delineation using the synergy of laser data and high resolution satellite
imagery will be tested in our next study.

5. Conclusions

The best combination of features for species classification was identified using a forward iteration
method. The findings of our study suggest that the combination of true-color (red-green-blue—RGB),
laser intensity (LI), convex hull area (CHA), convex hull point volume (CHPV), shape index (SI), crown
area (CA) and crown height (CH) yielded a higher classification accuracy than other combinations
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when using the quadratic support vector machines (QSVM) classifier. In addition, we found that for
the same feature, there were different contribution degrees to species classification under different
combinations. In terms of different classification algorithms, the findings from this study recommend
the quadratic SVM approach rather than the neural network method to classify the tree crowns of
forests in the study area. However, these classification approaches should be further compared in
other forests using different data.
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