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Abstract

We consider inference on the eigenvalues of the covariance matrix
of a multivariate normal distribution. The family of multivariate nor-
mal distributions with a fixed mean is seen as a Riemannian manifold
with Fisher information metric. Two submanifolds naturally arises;
one is the submanifold given by the fixed eigenvectors of the covari-
ance matrix, the other is the one given by the fixed eigenvalues. We
analyze the geometrical structures of these manifolds such as met-
ric, embedding curvature under e-connection or m-connection. Based
on these results, we study 1) the bias of the sample eigenvalues, 2)
asymptotic variance of estimators, 3) the asymptotic information loss
caused by neglecting the sample eigenvectors, 4) the derivation of a
new estimator that is natural from a geometrical point of view.
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1 Introduction

Consider a normal distribution with zero mean and an unknown covariance
matrix, N(0,Σ). Let denote the eigenvalues of Σ by

λ = (λ1, . . . , λp), λ1 > . . . > λp

and eigenvectors matrix by Γ , hence we have the spectral decomposition

Σ = ΓΛΓ t, Λ = diag(λ), (1)

where diag(λ) means the diagonal matrix with the ith diagonal element
λi. It is needless to say that the inference on Σ is an important task in
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many practical situations in such a diversity of fields as engineering, biology,
chemistry, finance, psychology etc. Especially we often encounter the cases
where the property of interest depends on Σ only through its eigenvalues λ.
We treat an inference problem on the eigenvalues λ from a geometrical point
of view.

Treating the family of normal distributions N(µ,Σ) (µ is not necessarily
zero) as a Riemmanian manifold has been done by several authors. For
example, see Fletcher and Joshi, [12], Lenglet et al. [18], Skovgaard [25],
Smith [26], Yoshizawa and Tanabe [29]. When µ euqals zero, the family of
normal distributionsN(0,Σ) can be taken as a manifold (say S) with a single
coordinate system Σ. Hence, S is identified with the space of symmetric
positive definite matrices. Geometrically analyzing the space of symmetric
positive definite matrices has been an interesting topic in a mathematical or
engineering point of view. Refer to Moakher and Zéräı [20], Ohara et al. [23]
and Zhang et al. [30] as well as the above literature.

In this paper, we analyze S from the standpoint of information geometry
while focusing on the inference on the eigenvalues of Σ. The paper is aimed
to make a contribution in two regards: 1) The geometrical structure of S is
analyzed in view of the eigenvalues and eigenvectors of Σ; 2) Some statistical
problems on the inference for λ are explained in the geometrical terms.

We summarize the inference problem for λ. Based on independent n
samples xi = (xi1, . . . , xip)

′, i = 1, . . . , n from N(0,Σ), we want to make
inference on the unknown λ. We confine ourselves to the classical case where
n ≥ p. It is well-known that the product-sum matrix

S =
n∑

i=1

xix
t
i

is sufficient statistic for both unknown λ and Γ . The spectral decomposition
of S is given by

S = HLH t, L = diag(l),

where
l = (l1, . . . , lp), l1 > . . . > lp > 0 a.e.

are the eigenvalues of S, and H is the corresponding eigenvectors matrix.
This decomposition gives us two statistics available, i.e. the sample eigenval-
ues l and the sample eigenvectors H . However it is almost customary that
we only use the sample eigenvalues, discarding the information contained
in H . In the past literature on the inference for the population eigenval-
ues, every notable estimator is based simply on the sample eigenvalues. See
Takemura [27], Dey and Srinivasan [9], Haff [13], Yang and Berger [28] for
orthogonally invariant estimators of Σ; Dey [8], Hydorn and Muirhead [14],
Jin [15], Sheena and Takemura [24] for direct estimators of λ. Since we do
not have enough space to state the concrete form of each estimator, we just
mention Stein’s estimator as a pioneering work for ”shrinkage” estimator of
Σ. In general, an orthogonally invariant estimator of Σ is given by

Σ̂ = HΦH t, Φ = diag(ϕ1(l), . . . , ϕp(l)). (2)
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The estimator of λ is given by the eigenvalues of Σ̂, that is, (ϕ1(l), . . . , ϕp(l)).
The sample covariance matrix (M.L.E. estimator) S̄ ≜ n−1S gives the esti-
mator of λ as ϕi(l) = n−1li, i = 1, . . . , p, while Stein’s ”shrinkage” estimator
gives birth to

ϕi(l) = li/(n+ p+ 1− 2i), i = 1, . . . , p. (3)

Stein’s estimator assigns the lighter (heavier) weight to the larger (smaller)
sample eigenvalues, hence the diversity of l is shrunk. This estimator is
quite simple and performs much better than M.L.E. (see [9] ). Unlike Stein’s
estimator, many estimators in the above literature are not explicitly given or
too complicated for immediate use. Nonetheless they all have one common
feature. The derived estimators of λ only depends on l.

In a sense it is natural to implicitly associate the sample eigenvalues to the
population eigenvalues, and the sample eigenvectors to the population coun-
terpart. However the sample eigenvalues are not sufficient for the unknown
population eigenvalues. Therefore it is important to evaluate how much in-
formation is lost by neglecting the sample eigenvectors. Following Amari [1],
we gain an understanding of the asymptotic information loss with geometric
terms such as Fisher information metric and embedding curvatures.

Another statistically interesting topic is the bias of n−1l. It is well known
that n−1l is largely biased and the estimators mentioned above are all modi-
fication of n−1l to correct the bias, that is, ”shrinkage estimators.” We show
that the bias is closely related to the embedding curvatures. Moreover the
geometric structure of S naturally leads us to a new estimator, which is also
a shrinkage estimator.

The organization of this paper is as follows: In the former part (Section
2 and Section 3), we describe the geometrical structure of S in view of the
spectral decomposition (1). In Section 2, we observe S as a Riemannian
manifold endowed with Fisher information metrics. In Section 3, we treat
two submanifolds of S, a submanifold given by the fixed eigenvectors and
the one given by the fixed eigenvalues. The embedding curvatures of these
submanifolds are explicitly given. We will show that the bias of l is closely
related to the curvatures. In the latter part (Section 4 and 5), we con-
sider the estimation problem of λ. In Section 4, we describe the asymptotic
variance of estimators when Γ is known (Section 4.1) and the asymptotic in-
formation loss caused by discarding the sample eigenvectors H (Section 4.2).
The asymptotic information loss could be measured by the difference in the
asymptotic variance between two certain estimators. In Section 5 for the case
when Γ is unknown, we propose a new estimator of λ, which is naturally
derived from a geometric point of view. In the last section, some comments
are made for further research. All the proofs are collected in Appendix.

Unfortunately we do not have enough space to explain the geometrical
concepts used in this paper. Please refer to Boothby [6], Amari [2], Amari
and Nagaoka [3].
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2 Riemannian Manifold and Metric

The density of the normal distribution N(0,Σ) is given by

fΣ(x) = (2π)−p/2|Σ|−1/2 exp

(
−1

2
xtΣ−1x

)
, x = (x1, . . . , xp) ∈ Rp

If we let σij and σij denote the (i, j) element of respectively Σ and Σ−1,
then the log likelihood equals

log fΣ(x) =
∑
i

x2i
(
−σii/2

)
+
∑
i<j

xixj
(
−σij

)
− (p/2) log 2π − (1/2) log |Σ|

=
∑
i

yiiθ
ii +

∑
i<j

yijθ
ij − ψ(Θ) (say l(y; Θ)),

(4)

where Θ = (θij)i≤j and y = (yij)i≤j are given by
θii = (−1/2)σii, i = 1, . . . , p,

θij = −σij, 1 ≤ i < j ≤ p,

yii = x2i , i = 1, . . . , p,

yij = xixj, 1 ≤ i < j ≤ p,

(5)

and
ψ(Θ) = (p/2) log 2π + (1/2) log |Σ(Θ)|. (6)

The summations Σi, Σi<j in the equation (4) are abbreviations respectively
for

∑p
i=1 and

∑
1≤i<j≤p, and we will use these kinds of notations implicitly

hereafter.
The expression (4) gives natural coordinate system Θ of the manifold S as

a full exponential family. Another coordinate system, so called expectation
parameters, is also useful, which is defined as;

σij = E(yij), 1 ≤ i ≤ j ≤ p. (7)

For the analysis of the information carried by l and H , we need to pre-
pare another coordinate system. The matrix exponential expression of an
orthogonal matrix O is given by

O = expU = Ip +U +
1

2
U 2 +

1

3!
U 3 + · · · , (8)

where Ip is the p-dimensional unit matrix, U is a skew-symmetric matrix
and parametrized by u = (uij)1≤i<j≤p as

(U )ij =


uij, if 1 ≤ i < j ≤ p,

−uij, if 1 ≤ j < i ≤ p,

0, if 1 ≤ i = j ≤ p.
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The function expU is diffeomorphic, and u gives ”normal coordinate” for
the group of orthogonal matrices (see (6.7) in Boothby[6] or Th. A9.11 of
Muirhead[21]). We can use this coordinate as local system around Ip and
construct an atlas for the entire space of p-dimensional orthogonal matrices
(note this space is compact); for each Γ , there exists an open neighborhood
and some open ball B in Rp(p−1)/2 around the origin such that these spaces
are diffeomorphic by the function Γ expU(u) on B.

We will use (λ,u) as the third coordinate system of S and call it ”spectral
coordinate (system)”. Notice that this coordinate system is associated with
the following submanifolds in S. If we fix Γ in (1), then we get a submanifold
M(Γ ) embedded in S with a coordinate system λ. This is a subfamily in
N(0,Σ) and called curved exponential family. Its log-likelihood is expressed,
as we emphasize it as a function of λ, to be

l(y; Θ(λ)) =
∑
i

yiiθ
ii(λ) +

∑
i<j

yijθ
ij(λ)− ψ(Θ(λ)). (9)

On the contrary, if we fix λ in (1), we get another submanifold A(λ) in S,
whose coordinate system is given by u in a neighborhood of each point of
A(λ). Its log-likelihood expression is given by

l(y; Θ(u)) =
∑
i

yiiθ
ii(u) +

∑
i<j

yijθ
ij(u)− ψ(Θ(u)). (10)

First we consider a metric, that is, a field of symmetric, positive definite,
bilinear form on S. The statistically most natural metric is Fisher informa-
tion metric. Suppose {f(x;θ)} is a parametric family of probability density
functions, whose coordinate as a manifold is given by θ = (θ1, . . . , θp). Then
the (i, j) component of Fisher information metric with respect to θ is given
by

Eθ

[
∂

∂θi
log f(x; θ)

∂

∂θj
log f(x; θ)

]
.

For the multivariate normal distribution family, N(µ,Σ) (µ, the mean pa-
rameter is also included), Skovgaard [25] gives a clear form of Fisher infor-
mation metric. The tangent vector space at a fixed point Σ w.r.t. (σij)i≤j

coordinate can be identified with the space of symmetric matrices. For any
symmetric matrix A, B, the metric with respect to the Σ = (σij) coordinate
system is given by

1

2
tr
(
Σ−1AΣ−1B

)
. (11)

We are interested in Fisher information metric with respect to the spec-
tral coordinate (λ,u). Let ∂a, ∂b, · · · denote the tangent vectors w.r.t.
the λ coordinate, ∂(s,t), ∂(u,v), · · · denote the tangent vectors w.r.t. the u
coordinate. Namely

∂a ≜
∂

∂λa
, ∂(s,t) ≜

∂

∂ust
.
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These tangent vectors (exactly speaking, vector fields) are invariant with
respect to any orthogonal transformation of Σ; For some orthogonal matrix
O, an orthogonal transformation Fof S is defined as

F (Σ) = OΣOt (12)

For any O,

F∗(∂a) = ∂a, 1 ≤ a ≤ p, (13)

F∗(∂(s,t)) = ∂(s,t), 1 ≤ s < t ≤ p, (14)

where F∗ is the derivative of F .

Proposition 1 Let ⟨ , ⟩ denote Fisher information metric based on x ∼
N(0,Σ), then the components of the metric with respect to (λ,u) is given
as follows;

gab ≜ ⟨∂a, ∂b⟩ = (1/2)λ−2
a δ

(
a = b

)
1 ≤ a, b ≤ p,

ga(s,t) ≜ ⟨∂a, ∂(s,t)⟩ = 0 1 ≤ a ≤ p, 1 ≤ s < t ≤ p,

g(s,t)(u,v) ≜ ⟨∂(s,t), ∂(u,v)⟩
= (λs − λt)2λ−1

s λ−1
t δ

(
(s, t) = (u, v)

)
1 ≤ s < t ≤ p, 1 ≤ u < v ≤ p.

δ(·) equals one if the logic inside the parenthesis is correct, otherwise zero.

There are two remarkable properties of the metric for the spectral co-
ordinate. First note that since the metric components matrix is diagonal,
(λ,u) is an orthogonal coordinate system, especially that the submanifolds
M(Γ ) and A(λ) are orthogonal to each other for any λ and Γ . Second
it is independent of Γ , hence the metric stays constant with respect to the
orthogonal transformation F in (12) for any orthogonal matrix O. (Second
property is instantly derived from the expression (11).)

Theoretically, other metrics could be naturally implemented. Calvo and
Oller [7] introduced Sigel metric. Lovrić et al. [19] considered the natural
invariant metric from the standpoint of Riemannian symmetric space. The
concrete forms of the both metrics are given by (3.4) and (3.2) in [19]. (The
information metric (11) corresponds to (3.3) in [19]. See also Theorem 1 of
Zhang [30]. )

Once a metric is given on the manifold S, a connection is needed for
further geometrical analysis. Connection is an important ”rule” which defines
how a tangent space is shifted with an infinitesimal move in a differential
manifold. Although connection has an infinite variation, the most commonly
used one is Levi-Civita connection. It is characterized as a unique torsion-
free, metric-preserving connection. This connection is essential to consider
a distance function on the manifold. Skovgaard [25] , Calvo and Oller [7],
Fletcher and Joshi [12], Lenglet et al. [18], Lovrić et al. [19], Moakhaer and
Zéräı [20] analyze the manifold of the normal distributions under Levi-Civita
connection.
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On the other hand, Amari [1] showed that ”α-connection” is suitable for
statistical manifolds in general. He also found that e-connection (α = 1) and
m-connection (α = −1) are especially important for the asymptotic analysis
of information loss for a curved exponential family. Amari and Kumon [4],
Kumon, Amari [16] and Eguchi [11] gave further development along this line.
Specifically in the relation with the multivariate normal distribution or S,
Ohara et al. [23], Yoshizawa and Tanabe [29] and Zhang et al. [30] considered
the dual geometry (α and −α connections) of the manifolds. Notice that
Levi-Civita connection is 0-connection and the ”mean” between e-connection
and m-connection. Therefore, using the results on geometric properties of
S under e-connection and m-connection, we could also derive those under
Levi-Civita connection.

Since this paper is aimed for the statistical inference on Σ, we adopt
α-connections, especially e- and m-connections, hereafter. We conclude this
section by mentioning the important fact that S is e-flat and m-flat, and
corresponding affine coordinates are given respectively by (σij) and (σij).

3 Embedding Curvatures

Curvature, which is important property for an geometrical analysis, is defined
based on a given connection. A submanifold has both intrinsic and extrinsic
curvatures. The latter describes how the submanifold is placed in the whole
manifold, and called an embedding curvature or the second fundamental
form. (The first fundamental form is the metric.)

In this section, we observe the embedding curvatures of M and A for
the analysis of the distribution (l,H). Specifically we consider the following
embedding curvatures;

1. Embedding curvature ofM with respect to e-connection orm-connection.
Its components w.r.t the spectral coordinate are given by

e

Hab(s,t)≜ ⟨
e

∇∂a∂b , ∂(s,t)⟩,
m

Hab(s,t)≜ ⟨
m

∇∂a∂b , ∂(s,t)⟩, (15)

where
e

∇∂a∂b is the covariant derivative of ∂b in the direction of ∂a with respect

to e-connection.
m

∇∂a∂b is similarly defined.
2. Embedding curvature of A with respect to m-connection. Its compo-

nents w.r.t the spectral coordinate are given by

m

H(s,t)(u,v)a≜ ⟨
m

∇∂(s,t)∂(u,v) , ∂a⟩, (16)

where
m

∇∂(s,t)∂(u,v) is the covariant derivative of ∂(s,t) in the direction of ∂(u,v)
with respect to m-connection.

On these curvatures at the point (λ,Γ ), we have the following results.

Proposition 2 For 1 ≤ a, b ≤ p, 1 ≤ s < t ≤ p,

e

Hab(s,t)=
m

Hab(s,t)= 0. (17)
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For 1 ≤ a ≤ p, 1 ≤ s < t ≤ p, 1 ≤ u < v ≤ p,

m

H(s,t)(u,v)a=


λ−2
a (λt − λa), if s = u = a, t = v,

λ−2
a (λs − λa), if s = u, t = v = a,

0, otherwise.

(18)

Another expression of the embedding curvature of A is given by

m

Ha
(s,t)(u,v)≜

∑
b

m

H(s,t)(u,v)b g
ba, (19)

With this notation, the orthogonal projection of the covariant derivative

m

∇∂(s,t)∂(u,v)

onto the tangent space ofM is given by∑
a

m

Ha
(s,t)(u,v) ∂a.

From Proposition 1, 2, we have

m

Ha
(s,t)(u,v)= 2(λt − λa)δ(s = u = a, t = v) + 2(λs − λa)δ(s = u, t = v = a),

(20)
hence

∑
a

m

Ha
(s,t)(u,v) ∂a =

{
2(λt − λs)∂s + 2(λs − λt)∂t, if (s, t) = (u, v),

0, otherwise.

Similarly another embedding curvature components
e

H
(s,t)
ce

is defined as

e

H
(s,t)
ab

=
∑
u<v

e

Hab(u,v) g
(u,v)(s,t) (21)

and actually it vanishes

e

H
(s,t)
ab

= 0, 1 ≤ a, b ≤ p, 1 ≤ s < t ≤ p. (22)

An embedding curvature has full information about the ”extrinsic curva-
ture” of the embedded submanifold in any direction. Sometimes it is con-
venient to compress it into a scalar measure of the curvature. ”Statistical
curvature” by Efron (see Efron [10], Murray and Rice [22]) is such a measure;
For A, it is defined by (see p.159 of Amari [2])

γ(A) ≜
∑

1≤a,b≤p

∑
s<t,u<v,o<p,q<r

m

H(s,t)(u,v)a

m

H(o,p)(q,r)b g(s,t)(o,p) g(u,v)(q,r) gab,

which attains the following value at the point (λ,Γ ).
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Corollary 1

γ(A) = 2
∑
a<b

λ2a + λ2b
(λa − λb)2

From these results, we notice that if S is endowed with m-connection,
then 1) the embedding curvatures and the statistical curvatures of A are in-
dependent of Γ , 2) any one-parameter curve (λ,Γ (u)) given by a parameter
u(s,t), s < t, where λ and the other elements of u are fixed, is curved in the
direction of ∂t − ∂s and contained in a two-dimensional plane composed by
∂(s,t) and ∂t − ∂s, 3) the statistical curvature of A could be quite large when
λ are close to each other, whileM is flat everywhere.

Here we introduce another submanifold Ã which is contrasting to A in
the sense that Ã is flat with respect to m-connection. For a point (λ,Γ ), let

Ã(λ,Γ ) ≜ {Σ ∈ S | (Γ tΣΓ )ii = λi, 1 ≤ ∀i ≤ p}.

We easily notice that Ã is the minimum distance points with respect to
Kullback-Leibler divergence. That is,

Ã(λ,Γ ) = {Σ ∈ S | argminλ̃KL(Σ,Γdiag(λ̃1, . . . , λ̃p)Γ
t) = λ},

where KL(Σ, Σ̃) is the Kullback-Leibler divergence between N(0,Σ) and
N(0, Σ̃), which is specifically given by

tr(ΣΣ̃−1)− log |ΣΣ̃−1| − p.

The minimum distance points with respect to the Kullback-Leibler diver-
gence consists of all the points on the m-geodesics which pass through the
point (λ,Γ ) and are orthogonal to M(Γ ) at that point. (See Theorem in
A2 of Amari [1]).

We can visualize the structure of S endowed with m-connection for the
two dimensional case. See Figure 1, where Mi ≜ M(Γi), i = 1, . . . , 3,
Ai ≜ A(λi), i = 1, 2 and Ã1 ≜ Ã(λ1,Γ1) are drawn. When p = 2, M is a
two-dimensional autoparallel submanifold with the affine coordinate (λ1, λ2),
while A is a one-dimensional submanifold with an coordinate u(1,2). As it is

seen in Proposition 1, all the tangent vectors ∂1(≜ ∂
∂λ1

), ∂2(≜ ∂
∂λ2

), ∂(1,2)(≜
∂

∂u(1,2)
) are orthogonal to each other. Ã is a ”straight” line which is also

orthogonal toM. The arrow onM is the line {λ|λ1 + λ2 is constant}, and
the arrow head indicates the direction in which c ≜ λ2/λ1 increases. The
statistical curvature turns out to be the increasing function of c ;

γ(A) = 2
1 + c2

(1− c)2
.

We can analyze the bias of l̄i ≜ n−1li, i = 1, . . . , p from the geometrical
structure of S. It is well known that E[ l̄i ] (i = 1, . . . , p) majorizes λi (i =
1, . . . , p), that is,

j∑
i=1

E[ l̄i ] ≥
j∑

i=1

λi, 1 ≤ ∀j ≤ p− 1,

p∑
i=1

E[ l̄i ] =

p∑
i=1

λi. (23)
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Figure 1: Submanifolds of S when p = 2,M, A and Ã

The bias E[ l̄i ] is quite large when n is small and λi’s are close to each other
(see Lawley [17], Anderson [5]). For the case p = 2,

E[ l̄1 ] ≥ λ1, E[ l̄2 ] ≤ λ2, E[ l̄1 ] + E[ l̄2 ] = λ1 + λ2. (24)

Suppose a sample S̄ ≜ n−1S takes the value at a point s ∈ S. Let s1 denote
the point onM(Γ ) designated by the eigenvalues of S̄, namely l̄ ≜ (l̄1, l̄2).
The curve A(l̄) connects s and s1. If we define s2 as the point on M(Γ )
designated by λ̂ ≜ (λ̂1, λ̂2) ≜ ((Γ tS̄Γ )11, (Γ

tS̄Γ )22), then Ã(λ̂,Γ ) connects
s and s2. The three points s, s1 and s2 are on the same plane, and if we move
from s1 in the direction to s2, then the statistical curvature of A increases
(see Figure 2). If we estimate (λ1, λ2) by l̄, then the estimate is the point s1,
while for the unbiased estimator λ̂, the estimate is the point s2. Since the
c-coordinate of s1 is always smaller than that of s2, the estimator (l̄1, l̄2) is
likely to estimate λ1 and λ2 too apart, which causes the bias (24). It is also
seen that the bias gets larger when c approaches to one, that is, λ1 and λ2
get closer to each other.

Though the exact magnitude of the bias E(l̄a)−λa is hard to evaluate, the
asymptotic bias can be evaluated. This can be also described with embedding
curvatures (see (5.4) of Amari [2]);

E(l̄a − λa) = −
1

2n
Ca +O(n−3/2),

where

Ca =
∑
c,d

m

Γ a
cd g

cd +
∑

s<t,u<v

m

Ha
(s,t)(u,v) g

(s,t)(u,v),
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Figure 2: Horizontal perspective of A and Ã on the planeM when p = 2

and
m

Γ a
cd is a m-connection coefficients ofM, which is defined by

m

Γ a
cd =

m

Γcdb g
ba,

m

Γcdb≜ ⟨
m

∇∂c∂d , ∂b⟩. (25)

SinceM is autoparallel in m-flat S,
m

Γ a
cd=

m

Γcdb= 0, 1 ≤ a, b, c, d ≤ p. (26)

Hence we have the following equation from Proposition 1 and (20).

Ca(λ) =
∑
a<t

m

Ha
(a,t)(a,t) g

(a,t)(a,t) +
∑
s<a

m

Ha
(s,a)(s,a) g

(s,a)(s,a)

= 2
∑
t̸=a

λaλt
λt − λa

. (27)

This bias was originally derived by the perturbation method in Lawley [17].

4 Estimation of λ when Γ is known

We consider an estimation problem when Γ is known to be Γ 0. From a
practical point of view, the case when Γ is known is not of much interest
compared to the general case where both Γ and λ are unknown. However
as we will show in this section, the asymptotic information loss caused by
discarding the sample eigenvectors (Section 4.2) are closely related to the
asymptotic variance difference between two certain estimators (Section 4.1).
Both asymptotic variance and information loss are described with geometrical
terms.

4.1 Asymptotic variance of the estimators of λ

In a general term, the subfamily (submanifold)M(Γ 0)(≜ {Σ ∈ S|Γ (Σ) =
Γ 0}) in S is a ”curved” exponential family, since it is a subfamily in an ex-
ponential family S. In a usual case, a subfamily is not ”flat”, hence the term
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”curved” is used. However as you can see from (17),M(Γ 0) is autoparallel
in m(e)-flat S, and intrinsically m(e)-flat (see e.g. Theorem 1.1 in [3]).

We are supposed to estimate unknown coordinate λ ofM(Γ 0) using an
estimator λ̂ = (λ̂1, . . . , λ̂p) of some kind. An estimator λ̂(S) is specified by

its inverse image λ̂−1(λ)

Â(λ) ≜ λ̂−1(λ) = {Σ ∈ S | λ̂(Σ) = λ}. (28)

This is another submanifold in S, where we will use u as a coordinate system.
A consistent estimator λ̂ is called first-order (Fisher) efficient if the first

order term (i.e. O(n−1) order term) w.r.t. the asymptotic expansion of
the variance (covariance) in n is minimized among all (regular) estimators.
Correct the bias of the first-order efficient estimator λ̂ up to the term of
order n−1, and let it be denoted by λ̂∗ ≜ (λ̂∗1, . . . , λ̂

∗
p). Amari showed (see

e.g. Theorem 4.4 in [3]) that its asymptotic variance can be described by the
geometrical properties such as the metric and the embedding curvatures of
M(Γ 0) and Â ; For 1 ≤ a, b ≤ p,

E[(λ̂∗a−λa)(λ̂∗b−λb)] =
1

n
gab+

1

2n2
{(Γm

M )2ab+2(He
M)2ab+(Hm

Â
)2ab}+O(n−3)

(29)
where

(Γm
M )2ab =

∑
c,d,e,f

m
Γ a
cd

m

Γ b
ef
gcegdf ,

(He
M)2ab =

∑
c,d,e,f,s<t,u<v

e

H(s,t)
ce

e
H

(u,v)
df

g(s,t)(u,v) g
cdgeagfb,

(Hm
Â
)2ab =

∑
s<t,u<v,o<p,q<r

m
Ha

(s,t)(u,v)

m

Hb
(o,p)(q,r)

g(s,t)(o,p)g(u,v)(q,r),

m
Γ a
cd

and
e
H

(s,t)
ce

are already defined in the previous section as the connection
coefficients (see (25)) or the embedding curvature components (see (21)) of

M. They are defined independently of the particular estimator.
m
Ha

(s,t)(u,v)

are the components of the embedding m-curvature of Â, which differ among
the estimators.

We apply this formula to the following two estimators, l∗ = (l∗1, . . . , l
∗
p)

and λ̂ = (λ̂1, . . . , λ̂p). The former is the bias-corrected sample eigenvalues,
which is given, using (27), by

l∗a = l̄a +
1

2n
Ca(l) = l̄a +

1

n

∑
t ̸=a

lalt
lt − la

, a = 1, . . . , p, (30)

and the latter is defined by

λ̂a = ((Γ 0)tS̄Γ 0)aa, a = 1, . . . , p, (31)

which is (exactly) unbiased. In fact λ̂ is the maximum likelihood estimator
for the case Γ is known. Notice that for l, Â(λ) = A(λ) and that for
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λ̂, Â(λ) = Ã(λ,Γ 0). The first-order efficiency of the both estimators are
guaranteed by the orthogonality toM(Γ 0) of A(λ) and Ã(λ,Γ 0).

The terms (Γm
M )2ab and (He

M)2ab, which are related to the submanifold
M, hence common to the both estimators, vanish, because of (22) and (26).
The term (Hm

Â
)2ab is different between the two estimators. As we observed in

the previous section, A(λ) is not autoparallel in S (see (18) ). On the other
hand, Ã(λ,Γ 0) is autoparallel in S, hence (Hm

Â
)2ab vanishes. Consequently

the following results are gained.

Proposition 3 For 1 ≤ a, b ≤ p,

E[(l∗a − λa)(l∗b − λb)](≜ V ab(l∗))

=



2

n
λ2a +

2

n2

∑
t̸=a

λ2aλ
2
t

(λt − λa)2
+O(n−3), if a = b,

− 2

n2

λ2aλ
2
b

(λa − λb)2
+O(n−3), if a ̸= b.

(32)

E[(λ̂a − λa)(λ̂b − λb)](≜ V ab(λ̂))

=


2

n
λ2a +O(n−5/2), if a = b,

O(n−5/2), if a ̸= b.

(33)

This result says that λ̂ is the second-order efficient (among the bias-corrected
first-order efficient estimators), but the bias-corrected sample eigenvalues
are not. The difference in the asymptotic performance between the two
estimators is due to the fact l∗ do not use the prior information Γ = Γ 0,
while λ̂ does. In contrast to l∗, which does not use H , λ̂ incorporates the
information of H with the aid of the prior knowledge Γ = Γ 0. In fact, as we
will see in the next subsection, the difference between (32) and (33) is closely
related to the asymptotic information loss caused by discarding H .

4.2 Asymptotic Information Loss

In this subsection, we consider the asymptotic information loss caused by
ignoring H for the estimation of λ. Information loss matrix (∆gab(l)), 1 ≤
a, b ≤ p at a fixed point Σ = (λ,Γ ) is given by

∆gab(l) ≜ E[gab(S|l)] = gab(S)− gab(l),

where gab(S), gab(l), gab(S|l) are the components of the metrics w.r.t. ∂a and
∂b based on respectively the distributions S, l and the conditional distribu-
tion of S given l, all of which are measured at the point Σ = (λ,Γ ).

13



Amari [1] found that the asymptotic information loss can be expressed in
terms of the metric and the embedding curvatures;

∆gab(l) = n
∑

s<t,u<v

ga(s,t)gb(u,v)g
(s,t)(u,v)

+
∑

c,d,s<t,u<v

e

Hac(s,t)

e

Hbd(u,v) g
cd g(s,t)(u,v)

+ (1/2)
∑

s<t,u<v,o<p,q<r

m

H(s,t)(u,v)a

m

H(o,p)(q,r)b g(s,t)(o,p) g(u,v)(q,r)

+O(n−1). (34)

Straightforward calculation leads us to the following result:

Proposition 4
∆gab(l) = Bab +O(n−1),

where

Bab =


1

2λ2a

∑
t̸=a

λ2t
(λt − λa)2

, if a = b,

− 1

2(λa − λb)2
, if a ̸= b.

Bab at the point (λ,Γ ) depends only on λ. When the information loss
of a statistic has the order O(n−q+1), we call the statistic is the qth order
sufficient. Consequently the statistic l is the first order sufficient, but not
the second order sufficient.

Bab, the information loss in the second order term (O(1)) could be quite
large when the population eigenvalues are close to each other. Note that the
information carried by l is given by the formula;

gab(l) = gab(S)−∆gab(l)

= ngab(x)−∆gab(l)

= (n/2)λ−2
a δ(a = b)−∆gab(l).

Since (gab(l)) is positive definite, diag(n2
−1λ−2

1 , . . . , n2−1λ−2
p ) > (∆gab). This

holds true even in the neighborhood of a point λ1 = · · · = λp where Bab

diverges. This indicates that the term of order O(n−1) in ∆gab(l) is also
unbounded in such a neighborhood. Hence the expansion of the information
loss with respect to n is not useful when the population eigenvalues are close
to each other.

Except for the case where the population eigenvalues are close to each
other, Proposition 4 tells us approximately how much information is lost by
ignoring the sample eigenvectors for the inference on the population eigen-
values. If we contract ∆gab, then we could get a scalar measure on the
information loss;

IL ≜
∑
a,b

gab∆gab =
∑
a

2λ2aBaa +O(n−1) =
∑
a<b

λ2a + λ2b
(λa − λb)2

+O(n−1)

14



Table 1: Simulate risk of l∗ when p = 2 as c varies

c : Second Eigenvalue 1.0 0.8 0.6 0.4 0.2
Simulated Risk of l∗ 0.85 0.83 0.70 0.60 0.50
Standard Deviation 0.24 0.48 0.15 0.09 0.22

100×(Risk Difference/Risk of λ̂) 111 107 75 49 24

Asymptotic information loss is closely related to the asymptotic variance
of the two estimators l∗ and λ̂ in the previous subsection. Actually if we
contract the asymptotic performance difference between the two estimators
V ab(l∗)− V ab(λ̂), then it equals n−2IL, that is,∑

a,b

(V ab(l∗)− V ab(λ̂))gab

= 2−1E[
∑
a

(l∗a/λa − 1)2]− 2−1E[
∑
a

(λ̂a/λa − 1)2]

= n−2
∑
a<b

λ2a + λ2b
(λa − λb)2

+O(n−3) = n−2IL. (35)

As a numerical example, we made a simulation for the case p = 2, n = 20.
Taking the relationship (35) into account, we could measure an informa-
tion loss as the normalized quadratic risk difference between l∗ and λ̂. We
randomly generated a two-dimensional normal vector under the following
conditions, Σ = diag(1.0, c), c = 0.2, 0.4, 0.6, 0.8, 1.0. We made 108 times
repetition and took the average for each condition. The Table 1 shows the
result. (Note: 1)The risk of λ̂ theoretically equals 0.4. 2)The simulated risk
of l∗ is quite unstable as its large s.d. shows.) We notice that information
loss is not negligible. The risk of l∗ is larger than that of λ̂ by 24–111 %.
The risk difference is quite large especially when the population eigenvalues
are close to each other.

5 Estimation of λ when Γ is unknown

In this section, we consider the more practical case where Γ is unknown. The
derivation of a new estimator for this case will be done in view of the modi-
fication of the bias of l̄. Actually almost all the literature on the estimation
of λ we mentioned in Section 1 modify the bias of l̄ by so called ”shrinkage”
method, that is, decreasing the dispersion of l̄. Though the concrete meth-
ods of shrinkage differ for each estimator, they are proposed mainly from
analytical motivations. Here we consider another shrinkage estimator from
a geometrical point of view.

Suppose that we have a sample S̄ ≜ n−1S which takes the point (λ,Γ ) in
S, that is, λ = l̄,Γ = H . (See Figure 3.) Take the orthogonal projection of
this point onto the submanifoldM(Γi) ≜Mi(i = 1, 2), where the projected
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Figure 3: The shrinkage effect of the projection (λ,Γ ) ontoMi, i = 1, 2

point (λi,Γi) is given by λi = ((Γ t
i S̄Γi)11, . . . , (Γ

t
i S̄Γi)pp). As we mentioned

in Section 3, (λi,Γi) is the minimum distance point onMi from (λ,Γ ) with
respect to Kullback-Leibler divergence. It is clearly understood that this
projection has the shrinkage effect. If we have an appropriate probability
measure of Γ on the group of p-dimensional orthogonal matrices O(p), the
expectation of (Γ tS̄Γ )ii, i = 1, . . . , p for that measure would give birth to a
natural shrinkage estimator.

We choose the conditional distribution of H when l is given for the prob-
ability measure on O(p). Since S = HLH t is distributed as Wishart matrix
Wp(n,Σ), its density w.r.t. the uniform probability dµ(H) on O(p) equals

f(H|l ;Σ) = K(l ;Σ)−1 exp
(
−(1/2)trHLH tΣ−1

)
, (36)

where normalizing constant K(l ;Σ) is given by

K(l ;Σ) =

∫
O(p)

exp
(
−(1/2)trHLH tΣ−1

)
dµ(H).

This conditional distribution depends on Σ. If we substitute Σ with an
estimator Σ̂(S̄), it gives a distribution on O(p), whose density with respect

16



to dµ(Γ ) is given by

f(Γ |l ; Σ̂) = K(l ; S̄)−1 exp
(
−(1/2)trΓLΓ tΣ̂−1

)
, (37)

where

K(l ; Σ̂) =

∫
O(p)

exp
(
−(1/2)trΓLΓ tΣ̂−1

)
dµ(Γ ).

Take the expectation of (Γ tS̄Γ )ii w.r.t. the density (37), then we have

λ̂∗i ≜ K(l ; S̄)−1

∫
O(p)

(Γ tS̄Γ )ii exp
(
−(1/2)trΓLΓ tΣ̂−1

)
dµ(Γ ), i = 1, . . . , p.

(38)
We propose λ̂∗ ≜ (λ̂∗1, . . . , λ̂

∗
p) as a new estimator of λ.

If Σ̂ is given by an orthogonally invariant estimator (2), λ̂∗i can be more
specifically described. Let L̄ denote diag(l̄). Because of the invariance of dµ,
it turns out that

λ̂∗i = K(l)−1

∫
O(p)

(Γ tHL̄H tΓ )ii exp
(
−(1/2)trLΓ tHΦ−1H tΓ

)
dµ(Γ )

= K(l)−1

∫
O(p)

(Γ tL̄Γ )ii exp
(
−(1/2)trLΓ tΦ−1Γ

)
dµ(Γ ), (39)

where

K(l) ≜
∫
O(p)

exp
(
−(1/2)trLΓ tΦ−1Γ

)
dµ(Γ ). (40)

The analytic evaluation of this estimator’s performance seems difficult even
for the large sample case. Instead we show the numerical result comparing
l̄, λ̂∗ and Stein’s estimator (3). Our new estimator λ̂∗i is also equipped with
the same ϕ’s in (3). We simulated the risks of three estimators for the case
p = 2, n = 10 w.r.t. K-L loss, which is given by

p∑
i=1

λ̂iλ
−1
i −

p∑
i=1

log(λ̂iλ
−1
i )− p,

where λ̂i = l̄i, λ̂
∗
i , ϕi, i = 1, . . . , p. Since all the estimators are functions of l

and scale invariant, it is enough to measure the risks for Σ = diag(1, c), 0 <
c ≤ 1. We varied c from 0.04 to 1.00 by the increment 0.04, and for each
c we repeated the risk evaluation 105 times and took the average. For the
integral calculation of (39) and (40), we picked up 50 points from O(2) in an
equidistant manner. Figure 4 shows the result. The new estimator performs
better compared to l̄, especially λ are close to each other, though it seems
that λ̂∗ does not dominate l̄ as Stein’s estimator does. Unfortunately we do
not have any theoretical explanation of the risk behavior of the new estimator.
We could only guess that the shrinkage effect works well when c is close to
one, while its effect is too strong elsewhere. We also simulated the risk of
the new estimator equipped with M.L.E. instead of Stein’s estimator. Since
its performance is almost the same as the above new estimator, we skip the
result.
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Figure 4: Risks of the three estimators as c changes

6 Remark

1. We treated the estimation problem of the eigenvalues λ in the latter
half of the paper. The estimation on the eigenvectors Γ seems rather
untouched in the classical situation n ≥ p. Corollary 1 on the statistical
curvatures of A or (27) on the asymptotic bias tells us that the point
where λ has some multiplicity is a statistically singular point. Around
these points, inference on Γ are considered to need subtle treatment.
Especially the eigenvectors are not well identified around the multiplic-
ity point, hence the information contained in H vanishes there (see
g(s,t)(u,v) in Proposition 1). This indicates that the inference using only
H is not appropriate.

2. We proposed a new estimator for λ in Section 5 . However this belongs
to the same category as most estimators in the past literature in that
it uses sample eigenvalues λ only. It is still unclear how we can use the
sample eigenvalues H for the inference of λ.
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7 Appendix

7.1 Proof of Proposition 1

As a base for the vector space of real symmetric matrices, we consider
Eij (1 ≤ i ≤ j ≤ p) which is a p× p matrix defined by

Eij =

{
Iii, if i = j,

Iij + Iji, if i < j,

where Iij (1 ≤ i, j ≤ p) is the p × p matrix whose (i, j) element equals one,
and all the other elements are zero. The one to one correspondence

∂(i,j) ≜ ∂

∂σij
←→ Eij, 1 ≤ i ≤ j ≤ p,

gives the component expression of (11)

⟨∂(i,j), ∂(k,l)⟩ = 1

2
tr
(
Σ−1EijΣ

−1Ekl

)
, 1 ≤ i ≤ j ≤ p, 1 ≤ k ≤ l ≤ p.

Since

∂a ≜
∂

∂λa
=

∑
i≤j

∂σij
∂λa

∂

∂σij
=

∑
i≤j

∂σij
∂λa

∂(i,j) 1 ≤ a ≤ p, (41)

∂(s,t) ≜
∂

∂ust
=

∑
i≤j

∂σij
∂ust

∂

∂σij
=

∑
i≤j

∂σij
∂ust

∂(i,j) 1 ≤ s < t ≤ p, (42)

we have the following relations

gab =
1

2
tr
{
Σ−1

(∑
i≤j

∂σij
∂λa

Eij

)
Σ−1

(∑
k≤l

∂σkl
∂λb

Ekl

)}
, (43)

ga(s,t) =
1

2
tr
{
Σ−1

(∑
i≤j

∂σij
∂λa

Eij

)
Σ−1

(∑
k≤l

∂σkl
∂ust

Ekl

)}
, (44)

g(s,t)(u,v) =
1

2
tr
{
Σ−1

(∑
i≤j

∂σij
∂ust

Eij

)
Σ−1

(∑
k≤l

∂σkl
∂uuv

Ekl

)}
, (45)

where 1 ≤ a, b ≤ p, 1 ≤ s < t ≤ p, 1 ≤ u < v ≤ p.
For the first order derivative at u = 0, we only have to consider Σ up to

the term to the first power w.r.t. u, hence we put Σ(λ,u) as

Σ(λ,u) = Γ (Ip +U)Λ(Ip +U )tΓ t +O(||u||2)
= ΓΛΓ t + ΓΛU tΓ t + ΓUΛΓ t +O(||u||2). (46)

Therefore we have

σij =
∑
k

γikγjkλk +
∑
k,l

γikγjl

(
λkulk + λlukl

)
+O(||u||2), 1 ≤ i ≤ j ≤ p,
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where uii ≜ 0 (1 ≤ i ≤ p), uij ≜ −uji (1 ≤ j < i ≤ p), which leads to

∂σij
∂λa

∣∣∣∣
u=0

= γiaγja, (47)

and
∂σij
∂ust

∣∣∣∣
u=0

= λtγitγjs − λsγisγjt + λtγisγjt − λsγitγjs. (48)

From (47) and (48), we have the following results on tangent vectors;∑
i≤j

∂σij
∂λa

Eij =
∑
i≤j

γiaγjaEij = γaγ
t
a, (49)

where γa is the ath column of Γ , and∑
i≤j

∂σij
∂ust

Eij = λtγtγ
t
s − λsγsγ

t
t + λtγsγ

t
t − λsγtγ

t
s. (50)

If we substitute (49) and (50) into (43), (44) and (45), we get the results as
follows;

2gab = tr
(
Σ−1γaγ

t
aΣ

−1γbγ
t
b

)
= tr

{(
γt
bΣ

−1γa

){(
γt
aΣ

−1γb

)}
= tr

(
λ−1
a δ(a = b)λ−1

b δ(a = b)
)

= λ−2
a δ(a = b),
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2ga(s,t) = tr
{
Σ−1γaγ

t
aΣ

−1
(
λtγtγ

t
s − λsγsγ

t
t + λtγsγ

t
t − λsγtγ

t
s

)}
= λtλ

−2
a δ(a = s = t)− λsλ−2

a δ(a = s = t)

+λtλ
−2
a δ(a = s = t)− λsλ−2

a δ(a = s = t)

= 0,

2g(s,t)(u,v) = tr
{
Σ−1

(
λtγtγ

t
s − λsγsγ

t
t + λtγsγ

t
t − λsγtγ

t
s

)
×Σ−1

(
λvγvγ

t
u − λuγuγ

t
v + λvγuγ

t
v − λuγvγ

t
u

)}
= λtλvλ

−1
t δ(u = t)λ−1

s δ(s = v)− λtλuλ−1
t δ(v = t)λ−1

s δ(s = u)

+ λtλvλ
−1
t δ(v = t)λ−1

s δ(s = u)− λtλuλ−1
t δ(u = t)λ−1

s δ(s = v)

− λsλvλ−1
s δ(u = s)λ−1

t δ(t = v) + λsλuλ
−1
s δ(s = v)λ−1

t δ(t = u)

− λsλvλ−1
s δ(s = v)λ−1

t δ(t = u) + λsλuλ
−1
s δ(u = s)λ−1

t δ(t = v)

+ λtλvλ
−1
s δ(u = s)λ−1

t δ(t = v)− λtλuλ−1
s δ(v = s)λ−1

t δ(t = u)

+ λtλvλ
−1
s δ(v = s)λ−1

t δ(t = u)− λtλuλ−1
s δ(u = s)λ−1

t δ(t = v)

− λsλvλ−1
t δ(u = t)λ−1

s δ(s = v) + λsλuλ
−1
t δ(v = t)λ−1

s δ(u = s)

− λsλvλ−1
t δ(t = v)λ−1

s δ(u = s) + λsλuλ
−1
t δ(u = t)λ−1

s δ(s = v)

= (−1 + λtλ
−1
s − 1 + λsλ

−1
t + λtλ

−1
s − 1 + λsλ

−1
t − 1)δ(s = u, t = v)

= 2(λ−1
s (λt − λs) + λ−1

t (λs − λt))δ(s = u, t = v)

= 2(λt − λs)(λ−1
s − λ−1

t )δ(s = u, t = v)

= 2(λt − λs)2(λsλt)−1δ(s = u, t = v).

7.2 Proof of Proposition 2

Note that Σ−1 = ΓΛ−1Γ t, hence

θij =


−
∑
k

γikγjkλ
−1
k if i < j,

−2−1
∑
k

γ2ikλ
−1
k if i = j.

This means M is an affine subspace of S w.r.t. an Θ, which is an affine
coordinate system of S with e-connection. Consequently M is e-flat, i.e.
e

Hab(s,t)= 0.
m

Hab(s,t)= 0 is similarly proved. See Theorem 1.1 in Amari and
Nagaoka [3].

Now we consider
m

H(s,t)(u,v)a. Using (4.14) in Amari [2], it is calculated as

m

H(s,t)(u,v)a =
∑
i≤j

∂2σij
∂ust∂uuv

∣∣∣∣
u=0

∂θij

∂λa

∣∣∣∣
u=0

= −2−1
∑

1≤i,j≤p

∂2σij
∂ust∂uuv

∣∣∣∣
u=0

∂σij

∂λa

∣∣∣∣
u=0

= −2−1tr(AB),
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where p× p matrices A, B are given by

(A)ij ≜
∂2σij

∂ust∂uuv

∣∣∣∣
u=0

, (B)ij ≜
∂σij

∂λa

∣∣∣∣
u=0

, 1 ≤ i, j ≤ p.

In order to calculate A, we only have to consider Σ up to the terms powered
by two w.r.t. u;

Σ = Γ
(
Ip +U + 2−1U 2

)
Λ
(
Ip +U + 2−1U 2

)t

Γ t +O(||u||3)

= ΓΛΓ t + Γ (UΛ+ΛU t)Γ t + 2−1Γ (U 2Λ+Λ(U 2)t)Γ t + ΓUΛU tΓ t

+O(||u||3).

Therefore σij is expressed as

σij = 2−1
∑
k,l

γikγjl

(
(U 2Λ+Λ(U 2)t)kl+2(UΛU t)kl

)
+Rij+O(||u||3), (51)

where R = ΓΛΓ t + Γ (UΛ+ΛU t)Γ t. Since

(U 2Λ+Λ(U 2)t)kl = (U 2Λ)kl + (U 2Λ)lk

=
∑
b

ukbublλl +
∑
b

ulbubkλk,

2(UΛU t)kl = 2
∑
b

ukbulbλb,

(51) truns out to be

σij = 2−1
∑
k,l,b

γikγjl(ukbublλl + ulbubkλk + 2ukbulbλb) +Rij +O(||u||3). (52)

From this we have

∂2σij
∂ust∂uuv

∣∣∣∣
u=0

× 2 =
∑
k,l,b

(a
(1)
ij + a

(1)
ji + a

(2)
ij + a

(2)
ji + a

(3)
ij + a

(4)
ij ), (53)

where

a
(1)
ij = γisγjvλvδ{(k, b) = (s, t), (b, l) = (u, v), (s, t) ̸= (u, v)}

− γitγjvλvδ{(k, b) = (t, s), (b, l) = (u, v), (s, t) ̸= (u, v)}
− γisγjuλuδ{(k, b) = (s, t), (b, l) = (v, u), (s, t) ̸= (u, v)}
+ γitγjuλuδ{(k, b) = (t, s), (b, l) = (v, u), (s, t) ̸= (u, v)}
+ γiuγjtλtδ{(k, b) = (u, v), (b, l) = (s, t), (s, t) ̸= (u, v)}
− γivγjtλtδ{(k, b) = (v, u), (b, l) = (s, t), (s, t) ̸= (u, v)}
− γiuγjsλsδ{(k, b) = (u, v), (b, l) = (t, s), (s, t) ̸= (u, v)}
+ γivγjsλsδ{(k, b) = (v, u), (b, l) = (t, s), (s, t) ̸= (u, v)},
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a
(2)
ij = 2γisγjtλtδ{(k, b) = (s, t), (b, l) = (s, t), (s, t) = (u, v)}

+ 2γitγjsλsδ{(k, b) = (t, s), (b, l) = (t, s), (s, t) = (u, v)}
− 2γisγjsλsδ{(k, b) = (s, t), (b, l) = (t, s), (s, t) = (u, v)}
− 2γitγjtλtδ{(k, b) = (t, s), (b, l) = (s, t), (s, t) = (u, v)}

= −2γisγjsλsδ{(k, b) = (s, t), (b, l) = (t, s), (s, t) = (u, v)}
− 2γitγjtλtδ{(k, b) = (t, s), (b, l) = (s, t), (s, t) = (u, v)},

a
(3)
ij = 2γisγjuλtδ{(k, b) = (s, t), (l, b) = (u, v), (s, t) ̸= (u, v)}

− 2γitγjuλsδ{(k, b) = (t, s), (l, b) = (u, v), (s, t) ̸= (u, v)}
− 2γisγjvλtδ{(k, b) = (s, t), (l, b) = (v, u), (s, t) ̸= (u, v)}
+ 2γitγjvλsδ{(k, b) = (t, s), (l, b) = (v, u), (s, t) ̸= (u, v)}
+ 2γiuγjsλtδ{(k, b) = (u, v), (l, b) = (s, t), (s, t) ̸= (u, v)}
− 2γivγjsλtδ{(k, b) = (v, u), (l, b) = (s, t), (s, t) ̸= (u, v)}
− 2γiuγjtλsδ{(k, b) = (u, v), (l, b) = (t, s), (s, t) ̸= (u, v)}
+ 2γivγjtλsδ{(k, b) = (v, u), (l, b) = (t, s), (s, t) ̸= (u, v)},

a
(4)
ij = 4γisγjsλtδ{(k, b) = (l, b) = (s, t) = (u, v)}

+ 4γitγjtλsδ{(k, b) = (l, b) = (t, s) = (v, u)}
− 4γisγjtλtδ{(k, b) = (s, t), (l, b) = (t, s), (s, t) = (u, v)}
− 4γitγjsλsδ{(k, b) = (t, s), (l, b) = (s, t), (s, t) = (u, v)}

= 4γisγjsλtδ{(k, b) = (l, b) = (s, t) = (u, v)}
+ 4γitγjtλsδ{(k, b) = (l, b) = (t, s) = (v, u)}.

Furthermore we have

2A = A(1) + (A(1))t +A(2) + (A(2))t +A(3) +A(4), (54)

where

A(1) = γsγ
t
vλvδ(t = u) + γtγ

t
uλuδ(s = v)

+ γuγ
t
tλtδ(s = v) + γvγ

t
sλsδ(u = t)

− γtγ
t
vλvδ(s = u, t ̸= v)− γsγ

t
uλuδ(t = v, s ̸= u)

− γvγ
t
tλtδ(u = s, t ̸= v)− γuγ

t
sλsδ(t = v, s ̸= u),

A(2) = −2(γsγ
t
sλsδ(s = u, t = v) + γtγ

t
tλtδ(s = u, t = v)),

A(3) = 2
(
γsγ

t
uλtδ(t = v, s ̸= u) + γtγ

t
vλsδ(s = u, t ̸= v)

+ γuγ
t
sλtδ(v = t, s ̸= u) + γvγ

t
tλsδ(u = s, t ̸= v)

)
− 2

(
γtγ

t
uλsδ(s = v) + γsγ

t
vλtδ(t = u) + γvγ

t
sλtδ(u = t) + γuγ

t
tλsδ(s = v)

)
,

A(4) = 4
(
γsγ

t
sλtδ(s = u, t = v) + γtγ

t
tλsδ(s = u, t = v)

)
.
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Since
∂σij

∂λa

∣∣∣∣∣
u=0

= −λ−2
a γiaγja,

we have
B = −λ−2

a γaγ
t
a. (55)

From (54) and (55), we have

m

H(s,t)(u,v)a = −4−1tr(2AB)

= −4−1tr{(A(1) + (A(1))t +A(2) + (A(2))t +A(3) +A(4))B}
= 4−1λ−2

a tr{(A(1) + (A(1))t +A(2) + (A(2))t +A(3) +A(4))γaγ
t
a}.

The following equalities hold;

tr(A(1)γaγ
t
a) = λaδ(s = v = a, t = u) + λaδ(t = u = a, s = v)

+ λaδ(t = u = a, s = v) + λaδ(s = v = a, t = u)

− λaδ(t = v = a, s = u, t ̸= v)− λaδ(s = u = a, t = v, s ̸= u)

− λaδ(t = v = a, s = u, t ̸= v)− λaδ(s = u = a, t = v, s ̸= u)

= 0.

tr((A(1))tγaγ
t
a) = 0.

tr(A(2)γaγ
t
a) = −2(λaδ(s = u = a, t = v) + λaδ(s = u, t = v = a)).

tr((A(2))tγaγ
t
a) = −2(λaδ(s = u = a, t = v) + λaδ(s = u, t = v = a)).

tr(A(3)γaγ
t
a) = 2{λtδ(s = u = a)δ(t = v, s ̸= u) + λsδ(t = v = a)δ(s = u, t ̸= v)

+ λtδ(s = u = a)δ(t = v, s ̸= u) + λsδ(t = v = a)δ(s = u, t ̸= v)}
− 2{λsδ(t = u = a)δ(s = v) + λtδ(s = v = a)δ(t = u)

+ λtδ(s = v = a)δ(t = u) + λsδ(u = t = a)δ(s = v)}
= 0.

tr(A(4)γaγ
t
a) = 4λtδ(s = u = a, t = v) + 4λsδ(t = v = a, s = u).

Consequently

m

H(s,t)(u,v)a = −λ−1
a δ(s = u = a, t = v)− λ−1

a δ(s = u, t = v = a)

+ λ−2
a λtδ(s = u = a, t = v) + λ−2

a λsδ(t = v = a, s = u)

=


λ−2
a (λt − λa), if s = u = a, t = v,

λ−2
a (λs − λa), if s = u, t = v = a,

0, otherwise.
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7.3 Proof of Corollary 1

As we will see in the next subsection,∑
s<t,u<v,o<p,q<r

m

H(s,t)(u,v)a

m

H(o,p)(q,r)b g(s,t)(o,p) g(u,v)(q,r)

=


1

λ2a

∑
t ̸=a

λ2t
(λt − λa)2

, if a = b,

− 1

(λa − λa)2
, if a ̸= b.

Combine this with Proposition 1, we have

γ(A) = 2
∑
a

∑
t̸=a

λ2t
(λt − λa)2

= 2
∑
a<b

λ2a + λ2b
(λa − λb)2

.

7.4 Proof of Proposition 3

We calculate each term in (29). gab = δ(a = b)2λ2a from Proposition 1.
Because of (22) and (26),

(Γm
M )2ab = (He

M)2ab = 0.

For l∗, (Hm
Â
)2ab = (Hm

A )2ab.

(Hm
A )2ab =

∑
s<t,u<v,o<p,q<r

m
Ha

(s,t)(u,v)

m

Hb
(o,p)(q,r)

g(s,t)(o,p)g(u,v)(q,r)

=
∑

t>a,p>b

m
Ha

(a,t)(a,t)

m

Hb
(b,p)(b,p)

(g(a,t)(b,p))2

+
∑

t>a,p<b

m
Ha

(a,t)(a,t)

m

Hb
(p,b)(p,b)

(g(a,t)(p,b))2

+
∑

t<a,p>b

m
Ha

(t,a)(t,a)

m

Hb
(b,p)(b,p)

(g(t,a)(b,p))2

+
∑

t<a,p<b

m
Ha

(t,a)(t,a)

m

Hb
(p,b)(p,b)

(g(t,a)(p,b))2 (56)

If a = b, then the r.h.s of (56) equals∑
t>a

(
m
Ha

(a,t)(a,t)
)2(g(a,t)(a,t))2 +

∑
t<a

(
m
Ha

(t,a)(t,a)
)2(g(t,a)(t,a))2

=
∑
t>a

(2(λt − λa))2
( λaλt
(λa − λt)2

)2

+
∑
t<a

(2(λt − λa))2
( λaλt
(λa − λt)2

)2

= 4
∑
t ̸=a

λ2aλ
2
t

(λa − λt)2
.
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If a ̸= b, then the r.h.s of (56) equals

m
Ha

(a,b)(a,b)

m

Hb
(a,b)(a,b)

(g(a,b)(a,b))2

= 4(λb − λa)(λa − λb)
( λaλb
(λa − λb)2

)2

= − 4λ2aλ
2
b

(λa − λb)2
.

7.5 Proof of Proposition 4

The term of the order n in (34) vanishes since ga(s,t) equals zero for 1 ≤ a ≤
p, 1 ≤ s < t ≤ p. We consider the term of order O(1). Since

e

Hac(s,t) also
vanishes for 1 ≤ a, c ≤ p, 1 ≤ s < t ≤ p, we only have to consider the term

(1/2)
∑

s<t,u<v,o<p,q<r

m

H(s,t)(u,v)a

m

H(o,p)(q,r)b g(s,t)(o,p) g(u,v)(q,r).

Because of (18), the above term equals

2−1
∑

t>a,p>b

m

H(a,t)(a,t)a

m

H(b,p)(b,p)b (g
(a,t)(b,p))2

+ 2−1
∑

t>a,p<b

m

H(a,t)(a,t)a

m

H(p,b)(p,b)b (g
(a,t)(p,b))2

+ 2−1
∑

t<a,p>b

m

H(t,a)(t,a)a

m

H(b,p)(b,p)b (g
(t,a)(b,p))2

+ 2−1
∑

t<a,p<b

m

H(t,a)(t,a)a

m

H(p,b)(p,b)b (g
(t,a)(p,b))2 (57)

If a = b, then (57) equals

2−1
∑
t>a

(
m

H(a,t)(a,t)a)
2(g(a,t)(a,t))2 + 2−1

∑
t<a

(
m

H(t,a)(t,a)a)
2(g(t,a)(t,a))2

= 2−1
{∑

t>a

(λ−2
a (λt − λa))2

( λaλt
(λa − λt)2

)2

+
∑
t<a

(λ−2
a (λt − λa))2

( λaλt
(λa − λt)2

)2}
= 2−1

∑
t ̸=a

λ2t
λ2a(λa − λt)2

.

If a < b, then (57) equals

2−1
m

H(a,b)(a,b)a

m

H(a,b)(a,b)b (g
(a,b)(a,b))2

= 2−1λ−2
a (λb − λa)λ−2

b (λa − λb)
( λaλb
(λa − λb)2

)2

= − 1

2(λa − λb)2
.
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