培養神経細胞の生存と分化に対する 高濃度カリウムの影響

渡 辺 眞 珠 信州大学医学部第2解剖学教室

(主任:志水義房教授)

The Effects of Elevated Potassium on the Survival and Differentiation of Neurons in Culture

Shinju WATANABE

Department of Anatomy, Shinshu University School of Medicine (Director: Prof. Yoshifusa Shimizu)

The effects of elevated potassium (K) medium on the survival and differentiation of neurons in dorsal root ganglia (DRG) and sympathetic ganglia (SG) from chick embryos were studied in explant and dissociated cell cultures.

Elevated (40mM) K improved survival of both DRG and SG neurons. DRG neurons in the high K medium showed cytoplasmic differentiation up to Murray's stage 3, but no further development or myelin formation could be observed in long-term culture.

In SG neurons, the nerve fibers tended to form thick bundles and their catecholamine (CA) fluorescence increased with the number of days of culture in the high K medium. By contrast, CA fluorescence was only faintly observed, except in a few intensely fluorescent cells, in the normal K medium. It was, however, intensified when the medium was changed from normal to high K, and was diminished by changing the medium from high K to normal. From these results, it seems likely that SG neurons continue to differentiate adrenergically in the high K medium, while they become cholinergic in the normal K medium. Shinshu Med. J., 32:554-566, 1984

(Received for publication August 11, 1984)

Key words: sympathetic ganglion, dorsal root ganglion, tissue culture, potassium, differentiation

交感神経節,脊髄神経節,組織培養,カリウム,分化

I緒 言

培養液中のカリウム(K)濃度を上昇させると神経細胞の生存率が高くなることが,分離培養されたニワト リ胚,胎児と新生マウス,ならびにヒト胎児の脊髄神 経節細胞,新生ラット小脳,ニワトリ胚毛様体神経節 細胞,モノアラガイ巨大神経節細胞について報告され ている¹⁾⁻⁹⁾。しかし,交感神経節細胞についてはこれ までのところ,Phillipson と Sandler¹⁰)が組織片培 養による結果を報告しているだけで,分離培養を用い た研究はほとんど見られない¹¹⁾。

また培養神経細胞に対する高濃度K培養液のその他の影響については、電気生理学的な変化5)12)や、生化学的に酵素活性・蛋白合成等について検索した報告は

信州医誌 Vol. 32

あるが7)10)11),長期間培養して形態的な変化を追跡し た研究はまだ見られない。

そこで今回はニワトリ胚脊髄神経節細胞および交感 神経節細胞を用い、培養神経細胞の生存と分化に対す る高濃度K培養液の影響を形態学的に検索した。特に 交感神経節細胞については、培養条件によってアドレ ナリン作動性にもコリン作動性にもなることが報告さ れており¹³⁾⁻¹⁸⁾, catecholamine (CA) 合成に対する 高濃度K培養液の影響について組織化学的な検討を加 えた。

Ⅱ 材料と方法

A材料

材料として, ニワトリ胚の脊髄神経節と交感神経節 を用いた。脊髄神経節は孵卵10日胚より、交感神経節 は孵卵12日ないし13日胚より、それぞれ実体顕微鏡下 で摘出した。

B 培養方法

組織片培養と分離培養を併用し、シャーレ内で、コ ラーゲン塗布カバースリップ上に培養した。分離培養 の場合には、0.25% トリプシンで12°C,10分間処理 して細胞を分離した19)。細胞濃度は、脊髄神経節細胞 では 3.0×10⁵/ml, 交感神経節細胞では 2.0×10⁵/ml とした。

用いた培養液は、 Eagle MEM (Hanks' base) 70%,馬血清20%,ニワトリ胚抽出液10%の組成で, glucose は 500mg/100ml に増量し, penicillin を 140u/ml の割合に加えた。 K濃度は, 40mM でニワ トリ胚脊髄神経節細胞の生存率が一番高くなるという 報告1)に従って、高濃度K培養液としては KC1 を加 えて 40mM としたものを用いた。なお対照培養液の K濃度は、5.3mM である。培養液は週2回交換した が, 交感神経節の場合は, 一部のシャーレで培養1週 間後に対照培養液から高濃度K培養液に、あるいは高 濃度Kから対照に変えて培養した。

培養シャーレは湿度100%で、3%の CO2 を含む空 気下において 36°C に保温した。

C 形態学的観察法

倒立位相差顕微鏡 (Nikon, MD型, DLL および DM) 下で経時的に観察するとともに、神経細胞数を 算定して培養後の生存率を算出した。また脊髄神経節 細胞については、核周囲部の直径と厚さ、ならびに核 の位置を計測した。

生存神経細胞数の算定は、対照と高濃度K培養それ No. 6, 1984

ぞれについて、脊髄神経節細胞では22シャーレ(4 ま たは5シャーレ×5回)ずつ,交感神経節細胞では16 シャーレ(3または4シャーレ×5回)ずつを用いて 行った。倍率 200倍 の位相差顕微鏡下で, 生存神経細 胞と同定される細胞を各シャーレ10視野数えて、その 合計を各シャーレの神経細胞数とした。 培養開始時, 1, 2, 4, 8日に同じシャーレについて数え, 各シ ャーレの培養開始時の神経細胞数を100%として生存 率を算出した。

脊髄神経節細胞の核周囲部の計測は、分離培養3、 5,10,20,30日に、対照と高濃度K培養それぞれに ついて、各150から180個の神経細胞に対して行った。 倍率 1000倍 の位相差顕微鏡下で, micrometer を用 いて核周囲部の長径と短径を測り、その平均を直径と した。また核周囲部の上面と底面それぞれにピントを 合わせ、微動焦準ハンドルの目盛の差から厚さを算出 した。核の位置は Handa²⁰)の方法により核が核周囲 部の辺縁細胞膜に接している時を10,核周囲部の中心 にある時を0とし、その間を10等分して偏位の度合 (D)を調べた。

培養後は、10%ホルマリンで24時間、さらに70%ア ルコールで3時間,80%アルコールで3週間以上固定 した。固定した組織は、Nissl 染色, Bodian 染色を 行って観察した。交感神経節細胞に対しては、CA の 蛍光組織化学的検出として FGS 法21)を用い, 落射蛍 光顕微鏡 (Nikon, EF) にて観察した。励起フィル ターとして V (IF 395-425), 吸収フィルターとし て 470K を使用した。

Ⅲ 結 果

A 神経細胞の生存率

高濃度K培養を行うと脊髄神経節細胞、交感神経節 細胞ともに、対照培養の場合に比べて生存する神経細 胞数が多かった(Figs. 1-4)。細胞数を算定した結果 (Figs. 5,6)では、培養開始時における倍率200倍10 視野の神経細胞数の合計は、各シャーレあたり200個 から 500個 であった。対照培養では培養日数に伴って 生存神経細胞数は次第に減少したが、高濃度K培養で はわずかな減少しか示さなかった。培養4日以降にな ると、高濃度Kで培養した場合の神経細胞の生存率は、 対照培養に比して有意に高い値を示した(危険率1%)。 培養8日における生存率は,脊髄神経節細胞の対照培 養では、培養開始時の49.3±13.7%であるのに対して、 高濃度K培養では87.1±16.2%を示した。交感神経節

High K

- Figs. 1-4 Phase-contrast photomicrographs of dissociated neurons 5 days in culture. Living neurons are more numerous in the high K medium than in the control medium. Fibroblasts in background are sparse in the high K medium as compared with the control medium. (×150)
 - Fig. 1 Dorsal root ganglion (DRG) cells maintained in the control medium.
 - Fig. 2 DRG cells maintained in the high K medium.
 - Fig. 3 Sympathetic ganglion (SG) cells maintained in the control medium.
 - Fig. 4 SG cells maintained in the high K medium. Note the neurons showing compact aggregation (⇒) and forming thick bundles of nerve fibers (▷).
- Figs. 7-10 Phase-contrast photomicrographs of DRGs in explant culture.

Figs. 7.8 2 days in culture. Nerve fibers radiate in bundles from the explant of the ganglion (G) preceding outgrowth of fibroblasts. Fig.7: Maintained in the control medium. Fig.8: Maintained in the high K medium. $(\times 75)$

Fig. 9 23 days in the control medium. Myelinated fibers (⇒) are clearly seen.(×600) Fig. 10 30 days in the high K medium. Note the axon thickening (⊳). No myelinated fibers can be observed. Most of the neurons are in immature form. (×600)

信州医誌 Vol. 32

Figs. 5,6 The effect of potassium on the survival of dissociated neurons in culture. Neuron survival is expressed as the percentage of the initial neuron count. Each point represents the mean percentage ± SD of neuron counts from 22 (DRG) or 16 (SG) dishes. The high K media (○) produce significantly higher survival as compared with control media (●).
Fig. 5 : DRG cells. Fig. 6 : SG cells.

Control

High K

High K

Figs. 11-14 Phase-contrast photomicrographs of the DRG cells. (×1500)

- Figs. 11,12 3 days in culture. The perikarya of the nerve cells are small in size and their cytoplasm is rather homogeneous. The nuclei are eccentric in position. Fig.11 : Maintained in the control medium. Fig.12 : Maintained in the high K medium.
 - Fig. 13 30 days in the control medium. The neuron has differentiated into mature form. Light spiral channels are clearly seen in the cytoplasm. The nucleus is located centrally. The satellite cells (⇔) are embedded in the perikaryon.
 - Fig. 14 30 days in the high K medium. The nucleus is located centrally, but the size of the perikaryon is smaller than that in the control medium. The satellite cells (⇒) project out from the perikaryon.

細胞でも,対照の生存率は30.5±19.9%であったが, 高濃度Kでは73.9±18.5%の高い生存率を示した。

B 脊髄神経節細胞の分化

1 神経線維

分離培養の場合,対照および高濃度K培養ともに神

経線維は、線維芽細胞を背景として、その上に神経細 胞間を結ぶ線維網を形成した(Figs. 1,2)。組織片培 養では、対照および高濃度K培養ともに、神経線維は 培養3日頃まで、線維束を形成しながら線維芽細胞の 遊出に先行して組織片より放射状に伸び出した(Figs.

信州医誌 Vol. 32

Fig. 15 The effect of potassium on developmental changes in the diameter of the DRG neurons. The diameter increases with days in culture, but more slowly in the high K (○) than in the control (●) media. The difference is significant after 10 days in culture. Each point gives the mean diameter ± SD measured from 150 to 180 neurons.

Fig. 16 The thickness of DRG neurons during development. The thickness of perikaryon scarcely changed throughout the culture. The high K media (○) produce no significant difference in the thickness as compared with the control media (●).

7,8)。その後は線維芽細胞の広がりに伴ってほぼ同じ 範囲まで伸びていった。高濃度K培養では,対照に比 して線維芽細胞の遊出が少なく,培養3日以後も線維 芽細胞の広がりに大きく先行して伸びる神経線維束を 認めた例も一部にはあったが,大部分の場合は,神経 線維の伸び,密度において対照との間に明らかな差を 認めなかった。

対照および高濃度K培養ともに、神経線維は培養日 数に伴って太さを増し、対照培養では培養2週後頃か ら髄鞘形成が認められてきた(Fig. 9)。しかし高濃度

K培養では,培養30日になっても,髄鞘形成は見られ なかった(Fig. 10)。

2 核周囲部

脊髄神経節細胞の核周囲部の分化の程度について見 ると、培養1週頃までは、対照と高濃度K培養との間 に明らかな差はなかった(Figs. 11,12)。両条件とも に、核周囲部は小型で、その直径は約15μmから25μm, 厚さは約20μmであった。核は細胞膜に接するように 著しく偏在し、1個または2個の核小体を持っていた。

対照培養では、その後培養日数に伴って核周囲部の 直径が増加し(Fig. 15)、培養30日になると核周囲部 の直径は、平均で約30µmになり、50µm以上のもの も認められた。しかし、核周囲部の厚さにはほとんど 変化が認められなかった(Fig. 16)。また、核はしだ いに核周囲部の中央に移動し(Fig. 17)、核小体は1 個の場合が多くなった。細胞質内には、位相差顕微鏡 下で電顕像の粗面小胞体に相当すると思われる同心円 的に走る明るい輪状の構造が認められ、成熟した形態 を示すようになった(Fig. 13)。外套細胞は、細胞体に 埋めこまれた様に密着していた。すなわち Murray²²⁾ の Stage 4 に相当する段階までの分化が認められた。

しかし、高濃度K培養では、核は核周囲部の中心に 移動したが、培養日数を経ても核周囲部は小型のまま で、細胞質内の輪状構造の発達も悪く、未熟な形態を 示すものが多かった (Figs. 10,14)。また外套細胞は、

No. 6, 1984

Figs. 18-21 Phase-contrast photomicrographs of SGs in explant culture.

- Fig. 18 2 days in the control medium. Nerve fibers show fine network on the sheet of fibroblasts. (×75)
- Fig. 19 2 days in the high K medium. Nerve fibers are dense and form thick bundles. (×75)
- Figs. 20,21 20 days in culture. No obvious difference can be observed between the nerve cells in the control and in the high K medium. Fig.20 : Maintained in the control medium. Fig.21 : Maintained in the high K medium. $(\times 860)$
- Figs. 22-26 CA fluorescence photomicrographs of SG cells in dissociated culture. (×200) Fig. 22 12 days in the control medium. CA fluorescence is faintly observed except in a few intensely fluorescent cells (⇒).
 - Fig. 23 12 days in the high K medium. Nerve fibers with intense fluorescence show dense network.
 - Fig. 24 7 days in the control medium and then 10 days in the high K medium. Fluorescence of nerve fibers appears.
 - Fig. 25 7 days in the high K medium and then 10 days in the control medium. Fluorescence of nerve fibers diminishes.
 - Fig. 26 7 days in the high K medium and then 10 days in the control medium. The arrow (→) indicates a few intensely fluorescent cells with long processes.

培養神経細胞に対するKの影響

核周囲部をとり囲んではいるが,外側に突出した形を 示した。すなわち Murray²²)の Stage 3までの分化 しか認められなかった。計測した結果では,核周囲部 の厚さと核の偏位には対照との間に有意差を認めなか ったが,核周囲部の直径は培養10日以降対照に比べて 有意に小さい値を示した (Fig. 15)。

C 交感神経節細胞の分化

1 神経線維と核周囲部

対照培養では、分離培養および組織片培養ともに、神 経線維は束形成せず、細かな線維網を形成した(Figs. 3,18)。高濃度K培養では、生存神経細胞数が多く、 特に分離培養では細胞が強い、aggregationを作るこ

No. 6, 1984

Experiment	Fluorescent nerve fibers		Intensely fluorescent cells	
	1 week	2 weeks	1 week	2 weeks
Control			+	+
High K	+	+++	土	<u>+</u>
*Control \rightarrow High K	-	++-	+	±
*High K \rightarrow Control	+		<u>±</u>	+

Table 1 The effects of the high K medium on the CA fluorescence of SGs

* The medium is changed from control to high K, or from high K to control after one week in culture.

とに伴って、神経線維の密度が高く、しかも太い神経 束を形成するのが認められた(Figs. 4, 19)。また高 濃度K培養では、対照に比べて線維芽細胞が少なかっ た。培養液を対照から高濃度Kに変えても、神経線維 は細かな線維網を示したままであり、高濃度K培養液 から対照に変えても高い線維密度と線維束には変化を 認めなかった。

培養日数を経ると交感神経節細胞においても,核周 囲部が幾分大きくなり,核が核周囲部の中心に移動し たが,脊髄神経節細胞に比べるとその変化はわずかで あった(Figs. 20,21)。この点では,対照培養と高濃 度K培養との間に明らかな差は認められなかった。

2 CA蛍光染色 (Table 1)

対照培養では、ほとんどの神経細胞は弱い蛍光しか 示さず、神経線維には蛍光が認められなかった(Fig. 22)。また培養20日に至っても変化は認められなかっ た。高濃度K培養では、培養3日頃より強い蛍光を示 す線維が認められ、培養日数に伴ってその数は増した。 培養10日を過ぎる頃には蛍光を示す線維の密なネット ワークが観察された(Fig. 23)。培養液を対照から高 濃度Kに変えると神経線維に蛍光が認められるように なり(Fig. 24)、逆に高濃度K培養から対照に変える と蛍光が消失した(Fig. 25)。

また対照培養および高濃度K培養のいずれにおいて も、培養初期から細胞体に特に強い蛍光を示す細胞が 少数認められた(Fig. 22)。この様な細胞の数は、対 照培養でより多かったが、培養日数に伴う変化は認め られなかった。しかし培養液を対照から高濃度Kに変 えるとこの細胞の数は減少し、高濃度Kから対照に変 えると出加する傾向が認められた。この細胞では線維 にも強い蛍光が認められたが、その蛍光を示す線維の 長さは一般に短かった。しかし培養液を高濃度Kから 対照に変えた場合には、長い蛍光線維を有するものが 出現した (Fig. 26)。

IV 考察

A 生存率

高濃度K培養により,脊髄神経節細胞の生存率が上 昇したことは,これまでの報告¹⁾⁻⁵⁾とほぼ一致する。 交感神経節細胞については,PhillipsonとSandler¹⁰⁾ が組織片培養を用いた連続切片による結果を報告して いるが,それによると高濃度K(45mM)で培養して いるが,それによると高濃度K(45mM)で培養して いるが,それによると高濃度K(45mM)で培養して いるが,それによると高濃度K(50m)で培養して いるが,それによると高濃度K(50m)で培養して いるが,それによると高濃度K(50m)で培養して 物合の生存率は,培養7日において,対照(5.3mMK) の約6.6倍である。今回の分離培養を用いた場合の交 感神経節細胞の生存率は,高濃度K培養8日で,対照 の約2.4倍であった。PhillipsonとSandler¹⁰⁾の報告 と今回の結果において見られた生存率の差は培養方法 の違いによるものと思われる。

Chalazonitis と Fischbach5) は、高濃度K培養に おける神経細胞の生存率の上昇は、神経細胞の変性率 が減少することと、前駆細胞が分化することによる神 経細胞の増加によってもたらされたものであり、神経 細胞の分裂増殖によるものではないとしている。今回 の実験において、生存率がわずかに上昇を示す場合が あったのは、培養の極く初期には神経細胞と同定し得 なかった細胞の中には、前駆細胞も含まれており、こ れが後になって分化したため神経細胞として算定され るようになったことも原因の1つと考えられる。

Nishi と Berg⁷) によると=ワトリ胚毛様体神経節 細胞では、高濃度 K 培養により 生存率が 上昇すると ともに、細胞あたりの choline acetyl-transferase (CAT) 活性, lactate dehydrogenase (LDH) 活性, acetylcholine (Ach) 合成,蛋白合成等も増加する。 この高濃度 Kによるのと同じような CAT 活性の増加 は、Na チャンネルの阻害剤である veratridine を用 いて細胞膜を脱分極させた場合にも認められる。一方,

信州医誌 Vol. 32

562

高濃度Kによる CAT活性の増加は, Mg や, Ca 拮抗 剤である D600 によって, Ca の細胞内流入を遮断す ると抑制されるという。また Schubert ら²³⁾による と高濃度Kは PC12 細胞の粘着性を増加させるが, こ の作用も Ca の細胞内流入を遮断すると阻害される。 これらのことより高濃度Kによる細胞膜の脱分極と, それに伴う Ca の細胞内流入が,蛋白合成その他の細 胞内の物質代謝過程を促進し²⁴⁾, その結果として神経 節細胞の生存率を上昇させることが推定される。

B 脊髄神経節細胞の分化

脊髄神経節細胞の対照培養では、培養日数に伴って 核周囲部の厚さには変化を認めなかったが、核周囲部 の直径が増加し、核の偏位が減少した。また神経線維 の髄鞘形成を伴う Murray²²)の Stage 4 までの核周 囲部の分化が認められた。以上の結果は Handa²⁰)の 報告とほぼ一致する。しかし高濃度K培養では、核周 囲部の厚さと核の偏位については対照との間に差を認 めなかったが、核周囲部の直径の増加は対照に比べて 有意に小さく、Murray²²)の Stage 3 までの核周囲 部の分化は認められたが、それ以上の分化はなく、ま た髄鞘形成も認められなかった。

脊髄神経節細胞では、培養日数とともに神経細胞が 分化するに従って、静止膜電位が深くなり、 Ca 成分 による活動電位の再分極相に見られる hump が消失 し、活動電位の持続時間も短くなる²⁰⁾²⁴⁾。 Chalazonitis と Fischbach⁵⁾, Scott ら¹²⁾は、高濃度Kで培 養すると、このより分化した電気生理学的性質を示す 神経細胞が、対照に比べて多くなることを報告してお り、このことから高濃度Kが、興奮膜の分化を促進す ることを示唆している。しかし、この高濃度Kによる 興奮膜の分化の促進と、今回の実験では高濃度K培養 で一定以下の形態的分化しか認められなかったことと の関係は、今のところ明らかではなく、今後なお検討 する必要がある。

C 交感神経節細胞の分化

1 伝達物質の選択

交感神経節細胞は、神経堤からの遊走中にアドレナ リン作動性となる信号をその周囲の環境から受けると 考えられており、神経節を形成した時点ではすでに CA 蛍光を示している¹³⁾¹⁴⁾。

この交感神経節細胞は培養下に置かれるとその培養 条件の違いによって、アドレナリン作動性、あるいは コリン作動性のいずれにも分化しうることが報告され ている13)-18)25)-29)。交感神経節細胞を、神経細胞以 外の細胞をほとんど取り除いた状態で培養すると, CAが合成され,有芯小胞を持つシナプスが形成され る²⁵⁾²⁶⁾。しかし,交感神経節細胞を,骨格筋や心筋, 線維芽細胞などの非神経細胞,これらを培養して得た conditioned medium,ニワトリ胚抽出液,人胎盤血 清などを加えて培養すると,Ach が合成され,神経 細胞相互間や,骨格筋,心筋との間にコリン作動性シ ナプスが形成されてくる¹³⁾⁻¹⁸⁾²⁷⁾²⁸⁾。この場合,同一 の神経細胞が,同時にアドレナリン作動性およびコリ ン作動性双方の伝達物質を有し,両方のシナプス伝達 を行う場合があることが報告されている¹⁷⁾¹⁸⁾²⁹⁾。こ のような現象はすでにアドレナリン作動性を示してい る神経細胞にも,まだ伝達物質を変更し得る可塑性が あり,非神経細胞由来の物質によってコリン作動性に 変化するため生じたものと考えられている¹³⁾¹⁴)。

ところが成熟生体内では、非神経細胞が多数存在す るにもかかわらず、大部分の交感神経節細胞はアドレ ナリン作動性である¹³)。Black ら³⁰⁾³¹)は、若いラッ トやマウスで節前神経の切断や ganglion blocker の 投与により、交感神経節細胞のノルアドレナリン合成 能が低下することを報告している。Walicke ら¹¹)は、 骨格筋や心筋の conditioned medium を加えて培養 されている交感神経節細胞を、Kや veratridine で 脱分極させたり、あるいは電気刺激すると、Ach 合 成が抑制され、CA 合成が増強することを示した。そ してこの結果からアドレナリン作動性交感神経節細胞 の維持には、中枢からの入力信号が重要な役割を果た しているのではないかと述べている。彼らはさらにこ の脱分極による交感神経節細胞の伝達物質の選択にも Ca が関与していることを示唆した³²)。

今回の実験では、対照培養においてほとんどの神経 線維に CA蛍光が認められなかった。このことは、共 存する線維芽細胞や培養液中のニワトリ胚抽出液など により、交感神経節細胞がアドレナリン作動性からコ リン作動性に転換した可能性を示している。

一方高濃度K培養では、線維芽細胞やニワトリ胚抽 出液の存在にもかかわらず、CA 蛍光線維の増加が著 明であった。また始め対照培養液で培養しておき、途 中で高濃度K培養液に交換すると神経線維にCA蛍光 が出現した。さらに培養液を高濃度Kから対照に交換 するとCA蛍光が消失した。このことから、高濃度K による神経細胞膜の脱分極が、中枢からの興奮性入力 による脱分極に代わって、交感神経節細胞にアドレナ リン作動性を保持させる作用を持っているのではない

No. 6, 1984

かと考えられる。また高濃度K培養では、交感神経節 細胞にコリン作動性を誘導する作用を持つと言われて いる線維芽細胞が対照培養に比べて少なかったが、こ のことも交感神経節細胞のアドレナリン作動性維持に 影響していると思われる。

しかし、交感神経節細胞にコリン作動性が誘導され ても、CA 合成には変化がない場合も報告されてい る²⁷⁾。今後、高濃度K培養における交感神経節細胞の コリン作動性の変化を追跡する必要があると考えられ る。

2 SIF 細胞

交感神経節には、いわゆる交感神経細胞より小さく, 特に強い CA 蛍光を示す small intensely fluorescent (SIF) 細胞と呼ばれる細胞が存在する³³⁾。これ は、交感神経細胞と副腎髄質細胞の中間的形態を示し, 通常突起は短く,細胞内に多数の大きな有芯小胞を持 ち、機能的には介在神経細胞 あるいは内分泌細胞, receptor 細胞とも考えられている。また発生段階に おいては,glucocorticoid や神経成長因子 (NGF) の影響により,副腎髄質細胞,SIF 細胞,交感神経 細胞は相互に変化し得ることが報告されている。さら にシナプス伝達を阻害すると SIF 細胞の形態が変化 することも報告されている¹⁴⁾³³。

今回の実験で認められた細胞体に特に強い蛍光を示 す細胞は、大きさが他の神経細胞と変わらず、SIF細 胞であるか否かは明らかでない。しかし、神経細胞と SIF 細胞の移行形の可能性もあり、その移行に 高濃 度Kが影響していることも考えられ、今後なお検討を 進めたい。

V 結 語

ニワトリ胚より得た脊髄神経節細胞および交感神経 節細胞を高濃度K培養液を用いて培養し、以下の結果 を得た。

- 1 高濃度K培養により、脊髄神経節細胞、交感神経 節細胞ともにその生存率が高められた。
- 2 高濃度Kでの長期培養において,脊髄神経節細胞 は, Murray の Stage 3 程度までは分化するが, それ以上の分化ならびに髄鞘形成は認められなかっ た。
- 3 交感神経節の高濃度K培養では、線維密度が増す とともに、太い神経束を形成するのが認められた。
- 4 交感神経節細胞の神経線維のCA蛍光は、高濃度 K培養では培養日数に伴って増強したが、対照培養 ではほとんど蛍光が認められなかった。また培養液 を対照から高濃度Kに変えると蛍光が増強し、高濃 度Kから対照に変えると減弱した。
- 5 以上の所見より,交感神経節細胞は,対照培養で はコリン作動性に転換するが,高濃度Kではアドレ ナリン作動性が保たれるものと考えられる。

本論文の要旨は,第7回神経科学学術集会(1984年 1月,千葉)および第89回日本解剖学会総会(1984年 4月,仙台)において発表した。

稿を終わるにあたり,終始御指導を賜りました恩師 志水義房教授,半田康延助教授に深く感謝いたします。 また御助力いただきました当教室中野知房氏,宮田康 夫氏,横内久美子氏に対し,厚くお礼申しあげます。

文

1) Scott, B.S. and Fisher, K.C. : Potassium concentration and number of neurons in cultures of dissociated ganglia. Exp Neurol, 27:16-22, 1970

献

- 2) Scott, B.S. and Fisher, K.C. : Effect of choline, high potassium, and low sodium on the number of neurons in cultures of dissociated chick ganglia. Exp Neurol, 31 : 183-188, 1971
- Scott, B.S. : Effect of potassium on neuron survival in cultures of dissociated human nervous tissue. Exp Neurol, 30 : 297-308, 1971
- Scott, B.S.: The effect of elevated potassium on the time course of neuron survival in cultures of dissociated dorsal root ganglia. J Cell Physiol, 91: 305-316, 1977
- 5) Chalazonitis, A. and Fischbach, G.D. : Elevated potassium induces morphological differentiation of dorsal root ganglionic neurons in dissociated cell culture. Dev Biol, 78 : 173-183, 1980
- 6) Lasher, R.S. and Zagon, I.S. : The effect of potassium on neuronal differentiation in cultures of dissociated newborn rat cerebellum. Brain Res, 41 : 482-488, 1972
- 7) Nishi, R. and Berg, D.K. : Effects of high K⁺ concentrations on the growth and development of ciliary ganglion neurons in cell culture. Dev Biol, 87:301-307, 1981

- 8) Bennet, M.R. and White, W. : The survival and development of cholinergic neurons in potassium-enriched media. Brain Res, 173 : 549-553, 1979
- 9) Kostenko, M.A., Tretjak, N.N. and Musienko, V.S. : The effect of elevated potassium on the adult mollusc giant neurone survival and neurite formation in culture. Brain Res, 236 : 183-192, 1982
- 10) Phillipson, O.T. and Sandler, M. : The influence of nerve growth factor, potassium depolarization and dibutyryl (cyclic) adenosine 3',5'-monophosphate on explant cultures of chick embryo sympathetic ganglia. Brain Res, 90 : 273-281, 1975
- 11) Walicke, P.A., Campenot, R.B. and Patterson, P.H. : Determination of transmitter function by neuronal activity. Proc Natl Acad Sci USA, 74: 5767-5771, 1977
- 12) Scott, B.S., Petit, T.L., Becker, L.E. and Edward, B.A.V. : Electric membrane properties of human DRG neurons in cell culture and the effect of high K medium. Brain Res, 178:529-544, 1979
- Patterson, P. H. : Environmental determination of autonomic neurotransmitter functions. Annu Rev Neurosci, 1:1-17, 1978
- 14) Landis, S.C. : Factors which influence the transmitter functions of sympathetic ganglion cells. In : Elfvin, L.G. (ed.), Autonomic Ganglia, pp. 453-473, John Wiley and Sons, Chichester, 1983
- 15)小林高義, 栢沼勝彦, 柳沢信夫, 塚越 廣, 半田康延, 志水義房: 正常及び筋ジストロフィーチキン培養骨 格筋に対する交感神経の影響. 自律神経, 18:160-171, 1981
- 16) Kobayashi, T., Tsukagoshi, H. and Shimizu, Y. : Trophic effects of sympathetic ganglia on normal and dystrophic chicken skeletal muscles in tissue culture. Exp Neurol, 77 : 241-253, 1982
- 17) Kobayashi, T., Matsumoto, Y., Tsukagoshi, H. Kayanuma, K. and Hori, S. : Fine structure of synaptic endings between sympathetic axons and skeletal muscle cells and varicosities in the bundles of neurites in tissue culture. Exp Neurol, 85 : 187-201, 1984
- 18)小林高義,松本容秋,塚越 廣,栢沼勝彦,堀真一郎:培養鶏胚骨格筋と交感神経線維及び交感神経束内交 感神経線維間の神経一筋,神経一神経接合部の組織化学的,電顕的研究.自律神経 21,230-243,1984
- 19) 志水義房:培養下における知覚神経節細胞の 形態と 電気生理学的機能の変化. 神経進歩, 26:1104-1112, 1982
- 20) Handa, Y. : Morphological and electrophysiological changes in cultured spinal ganglion cells during development. Tohoku J exp Med, 121: 13-25, 1977
- Nakamura, T. : Application of the Faglu method (Furness et al.) for the histochemical demonstration of catecholamine to the cryostat section method. Acta Histochem Cytochem, 12:182, 1979
- 22) Murray, M.R. : Nervous tissues in vitro. In : Willmer, E.N.(ed.), Cells and Tissues in Culture, Vol. 2, pp.373-455, Academic Press, New York, 1965
- 23) Schubert, D., LaCorbiere, M., Whitlock, C. and Stallcup, W. : Alterations in the surface properties of cells responsive to nerve growth factor. Nature, 273 : 718-723, 1978
- 24) 半田康延, 志水義房: 興奮膜の発生と分化 一培養知覚神経節細胞を中心として一. 神経進歩, 26:474-484, 1982
- 25) Mains, R.E. and Patterson, P.H. : Primary cultures of dissociated sympathetic neurons. I. Establishment of long-term growth in culture and studies of differentiated properties. J Cell Biol, 59: 329-345, 1973
- 26) Rees, R. and Bunge, R.P. : Morphological and cytochemical studies of synapses formed in culture between isolated rat superior cervical ganglion neurons. J Comp Neurol, 157:1-12, 1974
- 27) Patterson, P.H. and Chun, L.L.Y. : The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons. Proc

Natl Acad Sci USA, 71, 3607-3610, 1974

- 28) O'Lague, P.H., Obata, K., Claude, P., Furshpan, E.J. and Potter, D.D. : Evidence for cholinergic synapses between dissociated rat sympathetic neurons in cell culture. Proc Natl Acad Sci USA, 71 : 3602-3606, 1974
- 29) Furshpan, E. J., MacLeish, P. R., O'Lague, P. H. and Potter, D. D. : Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures : Evidence for cholinergic, adrenergic and dual-function neurons. Proc Natl Acad Sci USA, 73 : 4225-4229, 1976
- 30) Black, I.B., Hendry, I.A. and Iversen, L.L. : Trans-synaptic regulation of growth and development of adrenergic neurons in a mouse sympathetic ganglion. Brain Res, 34 : 229-240, 1971
- 31) Black, I.B. and Geen, S.C. : Trans-synaptic regulation of adrenergic neuron development : Inhibition by ganglionic blockade. Brain Res, 63 : 291-302, 1973
- 32) Walick, P.A. and Patterson, P.H. : On the role of Ca²⁺ in the transmitter choice made by cultured sympathetic neurons. J Neurosci, 1:343-350, 1981
- 33) Taxi, J., Derer, M. and Domich, A. : Morphology and histophysiology of SIF cells in the autonomic ganglia. In : Elfvin, L. G. (ed.), Autonomic Ganglia, pp. 67-95, John Wiley and Sons, Chichester, 1983

(59.8.11 受稿)