原 著

膜形成性脂質異栄養症 – Membranous Lipodystrophy (Nasu) – の実験的研究

菅 沼 龍 夫
 信州大学医学部第2病理学教室
 (指導:那須 毅教授)

EXPERIMENTAL STUDY ON MEMBRANOUS LIPODYSTROPHY (NASU)

Tatsuo SUGANUMA Department of Pathology, Faculty of Medicine, Shinshu University (Director : Prof. T. Nasu)

ABSTRACT

Membranous lipodystrophy, of which first autopsy case was reported by Nasu et al. as a new disease entity, is possibly caused by lipid metabolic disturbance and is characterized by peculiar arabesque profiles called membranocystic lesion in the adipose tissues of the various organs, especially in that of the bone marrow, and sudanophilic leukodystrophy of the brain. Since then, about 40 cases have been found in Japan, 9 similar cases in Finland and one case have been reported recently from U. S. A.

The nonspecific memb anocystic lesion, which was designated by Nasu as "membranocystic degeneration", has also been found in the adipose tissue of the patients suffering from various diseases including leukemia, cancer and dermatomyositis, although its etiology and morphogenesis have not been elucidated.

In addition similar lesions were found in the bone marrow of rabbits injected with saponin intravenously. Employing the similar procedure the present investigation was undertaken to characterize this peculiar change of the adipose tissue by routine morphologic procedures at the light and electron microscopic levels.

Sixty-four rabbits weighing 2.5 to 3.0kg were injected saponin intravenously at a concentration of 1.5mg per kg. Some of them were sacrificed at regular intervals after one injection, the others were killed after twice to 61 times injections at an interval of twice a week. The bone marrows were examined at the light and electron microscopic levels.

The observations suggested the morphogenesis of these lesions as follows. One day after the injection, glittering substances appeared as mesh-like structures in the large lipid droplet of the degenerating adipose cells (Fig. 1, 2). These substances were stained heavily with Sudan black B even in the paraffin section (Fig. 4). Four days after the injection, minute vesicles developed along the lipid-cytoplasmic interface of the degenerated adipose cells and showed bubble-like appearances (Fig. 5). At the electron microscopic level, lipid-containing microvesicles observed

膜形成性脂質異栄養症 -Membranous Lipodystrophy (Nasu)- の実験的研究

along the outer surface of the large lipid droplet gradually increased in number (Fig. 23) and, finally, typical membranocystic lesions developed approximately two weeks after the injection.

The experimentally induced membranocystic lesions were generally comparable with those of membranous lipodystrophy in human. At the light microscopic level, these lesions showed a great number of undulating membranes, which formed tiny cysts (Fig. 13) containing neutral lipid. At the ultrastructural level, these membranes were composed of the numerous minute tubular or vesicular structures which were arranged perpendicularly to the boundary of the oil cyst (Fig. 26). In the tangentially sectioned region, honeycomb-pattern was evident (Fig. 28). Some orifices of the minute tubular structures communicated with the central lumen (Fig. 29).

Key words:膜形成性脂質異栄養症(membranous lipodystrophy) 膜囊胞性病変(membranocystic lesion) 微細管状構造(minute tubular structure)

Ⅰ 緒 霄

膜形成性脂質 異栄 養症 - Membranous Lipodystrophy (Nasu) - は, 那須により初めて提唱された ある種の脂質代謝異常を基盤とする新しい疾患概念で ある¹⁰⁻⁶。本症は骨髄をはじめとする全身の脂肪縦に 唐草模様状ないしは羊歯の葉状の特異な構造物からな る膜囊胞性病変を生じ,それとともに脳の白質変性も 認められる。

この特徴的な膜嚢胞性病変を形成する膜様物は,パ ラフィン切片においても種々の脂肪染色陽性を呈し, 電子顕微鏡的にも,この膜様物は脂肪嚢胞内腔へ向っ てほぼ垂直に並列する多数の微細管状構造から成る帯 状物で極めて興味深い構造を呈している。

現在までに、本邦で約40例の症例が発見されている がか、本疾患概念の普及につれて、さらに多くの症例 が発見される傾向にある。諸外国では、フィンラン ドに9症例の報告がみられるが⁸⁰、系統立った病理解 剖学的検索はなされていないようである。また、最近 になって、アメリカにおいても1生検例の報告があ る⁹⁰。

これまで、組織化学的に、電子顕微鏡学的に、さら には生化学的分析をも行いながら活発な検索がなされ ているが、未だにその本態を解明するには至ってはい ない。

さらに那須ら¹⁰⁰は、本疾患と全く関係のない皮膚筋 炎の剖検例皮下脂肪組織に本症にみられた膜嚢胞性病 変と同様の病変を見出し、また教室の藤原ら¹¹⁰の検索 により、胃癌や白血病など、悪性腫瘍の剖検例におい て副腎周囲脂肪織や骨髄等にも同様の病変が偶発所見 として存在することが明らかとなった。このいわば非 特異的膜囊胞性病変は、皮膚科領域でも報告されてい る¹²⁾。このような事実に基づいて、那須は、この一連 の膜嚢胞性病変は脂肪織の局所的解体により発生した 一種の退行性病変であり、脂肪組織の膜嚢胞変性とし て把握している⁷⁾。

著者らは本病変を実験的に生成すべく,これまで種 々の実験を試みたが,定型的な膜嚢胞性病変形成には 至らなかった。しかし,遠藤¹³⁾,島峰¹⁰⁾は,Argano ら¹⁵⁾の方法に準じてサポニンを用いて骨髄線維症を実 験的に作成した過程で,骨髄脂肪組織に本病変と類似 した構造物が認められることを指摘した。

著者は、このサポニンを家兎に反覆静注することに より、木病変をほぼ確実に生成し¹⁶⁾¹⁷⁾、かつその形態 発生を1回投与実験によって、光顕的、電顕的に明ら かにすることに成功した。また、市販されている種々 のサポニンを用いて比較実験も行い、かつサポニンの 化学分析も若干試みた。

材料と方法

動物は成熟家兎 (2.5~3kg) 計64羽を用いた。サポ ニン (Saponin weiss rein, Merck 社製) を生理食塩 水に 1.0mg/ml の割合で溶かし, サポニン溶解液を 作成した。投与方法は, サポニンを 1.5mg/kg の割 合で家兎の耳静脈に注射し, 1回注射後, 6時間, 1, 2, 3, 4, 5, 6, 7, 10, 14, 21, 30日後に屠殺し検索 した。

この他に Argano ら¹⁵の方法に準じて、3 日ないし 4 日間隔(週2回)で反覆投与を2,4,6,8,12, 16,25,48,61回行い,反覆投与の影響を経時的に観

察した。

さらにサポニンの製品による病変発現の差異を調べ るため, Merck 社製以外のサポニン(和光純薬, 半 井工業, 関東化学, Sigma)を同様に6回投与し, 7 日後に検索した。

また, サポニンの化学分析については, 分析結果と 併せて後述する。

ネンブタール麻酔下で屠殺後,光顕用試料として, 大腿骨,脛骨などの骨髄の他に 脊椎骨,脳,心臓, 肺,肝臓,腎臓,脾臓,副腎および後腹膜脂肪織を摘 宜採取し、10%中性ホルマリンで固定した。型の如く パラフィン標本を作成し,H.E.染色を行い,その他 必要に応じて Luxol fast blue, Sudan black B, Azan-Mallory 染色も行った。

電子顕微鏡用試料としては、大腿骨骨髄、脛骨骨髄 の一部を屠殺後直ちに3%18)グルタールアルデヒド19) 燐酸緩衝液 (pH74,0.1M) ない しはカコジル酸緩 衝液 (pH 7.4, 0.1M) で前固定 (2時間, 4°C) し, 6.85%庶糖加燐酸緩衝液ないしはカコジル酸緩衝液で 洗浄後,1%オスミウム酸緩衝液 (燐酸緩衝液 pH 7.4, 0.2M あるいはカコジル酸緩衝液 pH7.4, 0.2M) で後固定(2時間,4°C)を行った。またこの 他に、3%グルタールアルデヒド燐酸緩衝液に2%の 割合でタンニン酸18)を加えて前固定(18時間,室温) 後,1%オスミウム酸による後間定も施した。さら に、3% グルタールアルデヒド緩衝液による単独固定 も行った。アルコール上昇系列で脱水後、エポン包 埋²⁰⁾, Reichert OmU-3 で薄切, 酢酸ウラニウム²¹⁾ およびクエン酸鉛22)で重染色し、日立 HS-9 および HU-11A で観察した。

対照群としては、2羽の家兎に同量の生理食塩水を 耳静脈に注射した。

〗結 果

A 光学顕微鏡的所見

1 1回投与実験群

a 6時間後;骨髄全域にわたり静脈洞のうっ血像 が認められるが,造血組織には著変なく,脂肪細胞自 体にも光顕的には特記すべき変化は発現していない。

b 1日後; 骨髄静脈洞のうっ血はさらに高度とな り,静脈洞壁を追うことはきわめて困難であり, とこ ろどころに腫大した洞内皮細胞が散見されるのみであ る。この頃から造血組織内への出血が認められるよう になり,造血系では正赤芽球の増生が顕著である。造 血細胞の変性、壊死は未だ明らかではない。

この時期に脂肪細胞の変化が出現し始める。すなわ ち、動脈流域から離れて骨髄辺縁部の脂肪細胞の脂肪 滴内に、パラフィン標本で光輝性物質が散在性に認め られる。この光輝性物質は、脂肪滴内に細顆粒状ない しは網目状に、ときには脂肪細胞の胞体と脂肪滴との 境界部、すなわち lipid-cytoplasmic interface 全周 にわたり層状に存在する (Fig. 1)。同時に、このよ りな変化が生じた脂肪細胞の胞体が腫大し、また光輝 性物質は脂肪滴内にとどまらず、胞体内へも微細顆粒 として入り込んでいる像も若干認められる (Fig. 2)。

c 2日後;出血病巣は一段と激しくその範囲も拡 大し,造血組織の壊死が出現するとともに,造血細胞 は著しく減少している。一方,光輝性物質を有する脂 防細胞は次第にその数を増し,ある種の限局病巣とし て認められるようになる。このような変化は出血巣や 壊死巣に相接して,ときにはその一部として存在す る(Fig. 3)。

d 3日後;出血病巣は骨髄全域にわたりびまん性に認められ、造血組織の壊死は高度である。静脈洞は 破壊され、多数の核破片を認める。骨髄動脈壁には著 変を認めないが、著しい充血と血漿成分の充満がみられる。

骨髄脂肪細胞の一部にはその脂肪滴辺縁部が光輝性 物質で縁取られるようになり, Eosin 淡染性を示す像 も散見され, このような変化を示す脂肪細胞はその形 も不規則にゆがんでいる。

この光輝性物質は Sudan black B, Luxol fast blue 染色で陽性を示す。

e 4日後;この時期になると,変性脂肪細胞はす でに核も失われ,ほぼ脂肪細胞大の小嚢胞状の膜様構 造物に変貌する。この膜様構造物は,Sudan black B染色では比較的均質な腹様物として認められるが (Fig. 4),Azan-Mallory染色では、「カニのアブク」 状に微小空胞が多数集積した像を呈している(Fig. 5)。なお、この膜様構造物の周辺脂肪細胞にはさらに 新たな変性像が生じ始めている像もみられる。

造血組織の変性,壊死は広範囲で膜様構造物の周囲 で特に著しい。

f 5日後; 膜様構造物はその数を増し, 範囲も次 第に拡大し, 骨髄動脈周囲に至近領域の壊死部を遺し ながらこれを取り囲むように出現しているところもあ る。形もほぼ円形小嚢胞状構造であったものが次第に 不規則な彎入を呈するようになる。

造血組織の変化は4日後とほぼ同様で、広範囲にお よぶ出血、壊死が認められる。

g 6日後; 膜様構造物は Eosin 淡染性で光輝性 物質は膜様物に内接して僅かに認められるが, 膜様物 自体の内部にも顆粒状光輝性物質が存在するところも ある。一部にすぎないが, 光輝性物質が嚢胞内腔へ向 って, 乳頭状ないしは polyp 状にわずかに突出した 構造を示すところもある。

壊死巣は依然として広範囲であるが、出血巣はやや 限局する傾向を示し、その範囲は縮小してきている。 また一方、骨髄の一部にすぎないけれども、若干の大 食細胞が散見され、動脈周囲に線維芽細胞と共に僅微 ではあるが線維増生が認められるところもある。

h 7日後;この時期に入ると膜様構造物の形成は 一層明瞭となり,動脈周辺に動脈壁と直接々して,あ るいはやや離れて環状にこれを取り巻いて存在してい る(Fig. 6)。 嚢胞状膜様構造の不規則な彎入は顕著 で,いわゆる唐草模様類似の構造を呈するところも僅 かながら認められるが, 膜嚢胞性病変としては未だ不 完全である(Fig. 7)。

骨髄組織の出血,壊死は6日後とほぼ同様である が,一方骨髄の一部において造血細胞の再生が認めら れるようになる。赤芽球の集族巣も散見されるが,主 として顆粒球系細胞で占められている。また造血細胞 が再生した部の近辺では大食細胞性反応がみられ,か つ血管周囲性の線維増生が拡がっている(Fig. 8)。

i 10日後;造血細胞の再生は明瞭で,顆粒球系を 主体とした細胞髄の像を示すところもみられ,一方, 新生脂肪細胞により低形成性骨髄ないしは脂肪髄とい えるところも存在する。出血巣はわずかながら残存 し,壊死巣は限局性に散見される。また,造血細胞の 再生に伴って血管周囲性の線維増生や大食細胞性反応 は一段と増加している。

膜様構造物は依然として壞死巢内に,あるいは相接 して存在し,膜様物の内側には光輝性物質を有する部 分が未だわずかに認められる。一方,膜嚢胞性病変類 似の構造も次第に増しており,その周囲組織では線維 増生を伴った基質の修復が始まっている。

j 14日後;この時期になると大食細胞性反応が旺 盛で,膜様構造物を取り囲み,なかには多核巨細胞化 し,その胞体内に膜様物を取り込んでいる像も認めら れる(Fig. 9)。また,膜様構造物の周囲に線維増生 を伴うほぼ完全な基質が形成され,膜様物の襞状の折 れ曲りや,乳頭状,羊歯の葉状の突出が明らかな,い わゆる唐草模様状構造を呈し、人体例における膜嚢胞 性病変に相当する像が出現する (Fig. 10)。

造血組織の再生も活発で、また血管周囲性の線維増 生もなお一層顕著である。

k 21日後;壊死巣はほぼ吸収され,膜嚢胞性病変 は広範囲に認められ,繊細な羊歯の葉状構造がより明 瞭である (Fig. 11)。大食細胞性反応も同様に著し い。

1 30日後;造血組織は完全に回復し,細胞髄や脂肪髄が混在して認められる。また線維増生も血管周囲にとどまらず広範囲におよんでいる。

膜嚢胞性病変は定型的で,周囲には正常な脂肪細胞 が再生し(Fig. 12),人体例にきわめて酷似している ところも散見される(Fig. 13)。

この時期に至ると、大食細胞性反応はかなり消褪し、一部に限局する傾向がみられる。

2 頻回投与実験群

a 2~16回投与群;骨髄全域におよぶ出血,壊死,線維化に混じて著しい膜嚢胞性病変が形成される。同時に多量の光輝性物質の集積や,1回投与実験で認められたようなさまざまな時期の膜様物が出現し,いわば新旧の病巣が混在してみられる。また,大食細胞性反応は1回投与群よりもきわめて旺盛で,膜様構造物を取り囲み,多核巨細胞内に光輝性物質や膜様物を食食している像も著しい(Fig.14)。

b 25~61回投与群;サポニンの長期反覆投与を行 うと,その組織像は異なってくる。すなわち,骨髄 に広範囲に認められた出血,壊死巣は著しく減少し, かつ大食細胞性反応も然程顕著ではない。また,造血 組織の再生も1回投与群と比較して著しく劣ってい る。

一方, 膜嚢胞性病変はびまん性に 認め られ, 嚢胞 状, 唐草模様状の定型的なものから,内腔がほとんど つぶれて膜様構造物がきわめて複雑な薄入を呈するも のまで,さまざまな構造が認められる (Fig. 15)。

B 電子顕微鏡的所見

1 1回投与実験群

a 6時間後;骨髄実質内に造血細胞に混じて多数 の赤血球が認められ、ときには小脂肪滴も散在してい る。造血細胞自身には明らかな変化は認め難いが、赤 芽球の増生が顕著なところもある。

骨髄脂肪細胞の多くは, さしたる変化を示さない が, ごく一部の脂肪細胞に微細な変化が生じている。 すなわち, 通常の脂肪細胞では核周辺にわずかな細胞

質を有しているにすぎないが、大脂肪滴周囲のとこ ろどころに細胞質が明らかに認められ、同部にはいく つかの小脂肪滴が出現するようになる。このような脂 肪細胞では、基底膜や形質膜が不明瞭なところもあ る。

b 1日後;さらに細胞質内の小脂肪滴出現に伴って、その周囲には多数の microvesicle 様構造が認められ、形質膜近辺では、いわゆる micropinocytotic vesicle に相当する構造が形成されている像もみられる (Fig. 16, 17)。

c 2日後;骨髓組織全体におよぶ変性,壊死が出現し、このような部の脂肪細胞の大脂肪滴にはグルタールアルデヒド・オスミウム酸の二重固定標本で観察すると、osmiophilic な脂肪滴内に電子密度の低い針状結晶状の「抜け」が多数みられるようになり、大脂肪滴は不均質となっている(Fig. 18)。

d 3日後;脂肪細胞の大脂肪滴内には前述した針 状結晶状の抜けが存在するものの,他にむしろ逆に電 子密度のより高い homogeneous な物質からなる微 細なメッシュ状構造も出現する。この osmiophilic な 物質は lipid-cytoplasmic interface にも海い層とし て認められる (Fig. 19)。

e 4日後;この時期になると骨髄の壊死は広範か つ高度になる。同時に脂肪細胞の変化がしだいに明ら かとなる。脂肪細胞の細胞質内に出現した小脂肪滴 は、一層その数を増し、一方、細胞内小器管の変性は 著しくなりその個々を識別できない(Fig. 20)。 さら にこの変性脂肪細胞の大脂肪滴と細胞質との lipidcytoplasmic interface に大小不同の微細な脂肪滴が 封入され、微小空胞を形成する (Fig. 21)。このため lipid-cytoplasmic interface は著しく不整となって いる。この微小空胞は形もさまざまで、複数の空胞が 融合したと思われる像も認められ、きわめて多彩であ る。また微小空胞の膜構造は、大脂肪滴近辺では不明 瞭であるが、基質側へ向うにつれて明らかとなる傾向 がある。この膜構造は単層でいわゆる三層構造は認め 難く,限界膜に近い像を呈している。さらに一部では あるが、空胞の外表面に、いわゆる coated pinocytotic vesicle にみられるような spine 類似の微細な 構造物が認められるものもある (Fig. 22)。

f 5日後; この lipid cytoplasmic interface に 出現した微小空胞は、さらにその数を増し、各々が重 層化して一見 honeycomb 様構造を呈するようにな る (Fig. 23)。微小空胞は lipid-cytoplasmic interface から離れて基質側へ向うほど大型で, 径1.8μに 達するものもみられる。微小空胞間には微細顆粒状物 質や filament 様構造物が散見される (Fig. 24)。な お,一部ではあるがこれらの「蜂巣状構造層」の外側 に形質膜が断片的に認められることもある。

この電顕的な「蜂巣状構造層」が光顕的な「膜様構 造物」に相当する。

g 7日後;4日頃から出現しはじめたこの「蜂巣 状構造層」は、さらに出現の頻度を増し、変性した基 質をはさんで相対する大脂肪滴の辺縁にも一様に存在 する像も得られ、その層の厚さは4µに達するところ もある。

一方,光顕的には蜂巣状構造からなる膜様物と区別 できないが,電顕的にはやや趣を異にした「膜様物」 が認められる。すなわち,若干の空胞状構造を有する ものの,膜構造が不明瞭で,電子密度の比較的高い不 均質,無構造な不規則なウネリを示す層状構造物が大 脂肪滴辺縁に存在する。これらの周囲には,しばし ば大食細胞が出現し,細長い細胞突起を出している。 この不均質,無構造な「モヤモヤ」した層状構造は後 述する類回投与実験においてもしばしば認められる (Fig. 25)。

h 14~30日後;完成された膜嚢胞性病変は,光顕 的には14日頃から認められるが,電顕的には30日後の 材料で把えることができた。

膜嚢胞性病変における膜は、明瞭な一重の輪郭を有 する無数の空胞状ないし管状構造からなる帯状物で、 不規則なウネリや、乳頭状構造を呈し、その厚さは数 ミクロンにおよぶところもみられる(Fig. 26~28)。

この微細管状構造は厚さ約 100Å の 薄い膜 からな り、明瞭な単位膜構造は 認められず、単層構造であ る。この膜の外表面は滑らかで glycocalyx 様構造物 は認められない。また脂肪嚢胞内腔へ向ってほぼ垂直 に配列し、その一部には内腔へ開口していると思われ る像も存在する (Fig. 29)。またこの管状構造の内容 は、内腔とほぼ等しい電子密度を有している。

この帯状物の外側には、均質な基質が形成され、膠 原線維束が相接して存在する。大食細胞など、細胞成 分の関与は認められない。

2 頻回投与実験群における膜様構造物

すでに光顕的観察において前述した如く,骨髄全域 におよぶ出血,壊死巣に混じて,さまざまな時期に 相当する膜様構造物が種々雑多に認められ,著明な大 食細胞性反応を伴っている。この大食細胞は,核はほ

Explanation of the Figures

Figs. 1-15. The light microphotographs illustrating bone marrows in paraffin sections.

Figs. 16-36. The electron microphotographs demonstrating bone marrows fixed in glutaraldehyde and osmium tetroxide except Figs. 26-29, 31 and 35.

Figs. 26-29. These specimens were fixed in glutaraldehyde only.

Figs. 31 and 35. These specimens were fixed in glutaraldehyde-tannic acid.

F : lipid droplet of adipose cell

L : lumen of oil cyst

M: macrophage

- Fig. 1. Note glittering substances which appear as a mesh-like structure develop in the large lipid droplets of the adipose cells. One day after the injection. H.E. ×400
- Fig. 2. Minute glittering granules (arrows) are observed in the cytoplasm of the adipose cells.One day after the injection. H.E. ×400
- Fig. 3. Focal degeneration of adipose cells (arrows) which show a glittering appearance as inFig. 1. Degenerated hematopoietic cells are scattered among the extravasated erythrocytes.Two days after the injection. H. E. ×40
- Fig. 4. The glittering substances of the degenerated adipose cells are stained heavily with Sudan black B even in the paraffin section and reveal small cystic membranous profiles. 4 days after the injection. ×100
- Fig. 5. Numerous minute vesicles border the large lipid droplets of the degenerated adipose cells and disclose bubble-like appearances. 4 days after the injection. Azan-Mallory ×400
- Fig. 6. Membranous structures considered as in a middle stage of the membranocystic lesion develop surrounding the small artery and exhibit a ring-like appearance. 7 days after the injection. Azan-Mallory ×40
- Fig. 7. High magnification of Fig. 6. These membranes are stained red with Azan-Mallory. $\times 400$
- Fig. 8. Note slight perivascular fibrosis and infiltration of macrophages. 7 days after the injection. H.E. ×100
- Fig. 9. Marked infiltration of macrophages which phagocytize glittering substances as well as membranous structures. 14 days after the injection. H.E. × 100
- Fig. 10. Membranocystic lesion showing the arabesque pattern. Nuclei scattered between these structures are those of the macrophages and the fibroblasts. 14 days after the injection. H. E. ×200
- Fig. 11. Note the frond-like appearances (arrows). 14 days after the injection. H.E. ×400
- Fig. 12. Membranocystic lesions are still preserved among the regenerated adipose cells. 30 days after the injection. H.E. ×100
- Fig. 13. Membranocystic lesions are stained strongly with Sudan black B. The arabesque pattern is recongnized clearly. ×200
- Fig. 14. Marked infiltration of the multi-nucleated giant cells and fibrosis. 7 days after 4 times injections. H.E. × 100

- Fig. 15. Typical membranocystic lesions are evident. The macrophagic infiltration appears to be decreased in number. 7 days after 48 times injection. H. E. ×200
- Fig. 16. Small lipid droplets develop in the cytoplasm of the degenerating adipose cell. One day after the injection. ×6,000
- Fig. 17. High magnification of Fig. 16. Increased microvesicles and flask-like invaginations of the plasma membrane are discernible (arrows). One day after the injection. ×21,000
- Fig. 18. Needle-shaped, electron lucent structures are scattered in the osmiophilic large lipid droplet. The cytoplasm of the adipose cell is obscure. Two days after the injection. × 18,000
- Fig. 19. Osmiophilic mesh-like structures are also found in the lipid droplet of the degenerated adipose cell. Three days after the injection. × 18,000
- Fig. 20. Numerous small lipid droplets develop in the cytoplasm of the degenerated adipose cell, of which cell organelles and a part of the plasma membrane are not identified. 4 days after the injection. ×5,400
- Fig. 21. A degenerated adipose cell exhibiting numerous minute vesicles along the lipid-cytoplasmic interface. 4 days after the injection. × 50,000
- Fig. 22. Similar lesion to Fig. 21. 4 days after the injection. ×60,000
- Fig. 23. Numerous lipid-containing microvesicles develop along the outer surface of the large lipid droplet. 5 days after the injection. ×9,000
- Fig. 24. High magnification of the microvesicles. Note that each microvesicle is separated from the matrix by a thin delicate limiting membrane, whereas the boundary of the large lipid droplet remains obscure. 5 days after the injection. ×36,000
- Fig. 25. Amorphous, moderately electron dense belt-like structure borders the large lipid droplet and contains various sized microvesicles. 7 days after the injection. ×20,000
- Fig. 26. Typical membranocystic lesion composed of numerous minute tubular or vesicular structure which are arranged perpendicularly to the boundary of the oil cyst. The honeycombpattern is evident in the tangentially sectioned region. 30 days after the injection. ×40,000
- Fig. 27. Similar lesion to Fig. 26. 30 days after the injection. $\times 21,000$
- **Fig. 28.** A part of the membranous structures discloses papillary protrusion which correspond to the arabesque pattern at the light microscopic level. 30 days after the injection. ×18,000
- Fig. 29. Some orifices of the minute tubular structures communicate with the central lumen (arrow). 30 days after the injection. ×60,000
- Fig. 30. A multi-nucleated macrophage phagocytizing a large lipid droplet. The cytoplasm is abundant and contains a large amount of free ribosomes, granular endoplasmic reticulum, lysosomes and mitochondria. 14 days after 4 times injections. ×3,600
- Fig. 31. Note the unit membranes of the macrophage (M) and the thin membranes of the minute tubular structures (arrows). 7 days after 4 times injections. ×60,000
- Fig. 32. The multi-vesicular, fragile membranous structures (arrows) which are surrounded by the macrophage (M) showing a plenty of microvilli. 7 days after 6 times injections $\times 6,000$
- Fig. 33. Membranous structures (arrows) are phagocytized by the macrophage containing a large amount of lysosomes. 7 days after three times injections. ×3,000

- Fig. 34. High magnification of Fig. 33 shows heterogeneous granular layers. 7 days after three times injections. ×30,000
- Fig. 35. Irregularly curved, heterogeneous layers (arrows) which probably are phagocytized by the macrophage (M). 7 days after 6 times injections. ×7,500
- Fig. 36. Undulating, amorphous membranous structures (arrows) exist between the lipid droplet and the matrix. 7 days after 8 times injections. ×7,000

膜形成性脂質異栄養症 - Membranous Lipodystrophy (Nasu)- の実験的研究

No. 4, 1978

ļ

膜形成性脂質異栄養症 - Membranous Lipodystrophy (Nasu)- の実験的研究

膜形成性脂質異栄養症 - Membranous Lipodystrophy (Nasu)- の実験的研究

膜形成性脂質異栄養症 -Membranous Lipodystrophy (Nasu)- の実験的研究

膜形成性脂質異栄養症 -Membranous Lipodystrophy (Nasu)- の実験的研究

膜形成性脂質異栄養症 - Membranous Lipodystrophy (Nasu)- の実験的研究

膜形成性脂質異栄養症 - Membranous Lipodystrophy (Nasu) - の実験的研究

は楕円形で、dense peripheral heterochromatin を 若干認め、euchromatin に富み、細胞内小器管は豊 富で、多数の水解小体、小胞体、糸粒体、ゴルジ装置 などを認め、多くの偽細胞突起を出している (Fig. 30)。これらの大食細胞は、相互に明瞭な interfolding を形成して膜様構造物を取り囲み、なかには多核 巨細胞化して、膜様物を細胞質内に貪食している。

これらの大食細胞に近接した膜様物は、電顕的に種 々の構造が認められる。

すなわち, 膜嚢胞性病変の特徴的な嚢胞状構造が失 なわれ, 内腔はつぶれて腹様物はきわめて複雑な彎入 を呈する。この膜様物には,比較的明瞭ではあるが, 不規則な微細管状構造を示すものや(Fig. 31),多数 の種々の大きさの空胞状構造からなる,いわば本病変 の初期像に類似した腹様物も存在する(Fig. 32)。ま た,管状,空胞状構造が不明瞭で,「不均質,無構造 な層状物」として認められるものもある(Fig. 33-36)。

C 各種サポニン投与結果

前述した各種サポニンを用いて比較実験を行ない, 次のような一応の結果を得た。

1 Sigma サポニンでは、本実験で用いた Merck サポニンと全く同様に明瞭な膜嚢胞性病変を作成する ことができる。

2 半井工業サポニンでは、骨髄造血細胞は減少し、線維化巣が比較的広範囲に認められ、若干の大食細胞浸潤が散見される。そのあるものには、胞体内に前述した光輝性物質が認められるが、膜嚢胞性病変は 観察されなかった。

3 和光純薬,関東化学サポニンでは、いずれも骨 髄静脈洞の著明なうっ血とところどころに出血巣が散 見されるが,造血組織は保たれており,膜嚢胞性病変 は見い出されなかった。

D 各種サポニンのガスクロマトグラフィー サポニンは基本的には複雑な脂環状化合物をアグリ コンとする配糖体であることから、各々のサポニンの 糖類についてガスクロマトグラフィーによる分析を試 みた。

 方法;サポニン(Merck, Sigma, 半井工業, 和光純薬, 関東化学)を各々5mg 試験管に取り, 6% 塩酸メタノールを 2ml ずつ添加, 封管後, 80°C, 6 時間メタノリシスを行った。 メタノリシス終了後, TMS 化 (trimethylsilyl ether 誘導体)を行い, ガ スクロマトグラフィーで分析した。使用カラムおよび 条件は, 3.8% SE-30 (担体 Diatoport S), 3mm i.d. ×180cm, 160 C である。対照としてラクトースを同 様の処理をして用いた。

2 結果; Fig. 37 に示すように, いずれのサポニ ンもその糖の主成分はフコース, ガラクトース, グル コースから成り, しかもガラクトース, グルコースの ピーク面積に明瞭な差が認められた。両者のピーク面 積を重量法で測定し, ガラクトース・グルコースのモ ル比をとると図の如くであった。Merck, Sigma の サポニンはそれぞれ2.84, 2.27とほぼ近似値を示す のに対し他のサポニンでは半井工業0.72, 関東化学 0.53, 和光純薬0.49と全く逆の結果が得られた。

Ⅳ 考察

A 膜囊胞性病変の超微形態について

これまで、本病変に関する電顕的検索は人体におけ る Membranous Lipodystrophy 症例についていく つかの報告がなされているが²³⁾⁻²⁹⁾, 必ずしも全く同 ーの構造物ではなく,若干の異なった膜構造が観察さ れている。光顕的に唐草模様状を呈し,小嚢胞を形成 している膜の基本的構造は、最初の発見者の那須が記 載しているように,主として中性脂肪を容れた内腔に 向ってほぼ垂直に配列した多数の微細な管状構造から なる厚さ 1~4µの帯状層として認められる。この帯 状層と内腔の中性脂肪との境界は明瞭であるが、帯状 層の外表面は境界不鮮明で、微細顆粒状,無構造な基 質へと移行しており,この基質には若干の糸粒体など の細胞破片が混在し,かつそのような部に細網細胞が みられることもある。

この特異な微細管状構造については議論の多いとこ ろであるが、特にその形態発生については後述する。

電顕的に微細管状構造を示す膜は,三層構造からな る単位膜であるとの報告もあるが¹⁹⁾,多くはこのよう な単位膜構造を示さず,単層の薄膜から成っていると されている。

さらに、田代ら26)の詳細な電顕的観察によれば、こ

信州誌医 Vol. 26

の微細管状構造は,管状ないし嚢胞状の盲端構造では なく,脂肪滴を容れた内腔へ開口している像や,両者 の内容が電子密度の等しい性状を示すことなどから, 連続した一枚の微細膜からなる複雑な入り組み像であ るとされている。

また、この微細管の外表面には、glycocalyx を認 めたという報告もみられる⁹⁾。

一方,本実験で得られた完成された膜嚢胞性病変の膜は、人体における膜構造と若干趣を異にしている 点があるものの,基本的には、ほぼ同一の構造を呈し ている。

すなわち、嚢胞状、乳頭状形態を示す膜は、多数の 微細な管状ないし空胞状構造から成る帯状層であり、 その厚さは 0.5~3µ 前後におよんでいる。この微細 管状構造は単位膜ではなく、単層で、かつ個々の管状 構造は、人体例よりも空胞状ないし楕円形に拡張した ものが多くみられるが、この違いは内容物の量的差に よるものと思われる。また、微細管状構造の一部にや はり人体例と同様に脂肪嚢胞内腔へ閉口している像が 認められている。さらに、タンニン酸固定材料におい ても、この微細管状構造の外表面には、Wood⁹のい う glycocalyx 構造は認めていない。

B 膜嚢胞性病変の形態発生について

電顕的にも特異な形態を示す膜構造の形態発生はき わめて興味深い問題である。

田代ら²⁰は、人体生検材料の詳細な検索から、本病 変の初期像として脂肪細胞の基底膜が不明瞭となり、 細胞膜が内腔に向って、波状ないし微絨毛突起を有す る微細顆粒状物質に変化すると解釈し、さらにこれが granulo-vesicular から membranous proliferation の状態に陥り、微細管状構造が完成されるという一連 の過程を推測している。

また形態的類似性から小胞体にその由来を求めているものもみられる²⁴⁾。

しかしながら,これらに対し本実験で得られた観察 結果は幾分異なっている。

すなわち、1) 膜嚢胞性病変の膜様物は、電顕的には まず変性した 脂肪細胞の lipid-cytoplasmic interface においてその細胞質辺縁が不整となり、大小不 同の微細な空胞 vesicle が多数出現することにより始

まる。このような変性脂肪細胞の多くは基底膜や細胞 膜がすでに破壊され、若干の細胞内小器管が残存して はいるものの、すでに細胞としての機能は失なわれて いると考えられる。2)この lipid cytoplasmic interface に出現した空胞は、次第にその数を増し密に配 列し、一部では蜂巣状構造を呈するようになり、3) 前 述した如く、周囲を膠原線維を含む均質な基質で取り 囲まれた膜嚢胞性病変が完成する。4)また,この一連 の過程に先立って出現する光輝性物質が挙げられる。 すなわち,サポニン投与後,1~2日後には出血壊死 巣内の脂肪細胞の大脂肪滴内に 出 現 し, さ らには光 輝性の微小顆粒として膜様物自体にも認められたこと は、脂肪滴の何らかの変化を示すものであり、脂肪 細胞の変性とかみ合って実験的膜嚢胞性病変形成の引 きがねとなっていると推測できる。なお、電顕的には この光輝性物質を同定することは出来なかったが、同 時期の脂肪細胞の大脂肪滴は不均質で, 針状ないし, メッシュ状構造を呈していることも、やはり脂肪滴の ある変化を示唆していると考えられる。

一方、人体例において初期像とみなされている微細 顆粒状ないしは granulo-vesicular な膜様物は、本実 験においても1回投与後1ヵ月の材料や、頻回投与群 でも観察されたが、その多くは大食細胞に取り囲まれ ており、初期病変とは見なし難い。

ところで、この granulo-vesicular な膜様物は、飢 餓実験の際にみられる脂肪細胞の変化との形態的類似 性がしばしば指摘されている⁹。

Williamson³⁰⁾, 宇宿ら⁸¹⁾³²⁾のラットを用いた飢餓 実験では,脂肪細胞は著明に萎縮し,細胞表面は羊歯 の葉状の顕著な不整を示し,確かにgranulo-vesicular な膜様物が認められているが,これは脂肪細胞の 萎縮に伴って基底膜が変化したものであり,ここに言 う膜嚢胞性病変とは本質的に異なっている。

しかし、この脂肪動員時の脂肪細胞の脂肪滴辺縁で は興味ある現象が生じている。すなわち、脂肪滴辺 縁の lipid-cytoplasmic interface が不整となり、周 囲には微小空胞が出現する。この空胞は、細胞膜の micropinocytotic vesicle へと連続し、脂肪滴辺縁部 で分解された脂肪酸の輸送を担っているとされてい る。この事実は前述した本病変の初期像との共通性を

うかがわせるものであり、 今後の検討が必要であろ 5.

しかしながら、Membranous Lipodystrophy にお いては、脂肪細胞の遺伝的な、何んらかの脂質代謝異 常が基盤になっていると推測されており、一方、実験 的膜嚢胞性病変においては、骨髄の出血、壊死という 脂肪細胞の周辺環境の変化が脂肪細胞のある種の退行 性変化を生じさせたものと推測できる。

したがって、本実験結果をそのまま人体例にあては めることには、なお多くの問題をはらんではいるが、 膜形成の基本的機構の解明にきわめて有力な示唆を与 えるものである。

C 大食細胞と膜嚢胞性病変について

多数の微絨毛突起を有する単核ないし多核の大食細 胞は、サポニン1回注射後10日頃から骨髄造血組織の 再生に伴って出現する。この大食細胞が壊死組織や膜 様構造物に対し著明な反応を示し、破砕した膜様物な どを明らかに取り込んでいる像が認められたことは、 膜様構造物を含む一連の変性、壊死組織に対するいわ ば scavenger cell としての役割を果していると思わ れる。

また、大食細胞に近接して存在する膜様物は、多く は微細管状構造が不明瞭で,いわば granulo-vesicular な微細なウネリを示す膜様物であり、 定型的な膜 形成への移行を認め難いことなどから、膜嚢胞性病変 の形成には大食細胞が関与する可能性は乏しいものと 考えられる。

D 骨髄の線維化および他臓器の変化に

っいて

これまでサポニンを用いたこの種の実験は、いわゆ る骨髄線維症の実験モデルとして Argano¹⁵⁾以来,い くつかの研究が行われ、最近では遠藤13), Hoshi33)ら の詳細な報告がある。

本実験においても,1回注射後7日頃から動脈周囲 性に線維化病巣の形成が始まり、頬回投与群ではより 著明で広範囲に及ぶが、25回以上の長期投与群では出 血、壊死巣も含めてむしろ減少ないしは殆んど認めら れず、サポニン実験での線維化は可逆性であるという これまでの報告と一致している。

また骨髄に生じた膜嚢胞性病変は、他臓器では肺の 486

毛細血管内に膜様構造物を認めたのみで, Membranous Lipodystrophy にみられるような全身の脂肪組 織、肝臓などには全く認められなかった。この肺の病 巣は恐らく骨髄に生じた膜様構造物が血行性に運ばれ たものであり、同様の所見は那須症例にも認められて いる。

E サポニンについて

本米、サポニンは水溶液中で永続性のある起泡作 用,溶血作用およびコレステロール・コンプレックス 形成能を有する一群の複雑な脂環状構造物をアグリコ ンとする配糖体の総称で、化学的にはトリテルペノイ ドサポニンとステロイドサポニンとに大別される。し かし、その化学構造は細部においては多種多彩で、か つ生理的,薬理的諸性質も十分に解明されていない34) -36)

これまでの一連のサポニン投与実験においては、常 髄に生じる広範な出血, 壊死は, サポニンによる静脈 洞内皮細胞の障害と血栓形成による微小循環障害の結 果とされている13)38)。

本実験においては、静脈洞の破壊などは認めたもの の、検索の限りでは血栓形成は明らかでなく、また細 胞毒としてのサポニン固有の性質から、脂肪細胞に対 する何らかの直接作用も否定できず、今後の追求が必 要であろう。

さらに、本実験において5種類のサポニン製品を用 いたところ, 膜嚢胞性病変の形成に差異が生じ, しか も、ガスクロマトグラフィーにより、これらのサポニ ンが含有する糖成分のうち、ガラクトース・グルコー スのモル比にも明らかな差が認められたことは、その 化学構造と作用の解明には程遠いが、膜嚢胞性病変の 形成との関連性が示唆され、きわめて興味深い問題で ある。

Ⅴ 結 語

サポニンを家兎に静注することにより、骨髄に Membranous Lipodystrophy の特徴的な病変である 膜嚢胞性病変を実験的に生成することに成功し、その 形態発生を明らかにした。

1 実験的膜嚢胞性病変は、電子顕微鏡的検索から Membranous Lipodystrophy の病変と基本的には同

ーであると言える。

a)光顕的に囊胞状,羊歯の葉状形態を示す膜様物 は、多数の微細空胞状,管状構造が脂肪嚢胞内腔へ向 ってほぼ垂直に配列した帯状物である。

b) この微細管状構造の一部には,脂肪嚢胞内腔へ 開口している像もみられる。

c)脂肪嚢胞と微細管状構造の両者の内容はほぼ等 しい電子密度を示す。

d) この光顕的に膜様に見える帯状層の外側は,直接,膠原線維や基質と相接している。

2 実験的膜嚢胞性病変の形態発生は以下の如くである。

a) 骨髄の出血, 壊死に伴い脂肪細胞の変性が生じ, 脂肪滴内に光輝性物質が出現する。

b)変性脂肪細胞の lipid-cytoplasmic interface が不整となり、同部に大小不同の脂肪滴を容れた微小 空胞が形成される。

c)この微小空胞は,次第にその数を増し,大脂肪 滴を取り囲みながら重層化,蜂巣様構造を示す。

d)1回注射後14日頃から完成された膜嚢胞性病変 が出現する。

3 本実験過程において出現する大食細胞,巨細胞 は、異物反応と考えられ、食細胞に取り囲まれた膜様 物は種々の構造を呈している。

4 骨髄以外の脂肪織には膜嚢胞性病変は認められず、肺の毛細血管内に塞栓としてわずかながら膜様構 造物が認められる。

5 5 種類のサポニン製品を用いて比較実験を行っ たところ,本病変の形成に差が認められ,かつサポニ ンの化学分析で各々の糖成分の違いが明らかとなり, 両者の間に何らかの関連性の存することが示唆され る。

本論文の要旨は,第9回日本結合組織学会総会 (1977年7月,仙台),第9回日本臨床電子顕微鏡 学会総会(1977年9月,札幌),第67回日本病理 学会総会(1978年4月,熊本)および第9回国際 電子顕微鏡学会議(1978年8月,トロント)にお いて発表した。

稿を終るに当り,懇切なる御指導,御校閲を賜 わった恩師那須毅教授に深甚なる謝意を表しま す。同時にこの研究に対して深い理解と暖かい御 援助をいただいた発地助教授および勝山講師なら びに病理学教室の諸兄に感謝いたします。また, サポニンの化学分析等について,御教示御援助い ただいた本学順応医学研究施設生化学部門武富教 授,上村助教授に深く感謝いたします。

文 献

- Nasu, T., Tsukahara, Y. and Terayama, K.: A lipid metabolic disease — "membranous lipodystrophy" — an autopsy case demonstrating numerous peculiar membrane — structures composed of compound lipid in bone and bone marrow and various adipose tissues. Acta Path. Jap., 23: 539-558, 1973
- 2) 寺山和雄:特異な病像を呈した骨の嚢腫様疾患の
 2 例. 日整会誌, 35:626, 1961
- 那須 穀,塚原嘉治,寺山和雄,間宮典久:脳の leucodystrophy と全身長管骨の myelo-osteopathy を生じた membrano-cystic lipodystrophy (仮称)の1 剖検例.第59回東京病理集談会記録, pp. 10-13, 1970
- 4) 那須 毅:いわゆる "membranous lipidystrophy" (膜性脂質異栄養症). 医学のあゆみ, 79: 679-680, 1971
- 5) 塚原嘉治,那須 毅: Sudanophil leucodystrophy と長管骨系に広く "membranous lipodystrophy"(仮称)を生じた剖検例. 神経進歩, 17 : 392-393, 1973
- 那須 毅:ふたたび membranous lipodystrophy (Nasu) -特に脳の leucodystrophy との関 連に注目しながら、医学のあゆみ、88:234-235、 1974
- 7) 那須 毅:膜(形成)性脂質異栄養症 membranous lipodystrophy の病理. 第67回日本病理学 会総会宿題報告, 1978. 4 (日病会誌, 印刷中)
- Hakola, H. P. A., Järvi, O. H., Lauttamus, K. A., Solonen, K. A., Sourander, B. J. P ja Vippula, A. H.: Polykystinen osteodysplasia liittyneenä dementoivaan hermostovaurioon --uusi periytyvä sairaus. Duodecim, 90: 106 --124, 1974

- Wood, C. : Membranous lipodystrophy of Bone. Arch. Pathol. Lab. Med., 102 : 22-27, 1978
- 10) 那須 毅,藤原正之,菅沼龍夫,田中良三:皮下 脂肪組織に膜嚢胞性病変(那須)を生じた皮膚筋 炎の1 剖検例.結合組織,9:25-31,1977
- i部 (11) 藤原正之, 菅沼龍夫, 那須 毅: 副腎周囲脂防組 織などに非特異的な膜嚢胞性病変を認めた剖検 例. 結合組織, 9:152-153, 1978
- 吉田実夫,水谷喜美子,斎田俊明,日野治子,兼 島景次,滝沢清宏,溝口昌子:皮下組織にみられ た膜嚢胞性病変(membranocystic lesion)(那 須)について.日皮会誌,87:929-932,1977
- 13) 遠藤久子:サポニンによる実験的骨髄線維症の研究. 日血会誌, 40:160-171, 1977
- 14) 島峰徹郎:慢性骨髄不全の病理. 日病会誌, 65:
 27-60, 1976
- Argano, S. A. P., Tobin, M. S. and Spain, D. M.: Experimental induction of myelofibrosis with myeloid metaplasia. Blood, 33:851-858, 1969
- 16) 菅沼龍夫,藤原正之,那須 毅:脂肪髄に実験的 に生成した膜嚢胞性病変の超微構造.結合組織、
 9:155-156,1978
- 17) Suganuma, T., Fujiwara, M. and Nasu, T.: Ultrastructure of experimentally saponininduced "membranocystic degeneration" (Nasu) in fat marrow. J. Clin. Electron Microscopy, 10: 598-599, 1977
- 18) Katsuyama, T., Poon, K-C and Spicer, S. S. The ultrastructural histochemistry of the basement membranes of the exocrine pancreas. Anat. Rec., 188: 371-386, 1977
- Sabatini, D. D., Bensch, K. and Barrnett, R. J.: Cytochemistry and electron microsopy. The preservation of cellular ultrastruture and enzymatic activity by aldehyde fixation. J. Cell Biol. 17: 19-58, 1963
- Luft, J. H.: Improvements in epoxy resin embedding methods. J. Biophys. Biochem.

Cytol., 9:409-414, 1961

- 21) Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals.
 J. Biophys. Biochem. Cytol., 4: 475-478, 1958
- 22) Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol., 17: 208-213, 1963
- 23) 堀部和好,長束 裕,網野勝久,冨松 隆,古屋 光太郎,磯部 饒,荒井孝和: Membranous lipodystrophy の一例. 関東整災誌,7:149-153, 1976
- 24) 池崎良三, 武藤 晃, 岡田 健, 伊藤 篤, 川田 英樹, 高浜晶彦, 下小野田暲夫, 中島公和, 柳下三 郎, 伊藤洋二: Membranous lipodystrophy の 1 例, 関東整災誌, 7:237-244, 1976
- 25) 卞 盛勝, 萩原健二, 曽我恭一, 山崎典郎:
 Membranous lipodystrophy (Nasu)の1症例.
 関東整災誌, 7:439-443, 1976
- 田代征夫,小出紀,渡辺陽之輔,丸谷真, 里見和彦:脂質代謝異常症としてのいわゆる "membranous lipodystrophy"(Nasu) -その
 形態学的所見を中心に-、臨整外,11:614-625,1976
- 27) 杉本顕俊,吉岡順朗,高岡邦夫,浜田秀樹,覚道 健一: 膜性脂質異栄養症 (membranous lipodystrophy, Nasu)の1生検例. 住友医誌,4:137 -151,1977
- 28) Akai, M., Tateishi, A., Cheng, C. H., Morii, K., Abe, M., Ohono, T. and Ben, M. Membranous lipodystrophy. J. Bone Joint Surg., 59-A: 802-809, 1977
- 29) 北城文男, 森松 稔, 辻 幸作, 田平史郎, 田中 公次, 山中健輔, 角 茂春: Membranous lipodystrophy (Nasu)の1例. 整形外科, 29:154 - 159, 1978
- Williamson, J. R.: Adipose tissue. Morphological changes associated with lipid mobilization. J. Cell Biol., 20: 57-74, 1964

- 宇宿源太郎, 猪山賢一, 大園研二: 白色脂肪細胞の微細構造. 医学のあゆみ, 101:238-245, 1977
- 32) Carpentier, J. L., Perrelet, A and Orci, L.: Morphological changes of the adipose cell plasma membrane during lipolysis. J. Cell Biol., 72: 104-117, 1977
- 33) Hoshi, H. and Weiss, L.: Rabbit bone marrow after administration of saponin. An electron microscopic study. Lab. Invest., 38:
 67-80, 1978
- 34) 川崎敏男: ステロイドサポニンの化学. Proc, Symp. WAKAN-YAKU, 10:12-26, 1977
- 35) 長谷純一,小橋恭一,三井健一郎,難波恒雄,吉 崎正雄,富森 毅:サポニン溶血とその阻害.
 Proc. Symp. WAKAN-YAKU, 10:85-90, 1977
- 注 戸順三:トリテルペノイドサポニンの化学.
 Proc. Symp WAKAN-YAKU, 10:26-35, 1977

(53.8.31 受稿)