原 著

グリセオフルビン長期投与による肝硝子体 (マロリー小体)形成実験

伊藤信夫 信州大学医学部第一病理学教室 (主任:河合博正教授)

EXPERIMENTAL INDUCTION OF HEPATOCEL-LULAR HYALIN (MALLORY BODY) BY LONG TERM GRISEOFULVIN TREATMENT

Nobuo ITOH

Department of Pathology, Faculty of Medicine Shinshu University (Director : Prof. Hiromasa KAWAI)

Key words:実験的マロリー小体 (experimental Mallory body) アルコール硝子体 (alcoholic hyalin) グリセオフルビン (griseofulvin) 微小管 (microtubule)

I. はじめに

1911年 Mallory¹⁾ はアルコール性肝疾患にみられた 特異な肝細胞内の硝子体をアルコール硝子体 (Alcoholic hyalin),即ちマロリー小体 (Mallory body (MB))として記載している。その後,アルコール性 肝障害²⁾⁻⁴⁾の一つの指標とされてきたMBは,現在ま でに原発性胆汁性肝硬変⁵⁾⁶⁾,インド小児肝硬変⁷⁾⁸⁾, Wilson病⁹⁾,非アルコール性肝硬変¹⁰⁾,肝癌¹¹⁾,潰 瘍性大腸炎に伴った胆管周囲炎¹²⁾,ある種の薬剤によ る肝障害¹³⁾などにも認められている。また,MBと同 様の形態を示すものが肝細胞だけではなく石綿症の肺 胞上皮¹⁴⁾や胆管上皮¹⁵⁾にも認められている。しかしな がら,MBの組成,由来,形態特に初期像については なお問題が残されている。

そこで著者は Denk 等¹⁶⁾¹⁷⁾の方法に従い、マウスに Griseofulvin (GF) を長期投与し、実験的に MB を 形成し、光顕および電子顕微鏡を用いて経時的に観察 した。今回は、MB の形態ならびにその初期像および 組織化学的特徴を中心に報告する。

Ⅱ. 実験方法

(A) 実験動物と投薬法

4 週令 18~22g の雄マウス (SLC-ddY, 静岡実験動 物農業協同組合) に2.5% (重量比)の Griseofulvin (三共株式会社)を含むマウス用標準粉末飼料(オリ エンタル酵母工業株式会社)を投与し,水は自由に摂 取させた。対照群は GF を含まない標準粉末飼料で飼 育した。実験動物は全て信州大学医学部中央実験動物 舎で飼育した。

1週間の予備飼育後,投薬を開始し5週までは毎 週,6週以後は隔週に2~5匹を屠殺し,20週にわた って観察した。

(B) 組織学的検索法

光顕用には肝臓の一部を10%ホルマリンおよびカル ノワ液に固定し、パラフィン包埋後4µに薄切し、通 常の観察用にはヘマトキシリン・エオジン染色とア ザン・マロリー染色を行った。組織化学的検索は MB の蛋白質に主眼を置き、Fast green FCF (pH3 & pH8)、Ninhydrin-Schiff (Yasuma & Ichikawa、 1953), Diazotization-coupling (Glenner & Lillie, 1959), Dimethylaminobenzaldehyde-nitrite (DM AB-nitrite) (Adams, 1957), Dihydroxy dinaphthyl disulphide (DDD) (Barnett & Seligman, 1952) の各染色を行った。

電顕用にはグルタールアルデヒド前固定,オスミウム酸後固定後,エポン包埋し,ウルトラトーム(LKB) で超薄切し,ウラン・鉛の二重染色を行い,日立 HS-9型および日立 H-700型電子顕微鏡で観察した。 また,グリセリン処置後の標本も同様に観察した。

Ⅲ.結 果

GF 投与群と対照群との死亡率の差は認められなか ったが,投与群は明らかに栄養状態の低下が認められ た。また経過中黄疸がみられた例もあった。投与群の 臓器変化では,肝腫大が最も顕著で,肝重量は投薬開 始後1週ですでに対照群のおよそ2倍に,20週ではお よそ8倍に達していた。20週の肝臓は暗赤褐色で,表 面は顆粒状を呈し,硬度は著明に増加していた。割面 は灰白色の小結節がびまん性にみられ,小葉構造の乱 れが著明であった。〔図1〕

(A) 光顕像

1. GF 投与による肝障害像

(投薬開始より8週まで) 投薬開始後1週ですでに胆汁欝滞がみられ,胆色素 の出現は門脈域周囲の肝細胞中に微細顆粒状にまずお こり、やがて毛細胆管,細胆管と順次大きな肝内胆管 中にみられてくる。胆色素は通常の胆汁髒滞像と異な り,胆管内では層状の構造を呈する。この頃の肝細胞 は全般に賦活され,肝細胞および核の腫大,細胞およ び核の大小不同,すりガラス様の細胞質変化等がみら れ,核分裂像もしばしばみられる。また,肝細胞壊死 も小葉内のいろいろな部位に単一の肝細胞壊死の型で みられ,類洞中に脱落しているものもある。週を重ね るにつれ,胆色素は小葉辺縁部から中心部の肝細胞へ と拡がっていき,肝細胞は羽毛状変性や胆汁梗塞を呈 するようになってくる。これらの変化は5~6週に最 も強くみられる。

一方,門脈域においては胆管の増生が著明で,胆色 素は新生した胆管内にもみられてくるが,まだ管腔の みられない新生胆管もある。胆管周囲には好中球やそ の他の炎症性細胞浸潤が強く,特に胆色素の鬱滞のた め胆管上皮の破壊があるところでは一層著明になって いる。線維芽細胞の増殖は主として胆管周囲に強く, 新生膠原線維が同心円状に配列する線維化像もみられ る。このような変化の為に門脈域の拡大がおこり,隣 接する門脈域の結合がみられ,新生された胆管や膠原 線維は肝実質細胞間に侵入してゆき,小葉構造の歪が 認められるようになる。

Kupffer 細胞の動員もこれらの時期には著明で壊

〔図1〕 GF 投与群(左)は肝腫大が著明。

死肝細胞由来の胆色素の貪食がみられる。〔図 2, 3, 4〕

 GF 投与による肝障害像:MB 出現期 (10週より20週まで)

前述の組織学的変化の上に MB の形成が認められ

る。MBの形成は10週より認められはじめ、以後全例 にみられた。(本実験では10週から20週までは計36例 のマウス肝を組織学的に検索した。)形成された MB は形態学的に人体例でみられる MB と同一である。 MB は最初小葉中心部に出現し、その後肝細胞障害

[図2] 賦活された肝細胞。門脈域には炎症性細胞浸潤があり、胆汁鬱滞がみられる。 H.E. ×100

【図3〕 門脈域の拡大, 胆管の増生, 胆汁梗塞(↑)がみられる。 H.E.×100

実験的マロリー小体

〔図4〕 胆色素の構帯のため胆管上皮が一部崩壊している。胆管周囲の線維化, 細胞浸潤が著明。 H. E. ×100

が進行するにつれ小葉内に不規則に拡がってその頻度 も増してくる。本実験の MB の形態は, 顆粒状, 滴 状, 樹枝状あるいはローブ状を呈し, その色調はヘマ トキシリン・エオジン染色では桃赤色, アザン・マロ リー染色では淡青色ないし鮮赤色でしばしば光輝性の central core を持つものも観察され、なかには淡青 色のふちどりを持つ鮮赤色のものも散見される。 MB の肝細胞内に占める位置は主として核近傍で、なかに は核をリング状に囲むものもみられる。 MB を含む肝 細胞は少なからず障害を受けており、空胞変性や腫大

「図5」 腫大した肝細胞中の MB。肝細胞周囲の線維化がみられる。 アザン・マロリー ×400

伊藤信夫

〔図6〕 羽毛状変性を示す肝細胞中の MB。肝細胞周囲の線維化がみられる。 アザン・マロリー ×400

〔図7〕 類洞中に脱落する MB を含む肝細胞。好中球, Kupffer 細胞の反応は 顕著ではない。 アザン・マロリー ×400

を示すものが多いが,光顕レベルでは正常と思えるも のもみられる。しかし,MBの出現している肝細胞は やがて壊死に陥り,類洞に脱落していき,好酸小体と してとらえられるようになる。このように類洞内に脱 落したMBを含む変性肝細胞あるいは裸のMB周囲 には好中球, Kupffer 細胞が動員されるが, それ程 顕著ではない。し図5, 6, 7]

GF 長期投与による他の肝変化は、門脈域の拡大と ともに門脈域より始まる線維化が実質におよび肝細胞 周囲の線維化が著明になり、また肝細胞の結節性肥大

を呈する部がところどころにみられてくる。この結節 性肥大の部は,他の部よりも MB の出現する頻度が 極めて低いのである。なお,典型的な肝硬変や肝癌は 認められていない。〔図8,9〕

MB の蛋白成分を組織化学的に検索してみると, 主

として amino 基を持つ塩基性蛋白を検出する Fast green FCF 法では pH3 で強陽性を示し, pH8 では 弱陽性を示し、 e-amino 基と反応し lysine を含む蛋 白を検出する Ninhydrin-Schiff 法では陽性に, phydroxyphenyl 基と反応し tyrosine を含む蛋白を

[図8] 肝小葉構造の歪。門脈域の結合,門脈域から始まる線維化がみられる。 C:中心静脈。 銀 ×40

〔図9〕 肝細胞の結節性肥大。 H.E. ×100

検出する Diazotization-coupling 法では強陽性に, indole 基と反応し tryptophan を含む蛋白を検出す る DMAB-nitrite 法では弱陽性であるが, sulphydryl 基と反応し cysteine を含む蛋白を検出する DDD 法では陰性であった。

(B) 電顕像

GF 長期投与による肝細胞の変化では、初期には滑 面小胞体の増生が著明で、光顕像のすりガラス様変化 と合致する。やがて、肝障害が高度になるに従い、滑 面小胞体の増生に加えて拡張がみられ、粗面小胞体の 拡張、リボゾームの離脱もおこり、ゴルジ装置の拡張 もみられるようになるが、ミトコンドリアには著変 がみられない。核は膨化や凝縮がみられ、核嚢も不整 になってくる。一方、細胞質内にはミエリン様構造や プロトポルフィリンと思われる針状の結晶も出現し てくる。また、胆毛細管の bleb 形成が著明になり、 Disse 陸の微絨毛の扁平化も認められ、類洞には膠原 線維の増生がみられてくる。Kupffer 細胞内には胆 色素やプロトポルフィリンの貪食がみられる。[図 10] MB はこのような経過中に出現し、多くは肝細胞の 核近傍のゴルジ野にみられる。MB の大きさ、形、電 子密度はそれぞれの肝細胞で異なり、小球状、滴状あ るいはロープ状を示すが周囲の細胞質とは明らかに区 別できる。また、中心部が特に電子密度が高く、細線 維がみられない無構造の形態を示すものもみられる。 〔図11, 12〕

強拡大では MB の特徴的な構造をよく観察できる。 MB は限界膜を特たない細線維の集合体で,その細線 維の走行は一定の方向性を持たないものが多く,横断 面は点状にみえる。MB と特定の細胞内小器官との関 連は見当らず,むしろ,小胞体,ミトコンドリア,リ ボゾームなどをその中に巻き込んでおり,周囲の小器 官や細胞質を圧排しながら大きさを増していくものと 考えられる。[図13] 肝細胞内における MB の出現部 位は,びまん性ではなく核近傍に多焦点性であり,ま た,核近傍には正常の肝細胞に存在する幅約 6~10 nm の intermediate filament (IF) があり,この IF に接するように MB がみられることもある。IF は 形態学的にも MB 細線維と類似しており,GF 投与群

〔図10〕 滑面小胞体の増生および拡張,核嚢の不整がみられる。↑:プロトポルフィリンの結晶,米:胆毛細管,N:核。×9,500

実験的マロリー小体

〔図11〕 核近傍の MB。↑:MB の境界を示す。N:核, C:central core。 ×5,000

〔図12〕 ロープ状の MB。滑面小胞体(↑)を巻き込んでいる。 ×5,000

[図13] [図12] の拡大。小器官,細胞質を圧排している。MB 細線維([↑]/_x)には一定の方向性 がない。↓:MB 細線維の横断面,C:central core。 ×37,500

では IF が対照群に比して観察される頻度が高いよう に思われる。[図14]

初期像を観察する為に、より小さな MB をみると、 周囲の細胞質とは容易に識別できる中等度の電子密度 を持つ物質集積像の中に 僅かに MB 細線維の形成が みられることがあり、この中には少量ながらリボブー ムをみることができる。図15はこのような MB を示 したもので、上部にはまだ細線維の少ない MB が、 下部には細線維の豊富なしかも大きさを増した MB が認められる。

MBの出現している肝細胞をグリセリン処置後電顕 で観察すると、その構造を一層はっきり知ることがで きる。MB 細線維は管状構造を持つ幅約 15nm の分枝 状細線維である。[図16]

Ⅳ.考察

Griseofulvin は Penicillium griseofulvum から 得られた抗糸状菌性抗生物質で,胆汁鬱滞型の肝細胞 障害をおこすとされている¹⁸⁾。また,実験的プロトポ ルフィリア¹⁹⁾²⁰⁾に用いられてきた薬剤であり,同時に 肝硬変19),肝癌の形成17)19)が報告されている。

Mallory body を実験動物に再現させることは最近 までなかなか難しいことであったので報告例¹⁶⁾¹⁷⁾²¹⁾⁻²³⁾も少ない。本実験でマウス肝に形成された MB は 光顕および電顕レベルでは,その染色性,細線維構 造²⁴⁾²⁵⁾からアルコール性肝疾患をはじめ種々の肝疾患 時の人体例にみられるものと同一であるといえる。 GF 長期投与による肝障害の結果として肝細胞内や Kupffer 細胞内にみられるプロトポルフィリン結晶, 胆管の破壊と増生,門脈域から進展する線維化,肝細 胞の壊死と再生などがみられているが,このような状 態から人体例における肝硬変,肝癌に MB が出現す ることを容易に類推できる。

MB は最初小葉中心部に出現し, 肝障害が進むにつ れ,小葉全体に不規則にその頻度を増しながら出現し てくるのはアルコール性肝障害の場合と同様であり, MB の出現している肝細胞はいずれも腫大傾向にあ り,やがて壊死に陥り類洞に脱落し,好中球や Kupffer 細胞によって処理される。しかし,アルコール性 のものに比べて好中球の反応は軽いようである。

[図14] MB に近接して IF (↑) がみられる。↓: MB 細線維, *: プロトポルフィ リン, N:核。 ×25,000

(A) MB の組織化学的性質

MB の組織化学的な研究には Norkin 等²⁶⁾, Lyon 等²⁷⁾のものがある。今回の蛋白を中心とした検索で は, Fast green FCF, Ninhydrin-Schiff, Diazotization-coupling, DMAB-nitrite の所見から MB は lysine, tyrosine, tryptophan を含む塩基性蛋白 の可能性が強い。この結果は,蛋白に関しては上の二 人の報告とほぼ一致している。

(B) MB 細線維について

MB 細線維の微細構造に関する研究には、Yokoo 等15), Wiggers 等24)のものがあり詳細に述べられて いる。本実験の MB はほとんどが一定の方向性を持 たない細線維からなる Type II [図13, 14, 15, 16] に相当し、MBの中心部にみられる電子密度がより高 く、細線維構造を失った部分、つまり central core が Type III [図11, 12, 13] に相当している。細線 維の幅は約 15nm で、これは Yokoo 等¹⁵⁾の報告に一 致しているが Wiggers 等²⁴⁾の報告とは大分異なる。 また、細線維が管状分枝状である点は Wiggers 等²⁴⁾ の報告と同様である。[図16] 一方、French 等²⁵⁾は IF が管状構造を持つと記載しているが、この点に関 しては MB 細線維と IF の類似性が認められる。

(C) MB の初期像について

MB の光顕像は先に述べた通りである。顆粒状を呈 し、小さくしかもヘマトキシリン・エオジン染色やア ザン・マロリー染色で淡染されるものから、大きさを

No. 4, 1978

伊藤信夫

[図15] MB 初期像(1)。細線維の形成が少ない。下方は完成された MB。 ×25,000

増し,形も様々となり,光輝性のある central core を持ちしかも濃染されるものが観察される点,前者は 初期の MB で,後者は完成された MB と思われる。

この光顕で小顆粒状を呈する MB を電顕で観察す ると,周囲の細胞質とははっきり区別できる中等度の 電子密度を持つ物質集積像を見つけることができる。 このようなものの一部に MB 細線維の形成があるこ とから,MB の初期像と考えられる。[図15] これら の初期の MB は時間の経過とともに細線維の量が増 え,完成された MB となる。やがて,中心部が変質 してくると電顕的にも電子密度の高い細線維構造を失 った無構造のものになっていくと思われる。これは光 顕における central core と一致する所見であると考 えられる。MB 自体にも一定の経過があるようであ る。

(D) MBの成因について

MB と細胞内小器官との関連については,本実験で 形成された MB と細胞内小器官との関連はほとんど ないと思われる。MB が細線維の量を増し大きくなる につれ,小胞体,ミトコンドリア,リボゾームが巻き 込まれて変性している像がしばしばみられる。初期像 についても同様に小器官との関連はみられないが,細 線維の横断面とは明らかに異なる遊離リボゾームが存 在しているのがみられる。これらのリボゾームが単に 巻き込まれたものなのか,あるいは直接 MB を栄養 したり,合成しているのかは明らかにできなかった。 しかし,著者は小胞体やミトコンドリアは MB 中に 巻き込まれたものと考えているので,MB が小胞体²⁸⁾

実験的マロリー小体

[図16] MB 細線維。*:分枝,↑:管状構造を示す。グリセリン処置。 ×25,000,挿入図 は ×50,000

[・] 〔図17〕 核分裂時の微小管([↑])。↓:微小管の 横断 面。肝 細 胞。 ×37,500

〔図18〕 細胞質内の微小管(↑)。ミトコンドリアの長軸にほぼ平行にみられる。 肝細胞。 ×25,000

やミトコンドリア由来21)という説には賛同しがたい。

MB の成因に関しては、GF が直接関与していると 考えたい。Denk 等²²⁾はコルヒチン投与で MB 形成を 報告している。GF もコルヒチンも作用点は違うがど ちらも微小管²⁹⁾³⁰⁾[図17, 18] を解重合するといわれ ており³¹⁾, 微小管の一つの機能である細胞内の物質移 動が障害されることになる。また、Okamura 等³²⁾の 報告には正常の肝細胞と MB 蛋白の electrophorogram にはかなり共通の部分があるとされている。以 上のことから、MB は正常の肝細胞中に存在するいく つかの蛋白質が、GF 投与による微小管の解重合によ ってその移動が障害されて肝細胞内に細線維の集合と して出現してくるのではなかろうかと著者は考えてい る。

V.結 論

- 1. GF 長期投与によってマウス全例に^{MB}の形成が みられた。
- 実験的 MB はアルコール性肝疾患をはじめ種々の肝疾患時の人体例にみられる MB と形態学的に
 「同一である。
- MB は小葉中心部に出現しはじめ、肝障害が進む
 502

につれ,小葉全体に不規則にその数を増して出現す る。

- 4. MB は核近傍のゴルジ野に多焦点性に出現する。
- 5. MB は lysine, tyrosine, tryptophan を含む塩 基性蛋白質で構成される。
- 6. MB 細線維は幅約 15nm の管状構造を持つ分枝状 細線維であり,通常の肝細胞内に存在する IF と形 態学的に類似している。
- 7. 本実験の MB 細線維は Type II, Type III に相 当する。Type III は Type II の変質像である。
- 8. MB の初期像は光顕では小顆粒状を呈し、電顕で は細線維成分の少ない、大部分が中等度の電子密度 を持つ集積像を示すものである。

以上のようにマウスに Griseofulvin を長期投与 し, 肝細胞に Mallory body を形成させ, その蛋白 成分, 一般形態ならびに初期像について報告した。

謝 辞

終始御指導,御校閲を賜りました河合博正教 授,石井善一郎前教授に心から感謝の意を表する とともに,グリセオフルビンを御提供くださった 三共株式会社の御厚意に感謝致します。

本論文の要旨は第67回日本病理学会総会(昭和 53年4月)において発表した。

文 献

- Mallory, F. B.: Cirrhosis of the liver: five different lesions from which it may arise. Bull. Johns Hopkins Hosp., 22:69-75, 1911
- Flax, M. H., and Tisdale. W. A. : An electron microscopic study of alcoholic hyalin. Am. J. Pathol., 44 : 441-453, 1964
- Iseri, O. A., and Gottlieb, L. S.: Alcoholic hyalin and megamitochondria as separate and distinct entities in liver disease associated with alcoholism. Gastroenterology. 60: 1027-1035, 1971
- Gerber, M. A., Orr, W., Denk, H., Schaffner, F., and Popper, H.: Hepatocellular hyalin in cholestasis and cirrhosis: its diagnostic significance, Gastroenterology, 64:89-98, 1973
- 5) Monroe, S., French, S. W., and Zamboni, L.: Mallory bodies in a case of primary biliary cirrhosis : an ultrastructural and morphogenetic study. Am. J. Clin. Pathol., 59:254-262, 1973
- 6) MacSween, R. N. M. : Mallory's ('alcoholic') hyaline in primary biliary cirrhosis. J. Clin. Pathol., 26: 340-342, 1973
- 7) Nayak, N. C., Sagreiya, K., and Ramalingaswami, V. : Indian childhood cirrhosis : the nature and significance of cytoplasmic hyaline of hepatocytes. Arch. Pathol., 88:613-637, 1969
- Nayak, N. C., and Roy, S.: Morphological types of hepatocellular hyalin in indian childhood cirrhosis : an ultrastructural study. Gut, 17: 791-796, 1976
- 9) Schaffner, F., Sternlieb, I., Barka, T., and Popper, H.: Hepatocellular changes in Wilson's disease: histochemical and electron microscopic studies. Am. J. Pathol., 41:315 -327, 1962
- Baggenstoss, A. H., and Staufler, M. H.: Posthepatic and alcoholic cirrhosis : clinicopathologic study of 43 cases of each. Gas-

troenterology, 22:157-180, 1952

- 11) Keeley, A. F., Iseri, O. A., and Gottlieb, L. S. : Ultrastructure of hyaline cytoplasmic inclusions in a human hepatoma : relationship to Mallory's alcoholic hyalin. Gastroenterology, 62 : 280-293, 1972
- Mistilis, S. : Pericholangitis and ulcerative colitis : I. pathology, etiology, and pathogenesis. Ann. Intern. Med., 63 : 1-16, 1965
- 13) Itoh, S., and Tsukada, Y.: Clinico-pathological and electron microscopical studies on a coronary dilating agent: 4·4'-diethylaminoethoxyhexestrol-induced liver injuries. Acta Hepato-Gastroent., 20: 204-215, 1973
- 14) Kuhn III, C., and Kuo, T-T.: Cytoplasmic hyalin in asbestosis : a reaction of injured alveolar epithelium. Arch. Pathol., 95: 190-194, 1973
- Yokoo, H., Minick, O. T., Batti, F., and Kent, G.: Morphologic variants of alcoholic hyalin. Am. J. Pathol., 69: 25-40, 1972
- 16) Denk, H., Gschnait, F., and Wolff, K.: Hepatocellular hyalin (Mallory bodies) in long term griseofulvin-treated mice: a new experimental model for the study of hyalin formation. Lab. Invest., 32: 773-776, 1975
- 17) Denk, H., Eckerstorfer, R., Gschnait, F., Konrad, K., and Wolff, K.: Experimental induction of hepatocellular hyalin (Mallory bodies) in mice by griseofulvin treatment:
 1. light microscopic observations. Lab. Invest., 35: 377-382, 1976
- 18)市田文弘,佐々木博:薬物と肝臓、織田敏次,市 田文弘,山中正己編、pp.43-76,中外医学社, 東京,1975
- 19) Hurst, E. W., and Paget, G. E.: Protoporphyrin, cirrhosis and hepatomata in the livers of mice given griseofulvin. Br. J. Dermatol., 75: 105-112, 1963
- 20) Gschnait, F., Konrad, K., Hönigsmann, H., Denk, H., and Wolff, K.: Mouse model for protoporphyria: I. the liver and hepatic protoporphyrin crystals. J. Invest. Dermatol., 65: 290-299, 1975

- 21) Porta, E. A., Hartroft, W. S., and de la Iglesia, F. A.: Hepatic changes associated with chronic alcoholism in rats. Lab. Invest., 14: 1437-1455, 1965
- 22) Denk. H., and Eckerstorfer, R.: Colchicineinduced Mallory body formation in the mouse. Lab. Invest., 36: 563-565, 1977
- 23) Borenfreund, E., and Bendich, A.: In vitro demonstration of Mallory body formation in liver cells from rats fed diethylnitrosamine.
 Lab. Invest., 38: 295-303, 1978
- 24) Wiggers, K. D., French, S. W., French, B. A., and Car, B. N.: The ultrastructure of Mallory body filaments. Lab. Invest., 29: 652-658, 1973
- 25) French, S. W., and Davies, P. L. : In Alcoholic liver pathology, pp. 113-139, Eds. Khanna, J. M., Israel, Y., and Kalant, K., Addiction Research Foundation of Ontario, Toronto, 1975
- 26) Norkin, S. A., Weitzel, R., Campagna-Pinto, D., MacDonald, R. A., and Mallory, G. K.: "Alcoholic" hyalin in human cirrhosis: histochemical studies. Am. J. Pathol., 37:49-61, 1960
- 27) Lyon, H., and Christoffersen, P. : Histochemical study of Mallory bodies. Acta Path. Microbiol. Scand. Section A., 79: 649-657, 1971
- Biava, C.: Mallory alcoholic hyalin : a heretofore unique lesion of hepatocellular ergastoplasm. Lab. Invest., 13 : 301-320, 1964
- 29)藤原敬己:細胞運動と微小管 -細胞分裂を中心 に-.生体の科学,28:242-257,1977
- 30) 重中義信: 細胞骨格としての微小管, 生体の科学, 28:258-268, 1977
- 31)新井孝夫,上代淑人: 微小管の生化学,生体の科学,28:269-279,1977
- 32) Okamura, K., Harwood, T. R., and Yokoo, H.: Isolation and electrophoretic study on Mallory bodies from the livers of alcoholic cirrhosis. Lab. Invest., 33: 193-199, 1975

信州医誌 Vol. 26

504