Succinylcholine Chloride に対する感受性と Cholinestesase との関係について

第二編 Succinylcholine Chloride による無呼吸持続時間 と Cholinesterase 活性値との関係

昭和32年9月9日受付(特別掲載)

緒 言

Evans等^①, Bourne等^②以 Succinylcholine Chloride (以下 S. C. C.) の作用が短時間であるのは血清 Cholinesterase (以下 ChE) による速かな分解のためであ るとし、ChE活性値の低い患者に於てはS.C.C.によ る無呼吸の持続時間が延長し、両者の間には逆比例の 関係のあることを報告した。S.C.C. 使用に伴い臨床 上最も問題となるのは、呼吸抑制であるが、日常の臨 床例に於ては呼吸停止が起つても短時間の内に回復す るので、その間人工呼吸を行えば特に問題とはならな い。最近 S. C.C. 使用に伴い、往々異常に長く無呼吸 の持続した症例が経験されるに至り、これらの症例の 中には必ずしも ChE 活性値の低下していないものも あるので、かゝる Prolonged Apnea の原因として、果 して ChE 活性値の低下が如何なる意味をもつもので あるかが問題となつてきた。ChE 活性値の測定には Acetylcholine (以下 Ach) が基質として用いられてき たが、S.C.C. の効果の消長を問題とするには S.C.C. を基質としてその分解の程度を測定することが必要で ある。

そこで著者は本編に於て、血清による Ach 分解能 と共に、血清による S. C. C. 分解能を in vitro に於て 測定し、これらの値と、S. C. C. による無呼持続時間 を臨床例に於て測定し、両者の関係について検討を加 えた。

実験方法

A 血清 ChE 活性值測定法

1) Ach 分解值測定法

第一編に於て述べたと同様な方法で行つた。

2) S.C.C. 分解值测定法

Warburg 検圧法によつて行つた。即ち Ach 分解値 測定に使用する Ringer 氏液 (重曹濃度 2.5×10-2 Mol) で血清を 5 倍稀釈し、この 2ml (血清は 0.4ml)を主 室に、S. C. C. 溶液 0.2ml (Ringer 氏液 0.2ml 中に S. C. C. 17.5mg を含む) を側室に入れ、CO₂: N₂ =5:95 の混合気体を通し、37.5°C の恒温槽に入れ、30分間に発生する CO_2 量を測定し、血清 1 m 1 により 1 分間に発生する CO_2 量を算出し、これを血清による S.C.C. 分解値とした。対照としては血清の代りにRinger 氏液を用いた。容器内の S.C.C. の最終基質濃度は 2.2×10^{-2} Mol となる。

B S.C.C. による無呼吸持続時間の測定法

外科手術患者の全身麻酔の際に S.C.C. 40mg (0.8~1.0mg/kg) を2~3秒間で静注し、これによつて起る無呼吸の持続時間を測定した。麻酔の導入にあたつては通常ラボナール, S.C.C. を使用して気管内挿管を行うが、使用するラボナール自身によつても呼吸抑制が生ずることがあるので、導入時には測定を行わず、麻酔が第Ⅲ期第2層に安定した時S.C.C. を静注し、麻酔器の呼吸襲が完全に停止している時間を以て無呼吸持続時間とした。S.C.C. 静注後より無呼吸発現迄の時間は、大体に於て20~30秒であり、自然呼吸発現より S.C.C. 注射前の呼吸量に戻る迄の時間はほな60~90秒であつた。無呼吸中は調節呼吸(1分間に12~16回)を行つてAnoxiaの起らないようにした。

実験成績

I 健康成人の S.C.C. 分解値

男子10例,女子10例につき,血満による S. C. C. 分解値を測定した結果は表 1 に示す如くで、10 例の平均値は男子 2.34 ± 0.16 μ l/ml/min. 女子 1.80 ± 0.08 μ l/ml/min. で血清 Ach 分解値と同様男子の方が女子よりや 1.80 ± 0.08 点値を示した。 1.80 ± 0.08 Ach 分解値は個人差が大である

表 1 健康成人の S.C.C. 分解値 (平 均 値)

性	别	例数	S.C.C.分解值 μl/ml/min	Ach 分解值 μl/ml/min		
男	子	10	$2.34 \pm 0.16*$	81.3 ± 11.0		
女	子	10	1.80 ± 0.08	70.4 ± 6.8		
	* 根	医準	偏差			

のに反し、S. C. C. 分解値はほゞ一定しており個人差が少かつた。同時に測定した Ach 分解値の平均は男子81.3±11.0 μl/ml/min. 女子70.4±6.8 μl/ml/min.で第一編で報告した成績とほとんど一致している。S. C. C. 分解値は Ach 分解値の約3%の値を示した。

II Ach 分解値と無呼吸持続時間との関係

各種外科的疾患々者43例について、麻酔前の Ach 分解値と, 麻酔中 S. C. C. による無呼吸持続時間を測 定したが、これを Ach 分解値 0~20、20~40、40~ 60, 60~80 µl/ml/min. の 4 群に分けて検討すると表 2 の如くである。 20 µl/ml/min. 迄は1 例のみである が, 無呼吸持続時間は700秒であり, 20~40の群 (14 例: 平均値 35.6±3.9 μl/ml/min.) では無呼吸持続時 間は平均388±83秒であり、40~60の群(14例:平均 値 51.2±5.4 µl/ml/min.)では平均 329±96秒であり、 60~80 の群(14例:68.9±5.3 µl/ml/min.) では平均 260±40秒であつた。 図1はこれらの関係を示したも ので、一般的にみて Ach 分解値の低い患者群程無呼 吸持続時間の延長が観察された。然し乍ら個々の症例 について検討すると、図1によつても明らかな如く、 Ach 分解値が例えば、39.2、39.9 µl/ml/min. とほゞ相 等しい症例でも、無呼吸持続時間は1方は310秒、他 方は520秒で200秒前後の差を示し、又無呼吸持続時間 が320秒前後を示した10例についてみても、Ach 分解 値は 28.6 µl/ml/min. から最高 76.1 µl/ml/min. と可成りの変動を示している。即ち個々の症例について観察すれば,血清による Ach 分解値と,無呼吸持続時間が必ずしも平行的に増減を示さない。このことは S.C.C. による無呼吸の持続時間には,血清による Ach 分解能と共に,他の因子も関係していることを意味している。

■ S. C. C. 分解値と無呼吸持続時間との関係

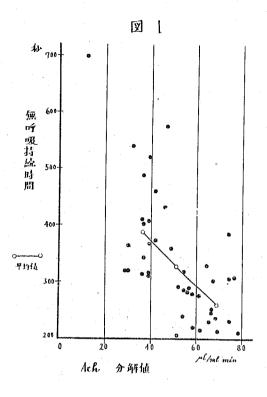
前述の患者43例中27例について、Ach 分解値と、血 清による S. C. C. 分解値を同時に測定した。 S. C. C. 分解値を 0.5~1.0、1.0~1.5、1.5~2.0、2.0~2.5 µl/ ml/min. の 4 群に分けて、各群の無呼吸持続時間を比 較検討した。その成績は表 3 に示す如くである。 1.0 µl/ml/min. 以下の群 (8 例:平均値 0.86±0.10 µl/ml/ min.) では無呼吸持続時間は平均425±131秒であり、 1.0~1.5の群 (5 例:平均値 1.19±0.16µl/ml/min.)では平均371±116秒であり、1.5~2.0の群 (12例:平均 値 1.72±0.12 µl/ml/min.)では平均289±70秒であり、 2.0~2.5 の群 (2 例:平均値 2.23±0.07 µl/ml/min.)では 232±3 秒であつた。図 2 はこれらの関係を示したもので、Ach 分解値の場合と同様、一般に S. C. C. 分解値の低い患者群程 S. C. C. による無呼吸持続時間 の延長が観察された。

然し乍ら、個々の症例についての観察では、S.C.C.

表 2

Ach 分解値と無呼吸持続時間との関係

Ach 分解値 Level	例数	(平均值)	無呼吸持続時間 (平均値)	1011.1月 1・1・	A1	Gl	A/G
μ l/ml/min	35.4	μ l/ml/min	砂	gm/dl	gm/dl	gm/dl	
0 ~ 20	1	12.9	700	5, 52	2.61	2.91	0.90
20 ~ 40	14	35.6±3.9*	388 ± 83	6.65±0.70	3.47±0.37	3.18±0.52	1.12±0.18
40 ~ 60	14	51.2±5.4	329 ± 96	6.94±0.69	3.86 ± 0.51	3.07±0.48	1.30±0.23
60 ~ 80	14	68.9±5.3	260 ± 40	7,18±0.56	4.03 ± 0.51	3.16±0.46	1.31 ± 0.27


*標準偏差

夷 3

S.C.C. 分解値と無呼吸持続時間との関係

S.C.C. 分解值 Level		S.C.C. 分解値 (平均値)	無呼吸持続時間 (平均値)	血清T.P.	Ai	GI	A/G
μl/ml/min	数	μl/ml/min	秒	gm/dl	gm/d1	gm/dl	* -
$0.5 \sim 1.0$	8	0.86±0.10*	425 ± 131	6.79 ± 0.95	$3,59\pm0,50$	3.20±0.63	1.15 ± 0.22
$1.0 \sim 1.5$	- 5	1.19±0.16	371 ± 116	6.34 ± 0.67	3.49 ± 0.53	2.85±0.40	1.25 ± 0.23
$1.5 \sim 2.0$	12	1.72 ± 0.12	289 ± 70	7.25±0.58	4.05±0.53	3.20±0.39	1.30 ± 0.25
1.0~2.5	2	2.23±0.07	232 ± 3	7.13 ± 0.78	4.06±0.54	3.07 ± 0.24	1.31 ± 0.08

* 標準偏差

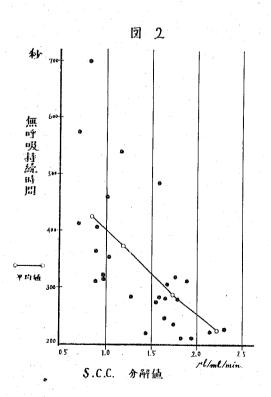


図3 S.C.C.分解値と血清 アルアミンとの関係

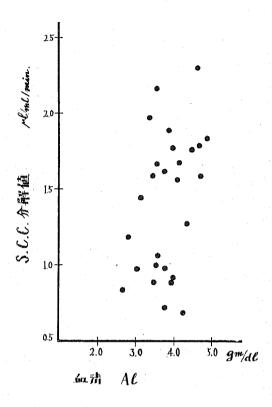
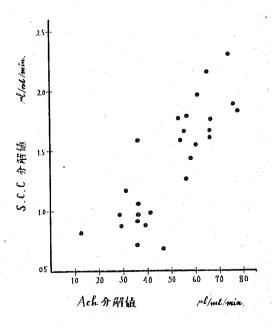



图4 S.C.C.分解值 LALA分解值 Loll 係

分解値がほゞ同じ値例えば 0.83, $0.72 \mu l/m l/n im.$ を示しても,無呼吸持続時間は一方では 700秒,他方では 420秒と 可成 り の差を示した例もあり, 又無呼吸持続時間が320秒前後を示した 6 例についてみても, S. C. C. 分解値は $0.89 \mu l/m l/m in.$ か ら最高 $1.89 \mu l/m l/m in.$ と可成 りの変動を示している。即も S. C. C. 分解値と無呼吸持続時間の関係に於ても,個々の症例 についていえば必ずしも平行的に増減を示すとは限らなかつた。

IV 各種外科的疾患時のAch 分解値と S. C. C. 分解値との関係

各種外科的疾患々者について、Ach を基質として測定した血清 ChE 活性値は、血清蛋白質中 Albumin (以下 Al) と極めて密接な関係を有し、平行的な増減を示すことを第一編に於て報告したが、S. C. C. 分解値と血清 Al と間には、図3に示す如く、Ach 分解値の際にみられた様な明らかな関連性はみられなかつた。

さらに Ach 分解値と S. C. C. 分解値との相関々係をみると、図 4 に示す如く一般に Ach 分解値の低下に伴い S. C. C. 分解値も低下を示すが、Ach 分解値が $12.9 \,\mu$ l/ml/min. で正常値の約 $1/_0$ に低下していても、S. C. C. 分解値は正常の約 $1/_2$ 即ち $0.83 \,\mu$ l/ml/min. に減少しているに過ぎない症例もあり、又 Ach 分解値が正常範囲にあつても、S. C. C. 分解値には可成りの動変があつて、Ach 分解値の低下の割合と、S. C. C. 分解値の低下の割合とは必ずしも一致しないことを知った。

▼ 新生児の Ach 分解値及び S. C. C 分解値 新生児及び幼児では成人に比して S. C. C. に対する

表 4 臍帯血の Ach 分解値及び S. C. C. 分解値

0. 0. 0. M INFILE							
症 番	性	Ach 分解値	S.C.C.分解值				
例号	別	μ1/ml/min	μ l/ml/min				
1	8	48.9	2.30				
2	ð	72.0	2.29				
3	8	44.5	2. 10				
4	- 8	69.4	1.81				
5	8	49.4	1.73				
6	8	5 5. 5	1.51				
7	φ.	67.8	1.71				
. 8	Ş	52.3	1.39				
9	Ę.	34.7	1.07				
10	ç	36.7	0.97				
均	値 平	53.1 ± 12.7*	1.69 ± 0.44				

*標準偏差

抵抗が強いといわれているので、これが成人よりも S. C. C. をより速かに分解するためであるとすれば、 Ach 及び S. C. C. の分解値は成人より高いことが予想 せられる。そこで臍帯血10例について夫々の値を測定した成績は表 4 に示す如くで、新生児の Ach 分解値 の平均は $53.1\pm12.7~\mu l/m l/min$, S. C. C. 分解値の平均は $1.69\pm0.44~\mu l/m l/min$. で、成人の夫々の値に比しかえつて低い値を示した。

考 按

Evans 等①、Bourne 等②によつて S. C. C. の効果の 持続は患者の血清 ChE Level によって左右されるもの であると報告されて以来, S.C.C. の使用にあたつて, その無呼吸持続時間と、血清 ChE との間に関連性を 認める文献が多い^{③~⑨}。Foldes等^⑩は、Ach を基質 として測定した血清 ChE 活性値を以て, S.C.C. の 無呼吸持続時間を論ずることは正当を得ないとして、 **血漿による S.C.C.** 分解値を測定し、健康人(29例) では 3.0±0.1 µM/ml/30min., 中等度の肝障碍の患者 (7例) では 1.4±0.2µM/ml/30min, 高度肝障碍の患 者 (11例) では 0.8±0.1 µM/ml/30min. と, 肝障碍の 高度のもの程、分解値の低下を認め、同時に各群の患 者にS. C. C. 0.6mg/kg の静注を行つて無呼吸持続時間 を測定した成績では、健康人では180±9秒、中等度 肝障碍群では 304±34 秒, 高度肝障碍群では 515±40 秒と, S.C.C. 分解値の低下した群程無呼吸持続時間 の延長を示したが、無呼吸持続時間の延長の程度は、 ChE活性値の低下の割合に比し軽度であると報告して いる。著者の測定した成績でも表1,2及び図1,2に 示す如く, Ach 分解値, S. C. C. 分解値の低下した群 程無呼吸持続時間が延長する傾向を示した。然し乍ら 個々の症例についての検討では、既に述べた如く Ach 分解値及び S. C. C. 分解値の低下の割合と, 無呼吸持 続時間の延長との間には必ずしも平行的な関係はみら れなかつた。

Tsuji, Foldes 等[®]は健康人の S.C.C.分解値は Ach 分解値の約4%であると報告しているが、著者の成績では約3%前後の値を示した。又一般的にみても Ach 解値の高いもの程 S.C.C. 分解値も高いが、Ach 分解値の低下の割合とは必ずしも一致せず、Ach 分解値が血精 A1と平行した関係を示したのに反し、S.C.C. 分解値は Ach 分解値に於ける程明らかな相関々係は認められなかつた。同一患者に於て Ach 分解値と S.C.C. 分解値とが必ずしも一致した変動を示さないことは Foldes 等[®]も認めており、又著者の成績で、同じ ChE によつて分解される Ach と S.C.C の夫々の分解値が血清 Al 濃度と

前者ではほど平行し、後者ではそれ程明らかな相関々係が認められないことは、血清による S. C. C. 分解には、Foldes 等の報告した如く^⑩、Alkaline Hydrolysisがある程度関与していることを示すものであろう。

S.C.C. の一回或は点滴注射による Prolonged Apnea の症例は現在迄多くの報告がある①~⑦,⑫~⑳,㉑ ~㉑。これ等の内 S.C.C. 一回注射によって起つた Prolonged Apnea の症例の中で,血清 ChE 活性値を同時に測定してある症例を繰括して表5に示す。この表からみても Prolonged Apnea の症例では,大多数に於て血清 ChE の低下を認めているが,その低下の割合と無呼吸持続時間の程度とは必ずしも平行的ではない。

Stead[®]は、新生児では S.C. C. により成人と同じ筋弛緩効果を現わすのに、成人の約2倍量を必要とすると述べ、山田[®]も仔大を使用した実験で同様な傾向を認めている。Hodges[®]は、成人と10才以下の幼児とでは、血清 ChE 活性値に大差を認めないにもからず、幼児では明らかに S.C. C. に対する抵抗性を示したと述べ、この原因に関して血清 ChE よりも、全身に分布する ChE が多いためであろうと排論している。新生児に於ては成人よりも S.C. C. の体内に於ける分解が速かであるためとすれば、Ach 分解値及び S.C. C. 分解値は成人のそれよりも高い筈であるのに、著者の測定した成績では、健康成人のそれよりもかえ

つて低い値を示した。従つて新生児がS.C.C. に対して成人より抵抗を示す原因としては、ChE以外の因子が考慮されなければならない。

又最近 Wolfers[®], Swerdlow[®], Argent® 等は. S.C.C. による Prolonged Apnea が、血清 ChE Level の 正常な例に於ても発生したことを認め、Borders 等²⁹ は、人血湯から作つた ChE 製剤 (Cholase) を S. C. C. による Prolonged Apnea の症例に使用しても、予期 した効果が得られなかつたことを報告している。著者 は動物実験で S.C.C. 及び Decamethonium (C10) に よつて起る筋弛緩が、血流を遮断しても、遮断しない 場合とほとんど差を認めなかつたことを知つた(こ の攝実は第3編で詳述する)。 Argent 等[®]も猫を用い た実験で同様な結果を認めている。これ等の事実は Prolonged Apnea の或る症例に於ては、血清 ChE に よる S. C. C. の分解の減退のみが、本質的な要因とは ならないことを示すものであり、その他の因子例え ば、終板に於けるS.C.C.の吸着、さらには終板より 周囲組織への再分布、或は終板に於ける筋弛緩剤の反 応態度の変化等が考慮される。

S.C.C. による Prolonged Apnea に関する原因について、最近の実験的及び臨床的研究より種々の因子が論ぜられているが(Dripps²⁹, Davis²⁹, Borders²⁹, Hodges⁷⁰、²⁸, Argent³⁹, Churchill-Davidson²⁹, Paton³⁹, Foldes³¹), これ等諸家の報告にみられる

表 5

Sanda Committee on the committee of the							TOTAL TRANSFER STATES AND STATES
報告者名	年号	性	年	体重	S.C.C. 使用量	無呼吸持続時間	血清ChE活性值
77	1.0	別	令	kg	mg	分	
Evans et al ^①	1952		-		0.88/kg	20	12*
<i>"</i>	-1/				1, 1/ kg	21	12*
Bourne [®]	1953	₽	25	45	100	210	32 Units
11	// //				50	31	7 11
Forbat et al	1953	8	20		5 0	4 0	18 "
Franks ⁽⁵⁾	1953	8	24		3 0	2 5	49, 41 Units
Johnson (6)	1954	- 8	8	22	25	4 5	正常値の 50%
<i>II</i>	"		84	77	50	310	n 30%
Argent et al [©]	1955	ð	27	67	75	110	582#
<i>"</i>	"	8	39	45	30, 30, 30,	5, 10, 210,	718#
" "	' 11	- 3	72	80	4.0	. 50	340#
#	"	9	54	82	5 0	360	30#
	"	8	55	67	5 0	75	830#
. "	. //	ð .	56	70	30	90	584#
<i>"</i>	* 11	ę.	50	68.	5 0	31	525#

^{*} μl/ml. serum/min. 正常値 90~100

[#] μl/ml. plasma/30min. 正常値 834±244 (Benzoylcholine 使用)

Prolonged Apnea の原因を列挙すると次の如くである

- 1) S.C.C. の過量投与
- 2) 血清 ChE の低下による S. C. C. の分解の遅延
- 3) S.C.C. の加水分解によつて生じた Succinylmonocholinn の蓄積 (Foldes⁽¹⁾, (3))
- 4) S. C. C. による中枢性呼吸抑制 (Ellis[®]), Convers[®])
 - 5) 調節呼吸による渦呼吸の結果
 - 6) CO₂ 蒸積 (Gray³⁰, Scurr³⁷)
 - 7) 電解質の不均衡

(Hodges²³, Irwin³³, Mayrhofer³⁹)

- 8) 終板より S. C. C. の再分布の障碍 (Argent[®], Foldes[®])
- 9) 脱分極剤 (S.C.C., C10) に対する終板の感受性の変化 (Zaimis[®], Argent[®], Hodges[®], Churchill-Davidson[®], Brennan[®], 岩月[®])
- 10) 終板より S. C. C. が取り去られた後に も存在 する終板或は筋線維の変化 (Argent⁽²⁾)

臨床上 Prolonged Apnea の個々の症例について、その原因を決定することは必ずしも容易ではないが、従来考えられた如く、ChE の低下のみをあまり重要視することは反省を要することであろう。従つてS.C.C. 投与によつて万一 Prolonged Apnea が発生した際には以上の如き諸要因を考え、最も可能性の多いと考えられる原因に対して速かに適切な処置を取ることが望ましい。

結 輪

- 1) Ach 及び S. C. C. を基質として血清 ChE 活性値を測定した。健康成人10例の平均では Ach 分解値は男子 $81.3\pm11.0\mu$ l/ml/min.,女子 $70.4\pm6.8\mu$ l/ml/min.で、S. C. C. 分解値は男子 $2.34\pm0.16~\mu$ l/ml/min.女子 $1.80\pm0.08\mu$ l/ml/min.で,Ach 分解値よりもS.C.C. 分解値は個人差が少く,その値はAch分解値の約3%であつた。
- 2) S.C.C. 静注後の無呼吸持続時間を測定し、血清 ChE 活性値との関係に検討を加えた。一般に ChE 活性値の低下せるもの程、無呼吸持続時間の延長が観察された。然し乍ら個々の症例に於ては、 ChE 活性値の低下の割合と無呼吸持続時間の延長の程度とは必ずしも平行しなかつた。
- 3) 血清 ChE はS. C. C. による筋弛緩の効果を決定する唯一の因子でなく,殊に Prolonged Apnea の症例では,他の種々な因子が考えられる。

本論文の要旨は昭和32年第四回麻酔学会に於て発表 した。

本研究の一部は昭和31年度文部省科学研究助成補助

金によつた。

文 献

(1) Evans, F. T., Gray, P. W. S., Lehmann, H., & Silk, E.: Lancet 1229, 1952 (1). (2)Bourne, J. G., Collier, H. O., & Somers, G. F.: Lancet 1225, (3) Bourne, J. G.: Brit. J. Anaesth. 25: 1952 (1). (4) Forbat, A., Lehmann, H., & Silk, 116, 1953. E.: Lancet 1067, 1953 (2). (5) Franks, E. H.: Lancet 1358, 1953 (2). (6) Johnson, P. D.: Brit. J. Anaesth, 26: 427, 1954, (7) Hodges, R. J. H., & Harkness, : Brit. M. J. 18, 1954 (2). (8) Fucks, H.: Der Anaesthetist 5:140, 1956. (9)Grohmann, W.: Der Anaesthetist 6:136, 1957. @Foldes, F. F., Swerdlow, M., Lipschitz, E. & Van Hees, G. R.: Anesthesiology 17:559, 1956. Tsuji, F. I., Foldes, F. F., & Rhodes, D. H.: Arch. Internat. Pharmacodyn. 104; 146, 1955. (2) Argent, D. E., Dinnick, O. P., & Hobbiger, F.: Brit. J. Anaesth. (BHarper, J. K.: Brit. M. J. 866, 27: 24, 1955. 1952 (1). (4) Hewer, C. L.: Brit, M. J. 971. 1952 (i)Sherman, D. A.: Brit. M. J. 1153. 1952 (1).(10) Grant, G.: Brit, M. J. 1352, 1952 (1). MHodgson, D. A., & Kothari, P. C.: Brit. M. J. 442., 1952 (2). (8) Reed, J. E., & Neil, d. W.: Lancet 639, 1952 (2). (19) Wolfers, P.: Brit. M. J. 778, 1952 (2). @Barron, D. W.: Brit. M. J. 833, 1952 (2). ② Swerdlow, M.: Lancet. 1231, 1952 (2). @Davis, D. A., Ellis, F. C., Reese, N. O., & Grosskreutz, D. C.: Anesthesiology 16: 333, 1955. @Hodges, R. J. H.: Brit. J. Anaesth. @Borders, R. W., Stephen, C. R., 27:485, 1955. Nowill, W. K., & Martin, R.: Anesthesiology: 16, 401, 1955. 🖾 Stead, A. L.,: Brit. J. Anaesth. 27: 124, 1955. @山田: 麻酔 6:24, 昭32 (会). @Swerdlow, M.: Anesth. & Analg. 33: 201, 1954. @Dripps, R. D.: Ann, Surg. 137: 145, 1953. @Churchill-Davidson, H. C.: Anesthesiolosy 17:88, 1956. 30 Paton, W. D. M.: Brit. J. Anaesth. 28: @Foldes, F. F., Rendell, L., & Birch, 470, 1956. J. H.: Anesth. & Analg. 35:609, 1956. (2) Foldes, F. F., McNail, P. G., & Birch, J. H.: Brit, M. J. 967, 1954 (1). ®Foldes, F. F., Vandervort, R. S., & Shanor, S. P.: Anesthesiology 16: 11, 1955. Ellis, C. H., Morgan, W. V., & Beer, E. J.: J. Pharmacol. & Exper. Therap. 106; 353, 1952. (3) Converse, J. G., & Boba, A.: Arch. Surg. 73:54,

Relationship between Succinylcholine Sensitivity and Cholinesterase Activity

Part 2. Relationship between the Duration of S. C. C. Apnea and Cholinesterase Activity

Akira Kono

Department of Surgery, Faculty of Medicine,
Shinshu University
(Directors: Prof. N. Hoshiko and
Assist. Prof. K. Iwatsuki

Recent investigations indicate that plasma cholinesterase activity is not the only factor which is responsible for determining the duration of action of succinylcholine, especially in cases of excessively prolonged apnea. It seemed, therefore, worth while to reinvestigate the relationship between the duration of apnea produced by succinylcholine and plasma cholinesterase activity.

The hydrolysis rate of acetylcholine as well as succinylcholine chloride in serum was determined in various patients, with special references to the activity of their enzymatic hydrolysis.

The hydrolysis rate of succinylcholine chloride (S.C.C.) was determined with Warburg's manometric technique.

The results were as follows:

- 1. The hydrolysis rate of S.C.C. in normal individuals was $2.34\pm0.16~\mu l/ml/min$. in male and $1.80\pm0.08~\mu l/ml/min$. in female respectively. The hydrolysis rate S.C.C. was about 3 % of acetylcholine hydrolysis rate.
- 2. The duration of apnea after S.C.C. was determined with reference to serum cholinesterase activity. It was generally prolonged in patients with a low activity of enzymatic hydrolysis, but no excessively prolonged apnea was encountered in those patients. A proportional correlation was not always observed in individual cases between the activity of enzymatic hydrolysis and the duration of apnea.
- 3. Although neonates showed resistance to S.C.C., the hydrolysis rate of acetylcholine as well as of S.C.C. in neonates proved to be rather lower than those in adults. These results suggest that serum cholinesterase activity may not appear to be the only fatcor responsible for determining the action of S.C.C., particularly in cases of abnormally prolonged appea.