1	Factors influencing residual rib hump after posterior spinal fusion
2	for adolescent idiopathic scoliosis with Lenke 1 and 2 curves
3	
0	

4 Abstract

- 5 Background: Despite remarkable improvement in Cobb angle after surgery for scoliosis, many patients
- 6 have a residual rib hump. We studied the factors responsible for this hump and their influence on patient
- 7 satisfaction.
- 8 Methods: We recruited 2 men and 38 women (mean age, 14.9 years) who underwent skip pedicle screw
- 9 fixation combined with direct vertebral body derotation for adolescent idiopathic scoliosis with Lenke
- 10 type 1 and 2 curves. Hump size was evaluated by measuring apical trunk rotation (ATR). Patients with
- 11 postoperative ATR $\leq 10^{\circ}$ were categorized as group A and those with postoperative ATR $> 10^{\circ}$ as group B.
- 12 We analyzed postoperative self-image and satisfaction subscores of the SRS-22 questionnaire. We also
- 13 compared the rate of postoperative improvement in ATR between patients who underwent additional
- 14 Ponte osteotomy and those who did not.
- 15 Results: Preoperative ATR, preoperative apical translation, and preoperative and postoperative apical
- 16 rotation significantly differed between groups A and B. In contrast, Cobb angles before and after surgery,
- 17 Cobb angle correction rates, apical translation after correction, and postoperative self-image and

- 18 satisfaction scores did not differ significantly between the groups. However, the rate of improvement in
- 19 ATR showed a strong correlation with self-image (correlation coefficient, 0.64) and satisfaction
- 20 (correlation coefficient, 0.52). This improvement rate did not differ significantly between subjects who
- 21 underwent additional Ponte osteotomy and those who did not.
- 22 Conclusions: Preoperative apical rotation and ATR were clearly related to postoperative residual hump.
- 23 For decreasing the postoperative rib hump, removal of the deformation by apical rotation was considered
- 24 more important than correction of Cobb angle. Patient satisfaction and self-image scores were not
- 25 significantly related to postoperative residual hump size, but they were influenced by improvement in
- 26 ATR.
- 27

28 Introduction

29	Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity that accompanies apical rotation
30	[1]. The most important issues in AIS surgery include cosmesis as well as respiratory dysfunction and
31	back pain, which may occur during adulthood. The primary objectives of scoliosis surgery are to decrease
32	the rib hump, which is considered a factor influencing postoperative patient satisfaction [2-5], and to
33	improve trunk balance by adjusting pelvic symmetry, shoulder height, and sagittal alignment.
34	All-pedicle-screw construct is gaining popularity, with recent reports on the coronal correction rate,
35	fixation strength, and minimal correction loss [6-13]. On the other hand, rotation in the thoracic spine,
36	which is a major cause of rib hump, is difficult to correct by using conventional methods, and thus
37	thoracoplasty has been used in combination with conventional methods to correct deformities in ribs [2,
38	14-16]. Since the publication of a report by Lee et al. [1] in 2004, devices that can directly correct the
39	rotation of the vertebral body have been developed, and good correction of vertebral body rotation and rib
40	humps has been reported [17, 18].

41 We studied preoperative factors that influence postoperative residual rib humps in patients who

42	undergo skip pedicle screw fixation [19] combined with direct vertebral body derotation (DVBD) [1]
43	without thoracoplasty. We also investigated the influence of rib hump correction on postoperative
44	satisfaction of these patients.
45	
46	
47	
48	Materials and Methods
49	This was retrospective diagnostic study. This study was approved by the Institutional Review Board of

50 our hospital (Certified No. 2092). Forty subjects (2 men and 38 women; mean age, 14.9 ± 2.3 years)

underwent skip pedicle screw fixation [19] combined with DVBD [1] without thoracoplasty for AIS with

52 Lenke type 1 and 2 curves from August 2005 to March 2011. We investigated the following preoperative

53 parameters: age; preoperative apical trunk rotation (ATR); Cobb angle of the main thoracic curve;

54 flexibility measured by lateral-bending (calculated as [preoperative Cobb angle - Cobb angle in

55 lateral-bending spine position]/preoperative Cobb angle); apical translation (AT; distance from center of

56	apical vertebra to the central sacral vertical line [CSVL]); kyphotic angle of thoracic vertebra (T5-T12
57	kyphotic angle); and apical rotation (AR), measured by CT [20]. All surgeries were performed by the
58	same surgeon. Patients predicted to have insufficient correction of Cobb angle underwent Ponte
59	osteotomy [21]. The mean follow-up period was 21.2 months (range, 6-48 months). ATR measured using
60	an inclinometer served as an indicator of rib hump (Figure 1).
61	Subjects were classified on the basis of postsurgical ATR into 2 groups: group A with a smaller residual
62	rib hump (postoperative ATR \leq 10°) and group B with a larger residual rib hump (postoperative ATR >
63	10°). Parameters related to the surgical procedure were presence/absence of Ponte osteotomy [21] and
64	implant density [22], both of which were compared between groups A and B. Postoperative parameters
65	were Cobb angle of main thoracic curve, AT, T5-T12 kyphotic angle, AR, and AR improvement rate. We
66	also studied the correlation between the preoperative and residual ATR and the ATR improvement rate.
67	All subjects completed the SRS-22 questionnaire, and we compared the subscores for self-image and
68	satisfaction at final follow-up between groups A and B.
69	We used the statistical software JMP (SAS Institute; Cary, NC, USA). We calculated Pearson

70	correlation coefficients an	d performed ANC	VA and Student t-te	est; p values le	ess than 0.05	were considered
----	-----------------------------	-----------------	---------------------	------------------	---------------	-----------------

71 statistically significant.

- 72
- 73
- . .
- $\mathbf{74}$

75 **Results**

76	Preoperative parameters are summarized in Table 1. Group A included 28 subjects (mean age, 15.1 \pm
77	2.4 years) and group B included 12 subjects (mean age, 14.4 ± 2.1 years); there was no significant
78	difference in age between the groups. Preoperative ATR in groups A and B was $12.1^{\circ} \pm 1.1^{\circ}$ and $18.3^{\circ} \pm$
79	1.8°, respectively, with the values showing a significant difference ($p < 0.01$). Improvement rate of
80	ATR in the 2 groups showed no significant difference. In groups A and B, preoperative AR by CT
81	measurement was $13.9^{\circ} \pm 7.8^{\circ}$ and $20.9^{\circ} \pm 6.8^{\circ}$ (p = 0.01) and postoperative AR was $12.0^{\circ} \pm 1.5^{\circ}$ and
82	$17.2^{\circ} \pm 2.1^{\circ}$ (p = 0.05), respectively, with both sets of values showing significant differences (Tables 1,
83	2). Preoperative AT was significantly different in groups A and B ($31.1 \pm 24.0 \text{ mm}$ and $50.2 \pm 19.6 \text{ mm}$,

84	respectively). However, postoperative AT was not significantly different between groups A and B (4.0 \pm
85	11.8 mm and 10.9 \pm 29.0 mm, respectively) (Tables 1, 2). Preoperative AR and AT showed a significant
86	positive correlation (correlation coefficient = 0.56 , p < 0.01); however, postoperative AR and AT did not
87	show a significant correlation ($p = 0.6$). Preoperative Cobb angle of main thoracic curve, flexibility
88	measured by lateral-bending, and preoperative T5-T12 kyphotic angle showed no significant difference
89	between groups A and B (Table 1).
90	Ponte osteotomy was performed in 2 subjects (7%) of group A and in 9 subjects (32%) of group B.
91	Although a larger number of patients in group B underwent Ponte osteotomy, this was not a significant
92	difference ($p = 0.3$), and implant density was not significantly different either ($p = 0.4$) (Table 2). ATR
93	improvement rate in the subjects who underwent Ponte osteotomy was $34.6\% \pm 33.3$, which was not
94	significantly different from the rate in subjects who did not undergo Ponte osteotomy ($35.1\% \pm 24.7$) (p =
95	0.97).
96	Self-evaluation with SRS-22 showed no significant difference in preoperative and postoperative
97	self-image and satisfaction scores between groups A and B (Table 3). Self-image and satisfaction scores

- 98 did not show a significant correlation with postoperative ATR; however, they showed a significant and
- 99 strong correlation with the ATR improvement rate (correlation coefficients: postoperative self-image, 0.64,
- 100 p < 0.01; satisfaction, 0.52, p < 0.05) (Table 4).
- 101 In contrast, postoperative Cobb angle and Cobb angle improvement rate had significant influence on
- 102 self-image, but their correlation with satisfaction was not significant (Table 4). Preoperative Cobb angle
- 103 and Cobb angle improvement rate showed no significant correlation (p = 0.1), but postoperative Cobb
- 104 angle and Cobb angle improvement rate showed a significant correlation (correlation coefficient, 0.79,
- 105 p < 0.01). Preoperative ATR and ATR improvement rate had a significant correlation (correlation
- 106 coefficient, 0.61, p < 0.01), however, there was no significant difference in ATR improvement rate
- 107 between groups A and B (Table 2), and there was no significant correlation between postoperative ATR
- 108 and ATR improvement rate (correlation coefficient = 0.24, p = 0.3). Pre- and postoperative AR did not
- 109 have a significant influence on AR improvement rate (p = 0.3 and 0.1, respectively). AR improvement
- 110 rate and ATR improvement rate also showed no significant correlation (p = 0.4).
- 111

1	12
---	----

Discussion

115	AIS has a considerable influence on appearance, and the extent of AIS is believed to have a significant
116	mental influence on patients [2-5]. Deformities of the chest and ribs have been evaluated according to the
117	size of the rib hump, and a surgical procedure has been developed to correct the deformity. The
118	conventional surgical procedure involves spinal vertebral correction combined with additional
119	thoracoplasty; reports indicate that this procedure has good outcomes [2, 14, 15, 23]. Improvement of the
120	posterior device has enabled direct correction of vertebral rotation by using a pedicle screw, and good
121	correction of vertebral body rotation has been reported [1, 17, 18]. However, there are no reports that
122	clearly show the effectiveness of one procedure over the other. Samdani et al. [24] reported that, for a
123	larger rib hump, ATR improvement was better in the procedure combining posterior correction with
124	thoracoplasty; however, no difference was observed in postoperative evaluations of self-image.
125	We performed skip pedicle screw fixation [19] combined with DVBD [1, 25] without thoracoplasty;

- 126 after this procedure, some patients had a residual postoperative rib hump, although curve correction was
- 127 good, it is not clear what parameters influence residual rib hump after DVBD; in this study, the 2 groups
- 128 showed significant differences in preoperative ATR, AT, and AR. There was no difference in ATR
- 129 improvement rate between groups, and preoperative ATR was directly related to the results. However,
- 130 postoperative ATR and ATR improvement rate were not correlated.
- 131 A significant difference was observed in preoperative AT between the 2 groups, but the difference in
- 132 postoperative AT was not significant. Preoperatively, AR and AT had a significant positive correlation,
- 133 with a larger AT occurring more frequently with a larger AR. After correction, there was no longer a
- 134 positive correlation between AR and AT nor did postoperative AT influence the hump. Good correction in
- 135 the coronal plane is necessary; however, AR is a confounding factor for the presence of a hump. The
- 136 influence of AT on the residual hump was negated by good correction in the coronal plane.
- 137 AR, the strongest influence on rib hump, was significantly large both before and after surgery in
- 138 subjects with a large postoperative rib hump. No correlation existed between AR improvement rate and
- 139 ATR improvement rate; thus, the AR improvement rate did not have a direct influence on the ATR

- 140 improvement rate (mitigation of hump). Thus, a factor other than AR improvement must influence the
- 141 mitigation of hump.
- 142 Hwang et al. [25] reported that, in patients who underwent correction by vertebral body rotation
- 143 without thoracoplasty, improvement of the postoperative rib hump was not influenced by parameters such
- 144 as preoperative size of the upper and main thoracic curve, flexibility, or T5-T12 kyphotic angle. Our
- study also showed that preoperative Cobb angle of main thoracic curve, flexibility, and T5-T12 kyphotic
- 146 angle was not significantly different between subjects who had a postoperative residual ATR $\leq 10^{\circ}$ and
- 147 those with postoperative residual ATR $> 10^{\circ}$.
- 148 There was no significant difference in satisfaction and self-image scores between subjects with or
- 149 without a large postoperative residual rib hump. Moreover, there was no correlation between residual
- 150 ATR and self-image or satisfaction score. However, the ATR improvement rate showed significant
- 151 correlation with postoperative self-image and satisfaction scores.
- 152 In this study, larger preoperative ATR was related to higher ATR improvement rate; however, smaller
- 153 postoperative ATR was not related to higher ATR improvement rate. These results showed that patients

154	did not evaluate the surgical outcome according to the size of the residual rib hump, but according to the
155	improvement in comparison with the preoperative condition. This result confirms that good correction of
156	the hump is an important objective of the surgery for AIS. In contrast, both postoperative Cobb angle and
157	Cobb angle improvement had a significant correlation with self-image score. This stronger correlation
158	between Cobb angle and self-image score must be because of the more obvious effects of Cobb angle on
159	appearance, including shoulder balance, which is influenced by coronal curve; asymmetry of waistline;
160	and radiographic visual images. Postoperative satisfaction had no significant relationship with
161	postoperative Cobb angle, although it had a significant correlation with ATR improvement rate. This is
162	likely because postoperative satisfaction was dependent on more complex factors, including function or
163	pain, than postoperative self-image, which was based on cosmesis. We performed skip pedicle screw
164	fixation combined with DVBD. By using this method, coronal correction was good; however,
165	sagittal kyphosis from T5 to T12 was still insufficient. We believe that improving the sagittal

166 plane is very important for maintaining the long-term health of the spine.

167	In general, asymmetrical rib hump associated with a scoliotic curve is one of the problems that
168	patients and their families notice most, and it has been correlated with patients' postoperative satisfaction
169	with cosmetic outcome. In this study, patients completed the SRS-22 questionnaire. However, their
170	families may have had concerns about the rib hump that the patients themselves were unaware of. Thus, it
171	is likely that postoperative residual rib hump is very important, regardless of the results of this study.
172	Improvement of the rib prominence is one of the primary goals of surgical treatment, and it has been
173	correlated with severity of apical vertebral rotation. Better correction of rib hump is important in surgical
174	patients.
175	
176	Limitations
177	This study was limited by its retrospective design and small sample size. Additional significant
178	differences may have been observed if the sample had been larger. Additionally, the rotation correction
179	rate in early surgery was lower than that in other reports (42.5%) [1], even though the same surgeon
180	performed all the procedures. Thus, improvement in the rotation correction rate might have affected the

181	type of factors influencing residual rib hump.
182	
183	
184	
185	Conclusion
186	Parameters that influenced postoperative rib hump in posterior spinal fusion were preoperative apical
187	trunk rotation and preoperative and postoperative apical rotation, as measured by apical CT. Other
188	parameters such as preoperative flexibility of main thoracic curve, thoracic kyphotic angle, and
189	presence/absence of additional Ponte osteotomy did not influence postoperative residual rib hump. Patient
190	satisfaction and self-image scores were not significantly related to postoperative hump size; however,
191	they were influenced by improvement in ATR.

193	Refe	erences
194		
195	1.	Lee SM, Suk SI, Chung ER. Direct vertebral rotation: a new technique of three-dimensional
196		deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine.
197		2004;29:343-9.
198	2.	Geissele AE, Ogilvie JW, Cohen M, Bradford DS. Thoracoplasty for the treatment of rib
199		prominence in thoracic scoliosis. Spine. 1994;19:1636-42.
200	3.	Aaro S, Dahlborn M. The effect of Harrington instrumentation on the longitudinal axis rotation of
201		the apical vertebra and on the spinal and rib-cage deformity in idiopathic scoliosis studied by
202		computer tomography. Spine. 1982;7:456-62.
203	4.	Thulbourne T, Gillespie R. The rib hump in idiopathic scoliosis. Measurement, analysis and
204		response to treatment. J Bone Joint Surg Br. 1976;58:64-71.
205	5.	Weatherley CR, Draycott V, O'Brien JF, Benson DR, Gopalakrishnan KC, Evans JH, O'Brien JP.
206		The rib deformity in adolescent idiopathic scoliosis. A prospective study to evaluate changes after

207		Harrington distraction and posterior fusion. J Bone Joint Surg Br. 1987;69:179-82.
208	6.	Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB. Segmental pedicle screw fixation in the treatment
209		of thoracic idiopathic scoliosis. Spine. 1995;20:1399-405.
210	7.	Suk SI, Lee CK, Min HJ, Cho KH, Oh JH. Comparison of Cotrel-Dubousset pedicle screws and
211		hooks in the treatment of idiopathic scoliosis. Int Orthop. 1994;18:341-6.
212	8.	Dobbs MB, Lenke LG, Kim YJ, Kamath G, Peelle MW, Bridwell KH. Selective posterior thoracic
213		fusions for adolescent idiopathic scoliosis: comparison of hooks versus pedicle screws. Spine.
214		2006;31:2400-4.
215	9.	Karatoprak O, Unay K, Tezer M, Ozturk C, Aydogan M, Mirzanli C. Comparative analysis of
216		pedicle screw versus hybrid instrumentation in adolescent idiopathic scoliosis surgery. Int Orthop.
217		2008;32:523-8; discussion 9.
218	10.	Kim YJ, Lenke LG, Cho SK, Bridwell KH, Sides B, Blanke K. Comparative analysis of pedicle
219		screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis.
220		Spine. 2004;29:2040-8.

221	11. Kim YJ, Lenke LG, Kim J, Bridwell KH, Cho SK, Chen G, Sides B. Comparative analysis of
222	pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic
223	scoliosis. Spine. 2006;31:291-8.
224	12. Liljenqvist U, Hackenberg L, Link T, Halm H. Pullout strength of pedicle screws versus pedicle
225	and laminar hooks in the thoracic spine. Acta Orthop Belg. 2001;67:157-63.
226	13. Luhmann SJ, Lenke LG, Kim YJ, Bridwell KH, Schootman M. Thoracic adolescent idiopathic
227	scoliosis curves between 70 degrees and 100 degrees: is anterior release necessary? Spine.
228	2005;30:2061-7.
229	14. Shufflebarger HL, Smiley K, Roth HJ. Internal thoracoplasty. A new procedure. Spine
230	1994;19:840-2.
231	15. Steel HH. Rib resection and spine fusion in correction of convex deformity in scoliosis. J Bone
232	Joint Surg Am. 1983;65:920-5.
233	16. Theologis TN, Jefferson RJ, Simpson AH, Turner-Smith AR, Fairbank JC. Quantifying the
234	cosmetic defect of adolescent idiopathic scoliosis. Spine. 1993;18:909-12.

235	17. Asghar J, Samdani AF, Pahys JM, D'Andrea LP, Guille JT, Clements DH, Betz RR. Computed
236	tomography evaluation of rotation correction in adolescent idiopathic scoliosis: a comparison of an
237	all pedicle screw construct versus a hook-rod system. Spine. 2009;34:804-7.
238	18. Kadoury S, Cheriet F, Beausejour M, Stokes IA, Parent S, Labelle H. A three-dimensional
239	retrospective analysis of the evolution of spinal instrumentation for the correction of adolescent
240	idiopathic scoliosis. Eur Spine J. 2009;18:23-37.
241	19. Takahashi J, Hirabayashi H, Hashidate H, Ogihara N, Kato H. Accuracy of multilevel registration
242	in image-guided pedicle screw insertion for adolescent idiopathic scoliosis. Spine. 2010;35:347-52.
243	20. Ho EK, Upadhyay SS, Chan FL, Hsu LC, Leong JC. New methods of measuring vertebral rotation
244	from computed tomographic scans. An intraobserver and interobserver study on girls with scoliosis.
245	Spine. 1993;18:1173-7.
246	21. Ponte A. Posterior column shortening for Scheuermann's kyphosis. Surgical Techniques for the
247	Spine. 2003;1st ed:107-13.

248 22. Quan GM, Gibson MJ. Correction of main thoracic adolescent idiopathic scoliosis using pedicle

- screw instrumentation: does higher implant density improve correction? Spine (Phila Pa 1976)
- 250 2010;35:562-7.
- 251 23. Harvey CJ, Jr., Betz RR, Clements DH, Huss GK, Clancy M. Are there indications for partial rib
- 252 resection in patients with adolescent idiopathic scoliosis treated with Cotrel-Dubousset
- instrumentation? Spine 1993;18:1593-8.
- 254 24. Samdani AF, Hwang SW, Miyanji F, Lonner B, Marks MC, Sponseller PD, Newton PO, Cahill PJ,
- 255 Shufflebarger HL, Betz RR. Direct Vertebral Body Derotation, Thoracoplasty or Both: Which is
- 256 Better with Respect to Inclinometer and SRS-22 Scores? Spine 2012.
- 257 25. Hwang SW, Samdani AF, Lonner B, Miyanji F, Stanton P, Marks MC, Bastrom T, Newton PO, Betz
- 258 RR, Cahill PJ. Impact of direct vertebral body derotation on rib prominence: are preoperative
- factors predictive of changes in rib prominence? Spine 2012;37:E86-9.

260

261 Figure Caption

262 Figure 1. Apical trunk rotation was measured with an inclinometer to determine the extent of the hump.

	Group A (postoperative ATR $\leq 10^{\circ}$)	Group B (postoperative ATR > 10°)	р
n	28	12	
Age (years)	15.1 ± 2.4	14.4 ± 2.1	0.33
Postoperative ATR (°)	7.4 ± 0.3	12.4 ± 0.5	< 0.01
Preoperative ATR (°)	12.1 ± 1.1	18.3 ± 1.8	< 0.01
Preoperative Cobb			
angle (main thoracic)	52.4 ± 8.1	58.8 ± 17.3	0.11
(°)			
Flexibility measured			
by lateral-bending	33.3 ± 14.1	39.7 ± 14.1	0.19
(%)			
Preoperative apical	01.1 + 04.0		0.02
translation (mm)	31.1 ± 24.0	50.2 ± 19.6	
Preoperative thoracic			
kyphotic angle	13.8 ± 9.3	12.7 ± 5.7	0.73
(Th5-Th12) (°)			
Preoperative AR (°)	13.9 ± 7.8	$20.9{\pm}6.8$	0.01

Table 1. Comparison of preoperative parameters^a between 2 groups classified by residual apical trunk rotation (ATR)

bbreviations: ATR, apical trunk rotation; AR, apical rotation

^aExpressed as mean \pm SD

-			
	Group A (postoperative	Group B (postoperative	
	ATR $\leq 10^{\circ}$)	ATR > 10°)	р
Postoperative Cobb angle	225 ± 70		0.25
(main thoracic) (°)	22.0 ± 1.9	25.9 ± 10.4	
Postoperative apical	4.0 + 11.0	10.0 + 20.0	0.11
translation (mm)	4.0 ± 11.8	10.9 ± 29.0	
Postoperative thoracic			
kyphotic angle	20.0 ± 10.1	14.6 ± 9.3	0.11
(Th5-Th12) (°)			
Postoperative AR (°)	12.0 ± 1.5	17.2 ± 2.1	0.047
Improvement rate of AR	0.0 1.00 5		0.3
(%)	9.2 ± 33.5	20.0 ± 22.6	
Improvement rate of ATR		22.0.1.22. 7	0.84
(%)	35.6 ± 31.7	32.9 ± 20.5	
Number of subjects who			
underwent Ponte	2/12 (7%)	9/28 (32%)	0.3
osteotomy			
Implant density	1.2 ± 0.3	1.2 ± 0.3	0.4

Table 2. Comparison of postoperative parameters^a between 2 groups classified by residual apical trunk rotation (ATR)

Abbreviations: ATR, apical trunk rotation; AR, apical rotation

^aExpressed as mean \pm SD

Table 3. Comparison of self-image and satisfaction scores^a between 2 groups classified by residual

, ,				
	Group A	Group B	q	
	(postoperative $ATR \le 10^{\circ}$)	(postoperative ATR > 10°)		
Preoperative self-image	2.8 ± 0.6	2.8 ± 0.6	0.8	
Postoperative self-image	4.0 ± 0.7	3.8 ± 0.2	0.26	
Satisfaction	4.1 ± 0.7	4.0 ± 0.8	0.5	

apical trunk rotation (ATR)

Abbreviation: ATR, apical trunk rotation

 aExpressed as mean \pm SD

	Coefficient of	p value
	correlation	
Postoperative ATR and self image	-0.22	0.17
Postoperative ATR and satisfaction	0.0	1.0
ATR improvement rate and postoperative self image	0.64	< 0.01
ATR improvement rate and satisfaction	0.52	0.01
Postoperative Cobb angle and postoperative self image	0.42	< 0.01
Postoperative Cobb angle and satisfaction	-0.12	0.5
Cobb angle improvement rate and postoperative self image	0.40	0.01
Cobb angle improvement rate and satisfaction	0.22	0.2

Table 4. Correlation between postoperative ATR, Cobb angle and self-image or satisfaction

Abbreviation: ATR, apical trunk rotation

