{"created":"2021-03-01T06:14:54.710655+00:00","id":12006,"links":{},"metadata":{"_buckets":{"deposit":"a7276c05-9654-47cf-b181-d83969e64f9a"},"_deposit":{"id":"12006","owners":[],"pid":{"revision_id":0,"type":"depid","value":"12006"},"status":"published"},"_oai":{"id":"oai:soar-ir.repo.nii.ac.jp:00012006","sets":["1169:1171:1172:1179"]},"author_link":["36830","36831","36832"],"item_10_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2006-03-24","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"26","bibliographicPageStart":"1","bibliographicVolumeNumber":"40","bibliographic_titles":[{"bibliographic_title":"Journal of the Faculty of Science Shinshu University"}]}]},"item_10_description_20":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Let μ be a holomorphic function in the unit ball B of C^n and φ be a univalent holomorphic self-map of B. We give some sufficient conditions for μ and φ that the weighted composition operator μC_φ is bounded or compact on the Hardy spaces H^p(B) and the weighted Bergman spaces A^p(v_a) (0