{"created":"2021-03-01T06:14:56.185042+00:00","id":12030,"links":{},"metadata":{"_buckets":{"deposit":"a4b43530-60ca-48f2-abdd-bb753ae1b178"},"_deposit":{"id":"12030","owners":[],"pid":{"revision_id":0,"type":"depid","value":"12030"},"status":"published"},"_oai":{"id":"oai:soar-ir.repo.nii.ac.jp:00012030"},"item_10_biblio_info_6":{"attribute_name":"\u66f8\u8a8c\u60c5\u5831","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2000-03-30","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"2","bibliographicPageEnd":"79","bibliographicPageStart":"69","bibliographicVolumeNumber":"34","bibliographic_titles":[{"bibliographic_title":"\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981"}]}]},"item_10_description_20":{"attribute_name":"\u6284\u9332","attribute_value_mlt":[{"subitem_description":"Let B denote the unit ball in C\u207f, and \u03bd the normalized Lebesgue measure on B. For \u03b1>-1, define d\u03bd\u03b1(z) = (1-|z|\u00b2)\u03b1d\u03bd(z), z\u2208B. Let H(B) denote the space of all holomorphic functions in B. G.Benke and D.-C. Chang [1] have recently characterized the weighted Bergman spaces Ap(\u03bda)\u2261Lp(\u03bda)\u2229H(B) as those functions in H(B) whose images under the action of a certain set of differential operators lie in Lp(\u03bda). In the present paper we introduce some new operators and give another proof of their theorem.","subitem_description_type":"Abstract"}]},"item_10_description_30":{"attribute_name":"\u8cc7\u6e90\u30bf\u30a4\u30d7\uff08\u30b3\u30f3\u30c6\u30f3\u30c4\u306e\u7a2e\u985e\uff09","attribute_value_mlt":[{"subitem_description":"Article","subitem_description_type":"Other"}]},"item_10_description_5":{"attribute_name":"\u5f15\u7528","attribute_value_mlt":[{"subitem_description":"\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981 34(2): 69-79(2000)","subitem_description_type":"Other"}]},"item_10_publisher_4":{"attribute_name":"\u51fa\u7248\u8005","attribute_value_mlt":[{"subitem_publisher":"\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8"}]},"item_10_source_id_35":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0583-063X","subitem_source_identifier_type":"ISSN"}]},"item_10_source_id_40":{"attribute_name":"\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID","attribute_value_mlt":[{"subitem_source_identifier":"AA00697923","subitem_source_identifier_type":"NCID"}]},"item_creator":{"attribute_name":"\u8457\u8005","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"MATSUGU, Yasuo"}],"nameIdentifiers":[{}]}]},"item_files":{"attribute_name":"\u30d5\u30a1\u30a4\u30eb\u60c5\u5831","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2015-09-28"}],"displaytype":"detail","filename":"Science34-02-01.pdf","filesize":[{"value":"328.7 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"Science34-02-01.pdf","url":"https://soar-ir.repo.nii.ac.jp/record/12030/files/Science34-02-01.pdf"},"version_id":"577b2a2c-d0bd-4241-80ec-c8d0fc1a8672"}]},"item_language":{"attribute_name":"\u8a00\u8a9e","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"\u8cc7\u6e90\u30bf\u30a4\u30d7","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"On a Theorem of G. Benke and D.-C. Chang","item_titles":{"attribute_name":"\u30bf\u30a4\u30c8\u30eb","attribute_value_mlt":[{"subitem_title":"On a Theorem of G. Benke and D.-C. Chang"}]},"item_type_id":"10","owner":"1","path":["1169/1171/1172/1185"],"pubdate":{"attribute_name":"\u516c\u958b\u65e5","attribute_value":"2010-10-06"},"publish_date":"2010-10-06","publish_status":"0","recid":"12030","relation_version_is_last":true,"title":["On a Theorem of G. Benke and D.-C. Chang"],"weko_creator_id":"1","weko_shared_id":null},"updated":"2021-03-01T11:36:33.949543+00:00"}