{"created":"2021-03-01T06:14:56.965831+00:00","id":12043,"links":{},"metadata":{"_buckets":{"deposit":"35e8f3a3-b9da-49fe-9c29-c1c36c83ae85"},"_deposit":{"id":"12043","owners":[],"pid":{"revision_id":0,"type":"depid","value":"12043"},"status":"published"},"_oai":{"id":"oai:soar-ir.repo.nii.ac.jp:00012043"},"item_10_biblio_info_6":{"attribute_name":"\u66f8\u8a8c\u60c5\u5831","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1998-03-30","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"2","bibliographicPageEnd":"67","bibliographicPageStart":"61","bibliographicVolumeNumber":"32","bibliographic_titles":[{"bibliographic_title":"\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981"}]}]},"item_10_description_20":{"attribute_name":"\u6284\u9332","attribute_value_mlt":[{"subitem_description":"In [2] (\u221e-p)-form on a k-th Sobolev space Wk(X), X a compact (spin) manifold, was defined by using Sobolev duality. Integrals of (\u221e-p)-form on an (\u221e-p)-form on a cube in Wk(X) were defined without using measure. We show when the lenghth of sides of the cube tends to \u221e, infinite dimensional Gaussian integral that is principal on application converges if and only if the cube is imbedded in Wk(X), k<-d+1/2.","subitem_description_type":"Abstract"}]},"item_10_description_30":{"attribute_name":"\u8cc7\u6e90\u30bf\u30a4\u30d7\uff08\u30b3\u30f3\u30c6\u30f3\u30c4\u306e\u7a2e\u985e\uff09","attribute_value_mlt":[{"subitem_description":"Article","subitem_description_type":"Other"}]},"item_10_description_5":{"attribute_name":"\u5f15\u7528","attribute_value_mlt":[{"subitem_description":"\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981 32(2): 61-67(1998)","subitem_description_type":"Other"}]},"item_10_publisher_4":{"attribute_name":"\u51fa\u7248\u8005","attribute_value_mlt":[{"subitem_publisher":"\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8"}]},"item_10_source_id_35":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0583-063X","subitem_source_identifier_type":"ISSN"}]},"item_10_source_id_40":{"attribute_name":"\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID","attribute_value_mlt":[{"subitem_source_identifier":"AA00697923","subitem_source_identifier_type":"NCID"}]},"item_creator":{"attribute_name":"\u8457\u8005","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"ASADA, Akira"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"TANABE, Nobuhiko"}],"nameIdentifiers":[{}]}]},"item_files":{"attribute_name":"\u30d5\u30a1\u30a4\u30eb\u60c5\u5831","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2015-09-28"}],"displaytype":"detail","filename":"Science32-02-01.pdf","filesize":[{"value":"226.0 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"Science32-02-01.pdf","url":"https://soar-ir.repo.nii.ac.jp/record/12043/files/Science32-02-01.pdf"},"version_id":"32382fdc-18c8-453d-b9dc-00627f16ae5b"}]},"item_language":{"attribute_name":"\u8a00\u8a9e","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"\u8cc7\u6e90\u30bf\u30a4\u30d7","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"A Remark on Infinite Dimensional Gaussian Integral in a Sobolev Space","item_titles":{"attribute_name":"\u30bf\u30a4\u30c8\u30eb","attribute_value_mlt":[{"subitem_title":"A Remark on Infinite Dimensional Gaussian Integral in a Sobolev Space"}]},"item_type_id":"10","owner":"1","path":["1169/1171/1172/1187"],"pubdate":{"attribute_name":"\u516c\u958b\u65e5","attribute_value":"2010-10-06"},"publish_date":"2010-10-06","publish_status":"0","recid":"12043","relation_version_is_last":true,"title":["A Remark on Infinite Dimensional Gaussian Integral in a Sobolev Space"],"weko_creator_id":"1","weko_shared_id":null},"updated":"2021-03-01T11:36:14.393742+00:00"}