{"created":"2021-03-01T06:14:57.445643+00:00","id":12051,"links":{},"metadata":{"_buckets":{"deposit":"d86e3568-aa5f-48f7-a801-9768637d36ca"},"_deposit":{"id":"12051","owners":[],"pid":{"revision_id":0,"type":"depid","value":"12051"},"status":"published"},"_oai":{"id":"oai:soar-ir.repo.nii.ac.jp:00012051","sets":["1169:1171:1172:1188"]},"author_link":["36926"],"item_10_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1997-03-29","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"2","bibliographicPageEnd":"70","bibliographicPageStart":"59","bibliographicVolumeNumber":"31","bibliographic_titles":[{"bibliographic_title":"信州大学理学部紀要"}]}]},"item_10_description_20":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"In our previous paper ([1]), vector analysis on a Sobolev space Wk(X) was investigated and the possibility to give a geometric example of Kerner's higher gauge theory ([6],[7]) was discussed. In this paper, we give a simple example of geometric space on which the exterior derivation is not nilpotent but its n-th power vanishes (n≧3), by using suitable subspace of (∞-p)-forms. This provides a geometric example of Kerner's higher gauge theory. To discuss its algebraic counter part, we also treat Clifford algebra on Wk(X) with infinite degree spinors.","subitem_description_type":"Abstract"}]},"item_10_description_30":{"attribute_name":"資源タイプ(コンテンツの種類)","attribute_value_mlt":[{"subitem_description":"Article","subitem_description_type":"Other"}]},"item_10_description_5":{"attribute_name":"引用","attribute_value_mlt":[{"subitem_description":"信州大学理学部紀要 31(2): 59-70(1997)","subitem_description_type":"Other"}]},"item_10_publisher_4":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"信州大学理学部"}]},"item_10_source_id_35":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0583-063X","subitem_source_identifier_type":"PISSN"}]},"item_10_source_id_40":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA00697923","subitem_source_identifier_type":"NCID"}]},"item_1627890569677":{"attribute_name":"出版タイプ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"ASADA, Akira","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"36926","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2015-09-28"}],"displaytype":"detail","filename":"Science31-02-02.pdf","filesize":[{"value":"450.7 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"Science31-02-02.pdf","url":"https://soar-ir.repo.nii.ac.jp/record/12051/files/Science31-02-02.pdf"},"version_id":"3475dec5-4337-4528-8142-2b868382f22b"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Vector Analysis on Sobolev Spaces, II","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Vector Analysis on Sobolev Spaces, II","subitem_title_language":"en"}]},"item_type_id":"10","owner":"1","path":["1188"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2010-10-06"},"publish_date":"2010-10-06","publish_status":"0","recid":"12051","relation_version_is_last":true,"title":["Vector Analysis on Sobolev Spaces, II"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-03-08T01:52:28.349049+00:00"}