{"created":"2021-03-01T06:15:00.574101+00:00","id":12103,"links":{},"metadata":{"_buckets":{"deposit":"9a167652-35ee-41b0-955a-ebc9c089db1b"},"_deposit":{"id":"12103","owners":[],"pid":{"revision_id":0,"type":"depid","value":"12103"},"status":"published"},"_oai":{"id":"oai:soar-ir.repo.nii.ac.jp:00012103"},"item_10_biblio_info_6":{"attribute_name":"\u66f8\u8a8c\u60c5\u5831","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1989-03-30","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"2","bibliographicPageEnd":"90","bibliographicPageStart":"77","bibliographicVolumeNumber":"23","bibliographic_titles":[{"bibliographic_title":"\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981"}]}]},"item_10_description_20":{"attribute_name":"\u6284\u9332","attribute_value_mlt":[{"subitem_description":"Let G be GL (n,c) and \u03a9G the based loop group over G. Then the (stable) first and second non abelian de Rham sets with respect to G and \u03a9G are related by the diagram \u2026 Here, \u03a9Me is the space of zero homotopic loops over M, g is the Lie algebra of G, \u03a9g is the loop algebra over g, and M\u00b9 and M\u00b9\u03a9g are the sheaves of germs of g- and \u03a9g-valued integrable forms on M, a smooth Hilbert manifold. The maps \u03c1*i, B\u2080 and B\u2081 are denned by using Grassmanhian model of loop qroups (B is defined with some additional assumptions at this stage). Geometric characterization of the map from M into \u03a9G, the basic central extension of \u03a9G, together with its quantization condition and relations of several characteristic classes of non abelian de Rham sets, including string classes, and the above maps are also given.","subitem_description_type":"Abstract"}]},"item_10_description_30":{"attribute_name":"\u8cc7\u6e90\u30bf\u30a4\u30d7\uff08\u30b3\u30f3\u30c6\u30f3\u30c4\u306e\u7a2e\u985e\uff09","attribute_value_mlt":[{"subitem_description":"Article","subitem_description_type":"Other"}]},"item_10_description_5":{"attribute_name":"\u5f15\u7528","attribute_value_mlt":[{"subitem_description":"\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8\u7d00\u8981 23(2): 77-90(1989)","subitem_description_type":"Other"}]},"item_10_publisher_4":{"attribute_name":"\u51fa\u7248\u8005","attribute_value_mlt":[{"subitem_publisher":"\u4fe1\u5dde\u5927\u5b66\u7406\u5b66\u90e8"}]},"item_10_source_id_35":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0583-063X","subitem_source_identifier_type":"ISSN"}]},"item_10_source_id_40":{"attribute_name":"\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID","attribute_value_mlt":[{"subitem_source_identifier":"AA00697923","subitem_source_identifier_type":"NCID"}]},"item_creator":{"attribute_name":"\u8457\u8005","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"ASADA, AKIRA"}],"nameIdentifiers":[{}]}]},"item_files":{"attribute_name":"\u30d5\u30a1\u30a4\u30eb\u60c5\u5831","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2015-09-28"}],"displaytype":"detail","filename":"Science23-02-01.pdf","filesize":[{"value":"506.7 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"Science23-02-01.pdf","url":"https://soar-ir.repo.nii.ac.jp/record/12103/files/Science23-02-01.pdf"},"version_id":"4eb65d78-a96a-4bf1-9ede-69e633f00b28"}]},"item_language":{"attribute_name":"\u8a00\u8a9e","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"\u8cc7\u6e90\u30bf\u30a4\u30d7","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Remarks on the Relations between Non Abelian de Rham Theories with respect to G and \u03a9G","item_titles":{"attribute_name":"\u30bf\u30a4\u30c8\u30eb","attribute_value_mlt":[{"subitem_title":"Remarks on the Relations between Non Abelian de Rham Theories with respect to G and \u03a9G"}]},"item_type_id":"10","owner":"1","path":["1169/1171/1172/1196"],"pubdate":{"attribute_name":"\u516c\u958b\u65e5","attribute_value":"2010-10-06"},"publish_date":"2010-10-06","publish_status":"0","recid":"12103","relation_version_is_last":true,"title":["Remarks on the Relations between Non Abelian de Rham Theories with respect to G and \u03a9G"],"weko_creator_id":"1","weko_shared_id":null},"updated":"2021-03-01T11:34:50.067103+00:00"}