@article{oai:soar-ir.repo.nii.ac.jp:00013469, author = {古山, 通久 and 扇谷, 恵 and 服部, 達哉 and 福長, 博 and 鈴木, 愛 and SAHNOUN, Riadh and 坪井, 秀行 and 畠山, 望 and 遠藤, 明 and 高羽, 洋充 and 久保, 百司}, issue = {2}, journal = {Journal of Computer Chemistry, Japan}, month = {Jun}, note = {数十nmから数μmの不規則な細孔構造を有する多孔体(不規則性多孔体)は、自動車触媒、排ガス処理用フィルタ、燃料電池用電極触媒、リチウム電池用電極触媒などをはじめとして様々な用途に用いられている。これら不規則性多孔体の特性・信頼性向上に向けた研究開発アプローチは、材料物性の制御、相互作用界面に注目した界面制御、大表面積・高活性化のための構造制御、に大別される。このうち構造制御は、理論的に有効な手法が存在せず、実験による経験的試行錯誤による研究開発が大きな役割を果たしてきた。著者らは、不規則性多孔体微細構造の合理的最適化というブレイクスルーに向けて、三次元多孔質シミュレータを開発してきた。本研究では、開発した三次元多孔質シミュレータを固体酸化物燃料電池(SOFC)の燃料極へと具体的に応用し、実験結果に対する合致からその妥当性を確認した。さらに、三次元多孔質シミュレータに基づく微細構造最適化のための手法を提案し、予備的な結果に基づいて提案手法の展開可能性を示すことに成功した。 Irregular porous materials with pore sizes of several tens nm to μm are widely used in industrial applications such as automobile catalysts, gas separation filters, fuel cell electrodes, and lithium ion battery electrodes. Current research and development approaches for irregular porous materials can be classified into the three types shown in Figure 1. Compared to material and interface design approaches, the structure design approach is challenging because no effective method to model realistic porous structures is available presently. To counter this issue, the authors have developed a novel porous structure simulator POCO2, the basic algorithm of which is shown in Figure 2. The POCO2 program is based on an original overlap-allowed particle packing method, where overlaps of particles are allowed up to a certain overlap ratio (Figure 3), and can construct various irregular porous structures as shown in Figure 4. We have also developed tools to quantitatively evaluate microstructures of porous materials, such as cross-sectional area (Figure 5), surface area (Figure 6), pore volume (Figure 7), and triple phase boundary length (Figure 8). In order to investigate the influence of microstructures on the characteristics of irregular porous materials, we have developed a simulator of the overpotential of a solid oxide fuel cell (SOFC) anode (Figure 9). We constructed a model of a Ni-YSZ anode (Figure 10(a)) and confirmed that the overpotential calculated by our simulator agreed well with the experimentally reported value (Figure 10(b)). Finally, we have proposed a scheme for the rational optimization of the microstructure of irregular porous materials (Figure 11(a)) and showed the preliminary results obtained so far (Figure 11(b) and (c)). Based on our preliminary results, we confirmed the potential feasibility of the proposed scheme., Article, Journal of Computer Chemistry, Japan 7(2): 55-62(2008)}, pages = {55--62}, title = {不規則性多孔体微細構造最適化のための三次元多孔質シミュレータPOCO^2の開発と応用}, volume = {7}, year = {2008} }