@article{oai:soar-ir.repo.nii.ac.jp:00017849, author = {Wang, Shuwen and Minami, Daiki and Kaneko, Katsumi}, journal = {MICROPOROUS AND MESOPOROUS MATERIALS}, month = {Jun}, note = {We prepared nanoporous graphene monolith of different porosity by high temperature treatment up to 2073 K in Ar. The porosity is comparatively evaluated with N-2 adsorption isotherms at 77.4 K and Ar adsorption isotherms at 87.3 K and 77.4 K. N-2 adsorption at 77.4 K shows an excess adsorption amount below 3 x 10(-3) of the relative pressure which is caused by the quadrupole moment of an N-2 molecule. This effect doesn't give significant influence on the determination of the total surface area from subtracting pore effect (SPE) method, the micropore volume from Dubinin-Radushkevich (DR) method and the total pore volumes from the Gurvitch rule. However, the peak of the micropore size distribution determined by Horvath-Kawazoe (HK) method from N-2 adsorption at 77.4 K shifts to a smaller size than that from Ar adsorption at 87.3 K by 0.05-0.09 nm. (C) 2015 Elsevier Inc. All rights reserved., Article, MICROPOROUS AND MESOPOROUS MATERIALS. 209:72-78 (2015)}, pages = {72--78}, title = {Comparative pore structure analysis of highly porous graphene monoliths treated at different temperatures with adsorption of N-2 at 77.4 K and of Ar at 87.3 K and 77.4 K}, volume = {209}, year = {2015} }