WEKO3
アイテム
{"_buckets": {"deposit": "923925f4-3132-4672-a6bd-dfa4e85fc66c"}, "_deposit": {"id": "18361", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "18361"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00018361", "sets": ["1170"]}, "author_link": ["51113", "51114", "51115", "51116"], "item_1628147817048": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_ab4af688f83e57aa", "subitem_version_type": "AM"}]}, "item_6_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2014", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "4", "bibliographicPageEnd": "2124", "bibliographicPageStart": "2103", "bibliographicVolumeNumber": "14", "bibliographic_titles": [{"bibliographic_title": "ALGEBRAIC AND GEOMETRIC TOPOLOGY"}]}]}, "item_6_description_20": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "We develop the properties of the nth sequential topological complexity TCn, a homotopy invariant introduced by the third author as an extension of Farber\u0027s topological model for studying the complexity of motion planning algorithms in robotics. We exhibit close connections of TCn(X) to the Lusternik-Schnirelmann category of cartesian powers of X, to the cup length of the diagonal embedding X hooked right arrow X-n, and to the ratio between homotopy dimension and connectivity of X. We fully compute the numerical value of TCn for products of spheres, closed 1-connected symplectic manifolds and quaternionic projective spaces. Our study includes two symmetrized versions of TCn(X). The first one, unlike Farber and Grant\u0027s symmetric topological complexity, turns out to be a homotopy invariant of X; the second one is closely tied to the homotopical properties of the configuration space of cardinality-n subsets of X. Special attention is given to the case of spheres.", "subitem_description_type": "Abstract"}]}, "item_6_description_30": {"attribute_name": "資源タイプ(コンテンツの種類)", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_6_description_5": {"attribute_name": "引用", "attribute_value_mlt": [{"subitem_description": "ALGEBRAIC AND GEOMETRIC TOPOLOGY. 14(4):2103-2124 (2014)", "subitem_description_type": "Other"}]}, "item_6_link_3": {"attribute_name": "信州大学研究者総覧へのリンク", "attribute_value_mlt": [{"subitem_link_text": "Tamaki, Dai", "subitem_link_url": "http://soar-rd.shinshu-u.ac.jp/profile/ja.OafeOUkh.html"}]}, "item_6_link_67": {"attribute_name": "WoS", "attribute_value_mlt": [{"subitem_link_text": "Web of Science", "subitem_link_url": "http://gateway.isiknowledge.com/gateway/Gateway.cgi?\u0026GWVersion=2\u0026SrcAuth=ShinshuUniv\u0026SrcApp=ShinshuUniv\u0026DestLinkType=FullRecord\u0026DestApp=WOS\u0026KeyUT=000346150600005"}]}, "item_6_publisher_4": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "GEOMETRY \u0026 TOPOLOGY PUBLICATIONS"}]}, "item_6_relation_48": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_name": [{"subitem_relation_name_text": "10.2140/agt.2014.14.2103"}], "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.2140/agt.2014.14.2103", "subitem_relation_type_select": "DOI"}}]}, "item_6_select_64": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "author"}]}, "item_6_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1472-2747", "subitem_source_identifier_type": "ISSN"}]}, "item_6_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1472-2747", "subitem_source_identifier_type": "ISSN"}]}, "item_6_source_id_40": {"attribute_name": "書誌レコードID", "attribute_value_mlt": [{"subitem_source_identifier": "AA11963392", "subitem_source_identifier_type": "NCID"}]}, "item_6_text_69": {"attribute_name": "wosonly authkey", "attribute_value_mlt": [{"subitem_text_value": "Lusternik–Schnirelmann category, Švarc genus, topological complexity, motion planning, configuration spaces"}]}, "item_6_text_70": {"attribute_name": "wosonly keywords", "attribute_value_mlt": [{"subitem_text_value": "ROBOT MOTION; SPACES"}]}, "item_6_textarea_68": {"attribute_name": "wosonly abstract", "attribute_value_mlt": [{"subitem_textarea_value": "We develop the properties of the nth sequential topological complexity TCn, a homotopy invariant introduced by the third author as an extension of Farber\u0027s topological model for studying the complexity of motion planning algorithms in robotics. We exhibit close connections of TCn(X) to the Lusternik-Schnirelmann category of cartesian powers of X, to the cup length of the diagonal embedding X hooked right arrow X-n, and to the ratio between homotopy dimension and connectivity of X. We fully compute the numerical value of TCn for products of spheres, closed 1-connected symplectic manifolds and quaternionic projective spaces. Our study includes two symmetrized versions of TCn(X). The first one, unlike Farber and Grant\u0027s symmetric topological complexity, turns out to be a homotopy invariant of X; the second one is closely tied to the homotopical properties of the configuration space of cardinality-n subsets of X. Special attention is given to the case of spheres."}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Basabe, Ibai"}], "nameIdentifiers": [{"nameIdentifier": "51113", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Gonzalez, Jesus"}], "nameIdentifiers": [{"nameIdentifier": "51114", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Rudyak, Yuli B."}], "nameIdentifiers": [{"nameIdentifier": "51115", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Tamaki, Dai"}], "nameIdentifiers": [{"nameIdentifier": "51116", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2016-08-29"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "Higher_topological_complexity_and_its_symmetrization.pdf", "filesize": [{"value": "460.9 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 460900.0, "url": {"label": "Higher_topological_complexity_and_its_symmetrization.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/18361/files/Higher_topological_complexity_and_its_symmetrization.pdf"}, "version_id": "64213bee-facc-4e40-87e1-54437a71fa98"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Lusternik–Schnirelmann category", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Švarc genus", "subitem_subject_scheme": "Other"}, {"subitem_subject": "topological complexity", "subitem_subject_scheme": "Other"}, {"subitem_subject": "motion planning", "subitem_subject_scheme": "Other"}, {"subitem_subject": "configuration spaces", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Higher topological complexity and its symmetrization", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Higher topological complexity and its symmetrization", "subitem_title_language": "en"}]}, "item_type_id": "6", "owner": "1", "path": ["1170"], "permalink_uri": "http://hdl.handle.net/10091/00019123", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2016-08-29"}, "publish_date": "2016-08-29", "publish_status": "0", "recid": "18361", "relation": {}, "relation_version_is_last": true, "title": ["Higher topological complexity and its symmetrization"], "weko_shared_id": -1}
Higher topological complexity and its symmetrization
http://hdl.handle.net/10091/00019123
http://hdl.handle.net/10091/000191238b08ea58-5662-492e-94c9-9bbe8f011b75
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2016-08-29 | |||||
タイトル | ||||||
言語 | en | |||||
タイトル | Higher topological complexity and its symmetrization | |||||
言語 | ||||||
言語 | eng | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Lusternik–Schnirelmann category | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Švarc genus | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | topological complexity | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | motion planning | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | configuration spaces | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
著者 |
Basabe, Ibai
× Basabe, Ibai× Gonzalez, Jesus× Rudyak, Yuli B.× Tamaki, Dai |
|||||
信州大学研究者総覧へのリンク | ||||||
氏名 | Tamaki, Dai | |||||
URL | http://soar-rd.shinshu-u.ac.jp/profile/ja.OafeOUkh.html | |||||
出版者 | ||||||
出版者 | GEOMETRY & TOPOLOGY PUBLICATIONS | |||||
引用 | ||||||
内容記述タイプ | Other | |||||
内容記述 | ALGEBRAIC AND GEOMETRIC TOPOLOGY. 14(4):2103-2124 (2014) | |||||
書誌情報 |
ALGEBRAIC AND GEOMETRIC TOPOLOGY 巻 14, 号 4, p. 2103-2124, 発行日 2014 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | We develop the properties of the nth sequential topological complexity TCn, a homotopy invariant introduced by the third author as an extension of Farber's topological model for studying the complexity of motion planning algorithms in robotics. We exhibit close connections of TCn(X) to the Lusternik-Schnirelmann category of cartesian powers of X, to the cup length of the diagonal embedding X hooked right arrow X-n, and to the ratio between homotopy dimension and connectivity of X. We fully compute the numerical value of TCn for products of spheres, closed 1-connected symplectic manifolds and quaternionic projective spaces. Our study includes two symmetrized versions of TCn(X). The first one, unlike Farber and Grant's symmetric topological complexity, turns out to be a homotopy invariant of X; the second one is closely tied to the homotopical properties of the configuration space of cardinality-n subsets of X. Special attention is given to the case of spheres. | |||||
資源タイプ(コンテンツの種類) | ||||||
内容記述タイプ | Other | |||||
内容記述 | Article | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 1472-2747 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA11963392 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | https://doi.org/10.2140/agt.2014.14.2103 | |||||
関連名称 | 10.2140/agt.2014.14.2103 | |||||
出版タイプ | ||||||
出版タイプ | AM | |||||
出版タイプResource | http://purl.org/coar/version/c_ab4af688f83e57aa | |||||
WoS | ||||||
表示名 | Web of Science | |||||
URL | http://gateway.isiknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=ShinshuUniv&SrcApp=ShinshuUniv&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000346150600005 |