@article{oai:soar-ir.repo.nii.ac.jp:00021121, author = {Misawa, Toru and Saez, Cristian and Charlton, Jane C. and Eracleous, Michael and Chartas, George and Bauer, Franz E. and Inada, Naohisa and Uchiyama, Hisakazu}, issue = {1}, journal = {ASTROPHYSICAL JOURNAL}, month = {Jul}, note = {We exploit the widely separated images of the lensed quasar SDSS J1029+2623 (z(em) = 2.197, theta = 22.'' 5) to observe its outflowing wind through two different sightlines. We present an analysis of three observations, including two with the Subaru telescope in 2010 February and 2014 April, separated by four years, and one with the Very Large Telescope, separated from the second Subaru observation by similar to 2 months. We detect 66 narrow absorption lines (NALs), of which 24 are classified as intrinsic NALs that are physically associated with the quasar based on partial coverage analysis. The velocities of intrinsic NALs appear to cluster around values of v(ej) similar to 59,000, 43,000, and 29,000 km s(-1), which is reminiscent of filamentary structures obtained by numerical simulations. There are no common intrinsic NALs at the same redshift along the two sightlines, implying that the transverse size of the NAL absorbers should be smaller than the sightline distance between two lensed images. In addition to the NALs with large ejection velocities of v(ej) > 1000 km s(-1), we also detect broader proximity absorption lines (PALs) at za(bs) similar to z(em). The PALs are likely to arise in outflowing gas at a distance of r <= 620 pc from the central black hole with an electron density of n(e) >= 8.7 x 10(3) cm(-3). These limits are based on the assumption that the variability of the lines is due to recombination. We discuss the implications of these results on the three-dimensional structure of the outflow., Article, ASTROPHYSICAL JOURNAL.825(1):25(2016)}, title = {MULTI-SIGHTLINE OBSERVATION OF NARROW ABSORPTION LINES IN LENSED QUASAR SDSS J1029+2623}, volume = {825}, year = {2016} }