ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "e220f6f2-6093-45eb-8f32-1b237f7af4f0"}, "_deposit": {"id": "11731", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "11731"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00011731", "sets": ["1169:1170"]}, "author_link": ["35957", "35958", "35959", "35960", "35961", "35962", "35963", "35964"], "item_1628147817048": {"attribute_name": "\u51fa\u7248\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_ab4af688f83e57aa", "subitem_version_type": "AM"}]}, "item_6_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2013-01", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "165", "bibliographicPageStart": "135", "bibliographicVolumeNumber": "65", "bibliographic_titles": [{"bibliographic_title": "NATURAL HAZARDS"}]}]}, "item_6_description_20": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "Landslide susceptibility maps are vital for disaster management and for planning development activities in the mountainous country like Nepal. In the present study, landslide susceptibility assessment of Mugling-Narayanghat road and its surrounding area is made using bivariate (certainty factor and index of entropy) and multivariate (logistic regression) models. At first, a landslide inventory map was prepared using earlier reports and aerial photographs as well as by carrying out field survey. As a result, 321 landslides were mapped and out of which 241 (75 %) were randomly selected for building landslide susceptibility models, while the remaining 80 (25 %) were used for validating the models. The effectiveness of landslide susceptibility assessment using GIS and statistics is based on appropriate selection of the factors which play a dominant role in slope stability. In this case study, the following landslide conditioning factors were evaluated: slope gradient; slope aspect; altitude; plan curvature; lithology; land use; distance from faults, rivers and roads; topographic wetness index; stream power index; and sediment transport index. These factors were prepared from topographic map, drainage map, road map, and the geological map. Finally, the validation of landslide susceptibility map was carried out using receiver operating characteristic (ROC) curves. The ROC plot estimation results showed that the susceptibility map using index of entropy model with AUC value of 0.9016 has highest prediction accuracy of 90.16 %. Similarly, the susceptibility maps produced using logistic regression model and certainty factor model showed 86.29 and 83.57 % of prediction accuracy, respectively. Furthermore, the ROC plot showed that the success rate of all the three models performed more than 80 % accuracy (i.e. 89.15 % for IOE model, 89.10 % for LR model and 87.21 % for CF model). Hence, it is concluded that all the models employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of Mugling-Narayanghat road section. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.", "subitem_description_type": "Abstract"}]}, "item_6_description_30": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7\uff08\u30b3\u30f3\u30c6\u30f3\u30c4\u306e\u7a2e\u985e\uff09", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_6_description_5": {"attribute_name": "\u5f15\u7528", "attribute_value_mlt": [{"subitem_description": "NATURAL HAZARDS. 65(1):135-165 (2013)", "subitem_description_type": "Other"}]}, "item_6_link_3": {"attribute_name": "\u4fe1\u5dde\u5927\u5b66\u7814\u7a76\u8005\u7dcf\u89a7\u3078\u306e\u30ea\u30f3\u30af", "attribute_value_mlt": [{"subitem_link_text": "Yoshida, Kohki", "subitem_link_url": "http://soar-rd.shinshu-u.ac.jp/profile/ja.umThOUkh.html"}]}, "item_6_link_67": {"attribute_name": "WoS", "attribute_value_mlt": [{"subitem_link_text": "Web of Science", "subitem_link_url": "http://gateway.isiknowledge.com/gateway/Gateway.cgi?\u0026GWVersion=2\u0026SrcAuth=ShinshuUniv\u0026SrcApp=ShinshuUniv\u0026DestLinkType=FullRecord\u0026DestApp=WOS\u0026KeyUT=000312087100009"}]}, "item_6_publisher_4": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "SPRINGER"}]}, "item_6_relation_48": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_name": [{"subitem_relation_name_text": "10.1007/s11069-012-0347-6"}], "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1007/s11069-012-0347-6", "subitem_relation_type_select": "DOI"}}]}, "item_6_rights_62": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "The original publication is available at www.springerlink.com"}]}, "item_6_select_64": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "author"}]}, "item_6_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0921-030X", "subitem_source_identifier_type": "ISSN"}]}, "item_6_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0921-030X", "subitem_source_identifier_type": "ISSN"}]}, "item_6_source_id_40": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA10720544", "subitem_source_identifier_type": "NCID"}]}, "item_6_text_69": {"attribute_name": "wosonly authkey", "attribute_value_mlt": [{"subitem_text_value": "Landslides; Susceptibility; Index of entropy; Certainty factor; Logistic regression; Geographic information systems (GIS); Remote sensing; Nepal"}]}, "item_6_text_70": {"attribute_name": "wosonly keywords", "attribute_value_mlt": [{"subitem_text_value": "ARTIFICIAL NEURAL-NETWORK; WEIGHTS-OF-EVIDENCE; SPATIAL PREDICTION MODELS; FREQUENCY RATIO; FUZZY-LOGIC; NW TURKEY; CONDITIONAL-PROBABILITY; SAMPLING STRATEGIES; LINEAR COMBINATION; LIKELIHOOD RATIO"}]}, "item_6_textarea_68": {"attribute_name": "wosonly abstract", "attribute_value_mlt": [{"subitem_textarea_value": "Landslide susceptibility maps are vital for disaster management and for planning development activities in the mountainous country like Nepal. In the present study, landslide susceptibility assessment of Mugling-Narayanghat road and its surrounding area is made using bivariate (certainty factor and index of entropy) and multivariate (logistic regression) models. At first, a landslide inventory map was prepared using earlier reports and aerial photographs as well as by carrying out field survey. As a result, 321 landslides were mapped and out of which 241 (75 %) were randomly selected for building landslide susceptibility models, while the remaining 80 (25 %) were used for validating the models. The effectiveness of landslide susceptibility assessment using GIS and statistics is based on appropriate selection of the factors which play a dominant role in slope stability. In this case study, the following landslide conditioning factors were evaluated: slope gradient; slope aspect; altitude; plan curvature; lithology; land use; distance from faults, rivers and roads; topographic wetness index; stream power index; and sediment transport index. These factors were prepared from topographic map, drainage map, road map, and the geological map. Finally, the validation of landslide susceptibility map was carried out using receiver operating characteristic (ROC) curves. The ROC plot estimation results showed that the susceptibility map using index of entropy model with AUC value of 0.9016 has highest prediction accuracy of 90.16 %. Similarly, the susceptibility maps produced using logistic regression model and certainty factor model showed 86.29 and 83.57 % of prediction accuracy, respectively. Furthermore, the ROC plot showed that the success rate of all the three models performed more than 80 % accuracy (i.e. 89.15 % for IOE model, 89.10 % for LR model and 87.21 % for CF model). Hence, it is concluded that all the models employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of Mugling-Narayanghat road section. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose."}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Devkota,  Krishna Chandra"}], "nameIdentifiers": [{"nameIdentifier": "35957", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Regmi,  Amar Deep"}], "nameIdentifiers": [{"nameIdentifier": "35958", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Pourghasemi,  Hamid Reza"}], "nameIdentifiers": [{"nameIdentifier": "35959", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Yoshida,  Kohki"}], "nameIdentifiers": [{"nameIdentifier": "35960", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Pradhan,  Biswajeet"}], "nameIdentifiers": [{"nameIdentifier": "35961", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Ryu,  In Chang"}], "nameIdentifiers": [{"nameIdentifier": "35962", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Dhital,  Megh Raj"}], "nameIdentifiers": [{"nameIdentifier": "35963", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Althuwaynee,  Omar F."}], "nameIdentifiers": [{"nameIdentifier": "35964", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2015-09-28"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "Landslide_susceptibility_mapping_using_certainty_factor.pdf", "filesize": [{"value": "2.4 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 2400000.0, "url": {"label": "Landslide_susceptibility_mapping_using_certainty_factor.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/11731/files/Landslide_susceptibility_mapping_using_certainty_factor.pdf"}, "version_id": "becffc6d-0573-4f97-a866-ced181cf3e43"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "Landslides", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Susceptibility", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Index of entropy", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Certainty factor", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Logistic regression", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Geographic information systems (GIS)", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Remote sensing", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Nepal", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya", "subitem_title_language": "en"}]}, "item_type_id": "6", "owner": "1", "path": ["1169/1170"], "permalink_uri": "http://hdl.handle.net/10091/17264", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2013-12-02"}, "publish_date": "2013-12-02", "publish_status": "0", "recid": "11731", "relation": {}, "relation_version_is_last": true, "title": ["Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya"], "weko_shared_id": -1}
  1. 040 理学部
  2. 0401 学術論文

Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya

http://hdl.handle.net/10091/17264
ae201360-6cf0-474c-abbe-4ff667e56713
名前 / ファイル ライセンス アクション
Landslide_susceptibility_mapping_using_certainty_factor.pdf Landslide_susceptibility_mapping_using_certainty_factor.pdf (2.4 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2013-12-02
タイトル
言語 en
タイトル Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya
言語
言語 eng
キーワード
主題Scheme Other
主題 Landslides
キーワード
主題Scheme Other
主題 Susceptibility
キーワード
主題Scheme Other
主題 Index of entropy
キーワード
主題Scheme Other
主題 Certainty factor
キーワード
主題Scheme Other
主題 Logistic regression
キーワード
主題Scheme Other
主題 Geographic information systems (GIS)
キーワード
主題Scheme Other
主題 Remote sensing
キーワード
主題Scheme Other
主題 Nepal
資源タイプ
資源 http://purl.org/coar/resource_type/c_6501
タイプ journal article
著者 Devkota, Krishna Chandra

× Devkota, Krishna Chandra

WEKO 35957

Devkota, Krishna Chandra

Search repository
Regmi, Amar Deep

× Regmi, Amar Deep

WEKO 35958

Regmi, Amar Deep

Search repository
Pourghasemi, Hamid Reza

× Pourghasemi, Hamid Reza

WEKO 35959

Pourghasemi, Hamid Reza

Search repository
Yoshida, Kohki

× Yoshida, Kohki

WEKO 35960

Yoshida, Kohki

Search repository
Pradhan, Biswajeet

× Pradhan, Biswajeet

WEKO 35961

Pradhan, Biswajeet

Search repository
Ryu, In Chang

× Ryu, In Chang

WEKO 35962

Ryu, In Chang

Search repository
Dhital, Megh Raj

× Dhital, Megh Raj

WEKO 35963

Dhital, Megh Raj

Search repository
Althuwaynee, Omar F.

× Althuwaynee, Omar F.

WEKO 35964

Althuwaynee, Omar F.

Search repository
信州大学研究者総覧へのリンク
氏名 Yoshida, Kohki
URL http://soar-rd.shinshu-u.ac.jp/profile/ja.umThOUkh.html
出版者
出版者 SPRINGER
引用
内容記述タイプ Other
内容記述 NATURAL HAZARDS. 65(1):135-165 (2013)
書誌情報 NATURAL HAZARDS

巻 65, 号 1, p. 135-165, 発行日 2013-01
抄録
内容記述タイプ Abstract
内容記述 Landslide susceptibility maps are vital for disaster management and for planning development activities in the mountainous country like Nepal. In the present study, landslide susceptibility assessment of Mugling-Narayanghat road and its surrounding area is made using bivariate (certainty factor and index of entropy) and multivariate (logistic regression) models. At first, a landslide inventory map was prepared using earlier reports and aerial photographs as well as by carrying out field survey. As a result, 321 landslides were mapped and out of which 241 (75 %) were randomly selected for building landslide susceptibility models, while the remaining 80 (25 %) were used for validating the models. The effectiveness of landslide susceptibility assessment using GIS and statistics is based on appropriate selection of the factors which play a dominant role in slope stability. In this case study, the following landslide conditioning factors were evaluated: slope gradient; slope aspect; altitude; plan curvature; lithology; land use; distance from faults, rivers and roads; topographic wetness index; stream power index; and sediment transport index. These factors were prepared from topographic map, drainage map, road map, and the geological map. Finally, the validation of landslide susceptibility map was carried out using receiver operating characteristic (ROC) curves. The ROC plot estimation results showed that the susceptibility map using index of entropy model with AUC value of 0.9016 has highest prediction accuracy of 90.16 %. Similarly, the susceptibility maps produced using logistic regression model and certainty factor model showed 86.29 and 83.57 % of prediction accuracy, respectively. Furthermore, the ROC plot showed that the success rate of all the three models performed more than 80 % accuracy (i.e. 89.15 % for IOE model, 89.10 % for LR model and 87.21 % for CF model). Hence, it is concluded that all the models employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of Mugling-Narayanghat road section. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.
資源タイプ(コンテンツの種類)
内容記述タイプ Other
内容記述 Article
ISSN
収録物識別子タイプ ISSN
収録物識別子 0921-030X
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA10720544
DOI
関連識別子
識別子タイプ DOI
関連識別子 https://doi.org/10.1007/s11069-012-0347-6
関連名称
関連名称 10.1007/s11069-012-0347-6
権利
権利情報 The original publication is available at www.springerlink.com
出版タイプ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
WoS
表示名 Web of Science
URL http://gateway.isiknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=ShinshuUniv&SrcApp=ShinshuUniv&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000312087100009
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 11:43:29.382590
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio