WEKO3
アイテム
{"_buckets": {"deposit": "f0e29b3d-3ee3-4905-83b5-59ac0558a0a1"}, "_deposit": {"id": "11741", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "11741"}, "status": "published"}, "_oai": {"id": "oai:soar-ir.repo.nii.ac.jp:00011741", "sets": ["1170"]}, "author_link": ["35995", "35996"], "item_1628147817048": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_6_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2011-07", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "34", "bibliographicPageStart": "1", "bibliographicVolumeNumber": "126", "bibliographic_titles": [{"bibliographic_title": "PROGRESS OF THEORETICAL PHYSICS"}]}]}, "item_6_description_20": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Crum\u0027s theorem and its modification a la Krein-Adler are formulated for the discrete quantum mechanics with real shifts, whose eigenfunctions consist of orthogonal polynomials of a discrete variable. The modification produces the associated polynomials with a finite number of degrees deleted. This in turn provides the well known Christoffel transformation for the dual orthogonal polynomials with the corresponding positions deleted.", "subitem_description_type": "Abstract"}]}, "item_6_description_30": {"attribute_name": "資源タイプ(コンテンツの種類)", "attribute_value_mlt": [{"subitem_description": "Article", "subitem_description_type": "Other"}]}, "item_6_description_5": {"attribute_name": "引用", "attribute_value_mlt": [{"subitem_description": "PROGRESS OF THEORETICAL PHYSICS. 126(1):1-34 (2011)", "subitem_description_type": "Other"}]}, "item_6_link_3": {"attribute_name": "信州大学研究者総覧へのリンク", "attribute_value_mlt": [{"subitem_link_text": "Odake, Satoru", "subitem_link_url": "http://soar-rd.shinshu-u.ac.jp/profile/ja.uhLeuUkV.html"}]}, "item_6_link_67": {"attribute_name": "WoS", "attribute_value_mlt": [{"subitem_link_text": "Web of Science", "subitem_link_url": "http://gateway.isiknowledge.com/gateway/Gateway.cgi?\u0026GWVersion=2\u0026SrcAuth=ShinshuUniv\u0026SrcApp=ShinshuUniv\u0026DestLinkType=FullRecord\u0026DestApp=WOS\u0026KeyUT=000293612100001"}]}, "item_6_publisher_4": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE"}]}, "item_6_relation_48": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_name": [{"subitem_relation_name_text": "10.1143/PTP.126.1"}], "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1143/PTP.126.1", "subitem_relation_type_select": "DOI"}}]}, "item_6_select_64": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_6_source_id_35": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0033-068X", "subitem_source_identifier_type": "ISSN"}]}, "item_6_source_id_39": {"attribute_name": "NII ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0033-068X", "subitem_source_identifier_type": "ISSN"}]}, "item_6_source_id_40": {"attribute_name": "書誌レコードID", "attribute_value_mlt": [{"subitem_source_identifier": "AA00791455", "subitem_source_identifier_type": "NCID"}]}, "item_6_text_70": {"attribute_name": "wosonly keywords", "attribute_value_mlt": [{"subitem_text_value": "DISCRETE QUANTUM-MECHANICS; ANNIHILATION-CREATION OPERATORS; SHAPE INVARIANT POTENTIALS; ORTHOGONAL POLYNOMIALS; CRUMS THEOREM; SYSTEMS"}]}, "item_6_textarea_68": {"attribute_name": "wosonly abstract", "attribute_value_mlt": [{"subitem_textarea_value": "Crum\u0027s theorem and its modification a la Krein-Adler are formulated for the discrete quantum mechanics with real shifts, whose eigenfunctions consist of orthogonal polynomials of a discrete variable. The modification produces the associated polynomials with a finite number of degrees deleted. This in turn provides the well known Christoffel transformation for the dual orthogonal polynomials with the corresponding positions deleted."}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Odake, Satoru"}], "nameIdentifiers": [{"nameIdentifier": "35995", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Sasaki, Ryu"}], "nameIdentifiers": [{"nameIdentifier": "35996", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2015-09-28"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "Dual_Christoffel_Transformations.pdf", "filesize": [{"value": "427.5 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 427500.0, "url": {"label": "Dual_Christoffel_Transformations.pdf", "url": "https://soar-ir.repo.nii.ac.jp/record/11741/files/Dual_Christoffel_Transformations.pdf"}, "version_id": "816bd2e9-5550-4cb3-863c-111d6e3c697e"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Dual Christoffel Transformations", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Dual Christoffel Transformations", "subitem_title_language": "en"}]}, "item_type_id": "6", "owner": "1", "path": ["1170"], "permalink_uri": "http://hdl.handle.net/10091/17229", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2013-11-05"}, "publish_date": "2013-11-05", "publish_status": "0", "recid": "11741", "relation": {}, "relation_version_is_last": true, "title": ["Dual Christoffel Transformations"], "weko_shared_id": -1}
Dual Christoffel Transformations
http://hdl.handle.net/10091/17229
http://hdl.handle.net/10091/172297cca536d-e275-44fc-9467-4cad2f9396eb
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2013-11-05 | |||||
タイトル | ||||||
言語 | en | |||||
タイトル | Dual Christoffel Transformations | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源 | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
著者 |
Odake, Satoru
× Odake, Satoru× Sasaki, Ryu |
|||||
信州大学研究者総覧へのリンク | ||||||
氏名 | Odake, Satoru | |||||
URL | http://soar-rd.shinshu-u.ac.jp/profile/ja.uhLeuUkV.html | |||||
出版者 | ||||||
出版者 | PROGRESS THEORETICAL PHYSICS PUBLICATION OFFICE | |||||
引用 | ||||||
内容記述タイプ | Other | |||||
内容記述 | PROGRESS OF THEORETICAL PHYSICS. 126(1):1-34 (2011) | |||||
書誌情報 |
PROGRESS OF THEORETICAL PHYSICS 巻 126, 号 1, p. 1-34, 発行日 2011-07 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | Crum's theorem and its modification a la Krein-Adler are formulated for the discrete quantum mechanics with real shifts, whose eigenfunctions consist of orthogonal polynomials of a discrete variable. The modification produces the associated polynomials with a finite number of degrees deleted. This in turn provides the well known Christoffel transformation for the dual orthogonal polynomials with the corresponding positions deleted. | |||||
資源タイプ(コンテンツの種類) | ||||||
内容記述タイプ | Other | |||||
内容記述 | Article | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 0033-068X | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA00791455 | |||||
DOI | ||||||
識別子タイプ | DOI | |||||
関連識別子 | https://doi.org/10.1143/PTP.126.1 | |||||
関連名称 | 10.1143/PTP.126.1 | |||||
出版タイプ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
WoS | ||||||
表示名 | Web of Science | |||||
URL | http://gateway.isiknowledge.com/gateway/Gateway.cgi?&GWVersion=2&SrcAuth=ShinshuUniv&SrcApp=ShinshuUniv&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000293612100001 |